Seminario Internacional Complutense

Non Linear and Non Local problems:
from the Theory to the Applications

Madrid, 6-8 February 2008




This Meeting will gather national and international experts together on the study of applied problems whose modelization involves nonlinear integrodiferential equations. Such systemas appear in a wide range of applications from Mathematics and Physics to Biology and Engineering. In fact, most of the physical dynamics are implicitly non linear by nature and, often, non local due to some temporal or spatial long-range memory and interactions.

The conference programme includes a number of plenary talks and several short communications. The participation will be free and open to all interested researchers and students.

All lectures will be held at Facultad de CC. Matemáticas of Universidad Complutense de Madrid, "Aula Miguel de Guzmán" S-118 (Floor - 1).


  • N. Alibaud. Institut de Mathématiques et de Modélisation de Montpellier, France. ''A non-local perturbation of first order Hamilton-Jacobi equations with unbounded data''.
  • S. Bonaccorsi. Universitá di Trento, Italy. “Volterra integro-differential equations with completely monotone kernels”.
  • D. Cordoba. IMAFF-Instituto de Matemática Aplicada y Física Fundamental, CSIC, Spain. “On the existence of solutions of the surface quasi-geostrophic equation”.
  • E. Cuesta. Universidad de Valladolid, Spain. "Runge-Kutta convolution quadrature methods for well-posed equations with memory".
  • J.I. Díaz. Universidad Complutense de Madrid, Spain. “Global controls to stabilize the chemical turbulence: a non local complex Ginzburg-Landau equation”.
  • Q. Feng. Chinese Academy of Sciences, China. “Implementing arbitrarly high-order symplectic methods via Krylov deferred correction technique”.
  • H. Gómez Díaz. University of Texas at Austin, USA, and Universidad de A Coruña, Spain. "Non-local phase-field models in science and engineering: from the Cahn-Hilliard equation to strain-gradient hyperelasticity".
  • Y. Jiao. Chinese Academy of Sciences, China. “Conjugate Symplecticity of Multi-Step Methods”
  • P. J. Miana. Universidad de Zaragoza, Spain. “Hermite Matrix-Valued Functions Associated to MatrixDifferential Equations".
  • J. M. Mazón. Universitat de Valencia, Spain. "The limit as p tends to infinity in a nonlocal p-Laplacian evolution equation. A nonlocal approximation of a model for sand piles".
  • J. F. Padial. Universidad Politécnica de Madrid, Spain. "Some non local problems arising in the mathematical modelling of the nuclear fusion".
  • T. Pierantozzi. Universidad Complutense de Madrid, Spain. “On the finite time extinction phenomenon for some non linear fracTional evolution equations”.
  • S. Salsa. Politecnico di Milano, Italy. “Obstacle problem for the fractional Laplacian”.
  • Y. Tang. Chinese Academy of Sciences, China. "Symmetric hamiltonian algorithms with application to nonlinear Schroedinger system".
  • J. Trujillo. Universidad de La Laguna, Tenerife, Spain. "On fast fractional Fourier transform and open problems".
  • D. Usero. Universidad Complutense de Madrid, Spain. “Non local model for non linear dark solitary waves”.
  • L. Vázquez. Universidad Complutense de Madrid, Spain. "From the nonlocal problems to fractional differential equations"
  • R. Vilela Mendes. Technical University Lisbon, Portugal. "Stochastic solutions of nonlinear partial differential equations".
  • B. Vinagre. Universidad de Extremadura, Spain. "Some challenges in modelling and control of fractional dynamic systems. An engineering approach".
  • G. Zaslavsky. Courant Institute, New York University, New York, USA. "Origin of fractional dynamics in systems with long-range memory and interaction".



Picture Gallery


   J.I. Díaz, T. Pierantozzi, L. Vázquéz.


   T. Pierantozzi, Dpto. Matemática Aplicada, Fac. CC. Matemáticas, Universidad Complutense de Madrid, e-mail: teresa.pierantozzi at


  SIC Seminarios Internacionales Complutenses -- i-math -- Ministerio de Educación y Cultura -- IMI Instituto de Matemática Interdisciplinar