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The purpose of this course is to discuss the resolution of an evolution parabolic sys-
tem. This simplified system presents the same difficulties as the full models of Navier-
Stokes coupled with the heat equation (with or without the Boussinesq approximation).
We shall first recall some basic tools in Functional Analysis and the mathematical back-
ground for the Navier-Stokes coupled with the heat equation. Nevertheless, to un-
derstand the course, the students should at least know the notion of distribution or
generalized derivatives (see [25, 2])
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1 The models

1.1 The simplified model.

The system of equations that we shall study is the following:
Let Ω a smooth open set of the plane R2, (here, we mean by smooth at least a C2

domain), T > 0, QT = Ω×]0, T [, we are looking for a couple of functions (v, θ) satisfying
(BS):
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•
vt −∆v = ρ(θ) in QT ,

•
ρ(θ)θt −∆θ = |∇v|2 in QT .

We shall complete this system by the following boundary conditions and the initial
values.

v(x, t) = 0 =
∂θ

∂t
(x, t), x ∈ ∂Ω, t ∈]0, T [.

v(x, 0) = v(0), θ(x, 0) = θ(0), x ∈ Ω.
Before giving the conditions on ρ, the initial data and starting the resolution of such
system, let us give the full model from which such a consideration comes from.
The results concerning those equations were obtained with J.I. Dı́az and P. Schmidt and
were published in [6, 7].

1.2 The full model (by P. Schmidt).

This section was written by Paul Schmidt one of the co-authors in [6, 7, 8].
The following equations have been derived from the first principles governing the flow
of a viscous, heat -conducting fluid:
A.) Balance momentum

ρVt + ρ(V.∇)V −∇.S(V, p) = −ρ∇φ
B.) Balance of mass

ρt +∇ · (ρV ) = 0

C.) Balance of internal energy

ρcθt + ρc(V.∇)θ −∇.(κ∇θ) = S(V, p) : ∇V
The unknown are the velocity V (vector field), p (pressure), ρ (density), and θ (the
temperature); S(V, p) is the stress tensor, φ is the gravitational potential; c and κ
denote the heat capacity and thermal conductivity respectively. In 3D (resp 2D) we
have only five (four) equations for six (resp. three) unknowns, the system (A), (B), (C)
must be supplemented by a constitutive relation between the thermodynamic quantities
p, ρ, θ called : equation of state.
The simplest would be ρ = constant. Under this assumption, (A), (B) are reduced to
the classical Navier-Stokes system and is decoupled from the last equation (B); clearly,
this is useless if we want to model the buoyancy-driven flow. To model buoyancy, we
should assume that : ρ > 0, is a decreasing function of θ eventually bounded; but then,
(B) becomes an evolution equation for θ!
For this reason , we shall first introduce the simplification that : ρ is constant but only is
the balance of mass: ∇. V = 0 (divergence free) (the fluid is said to be incompressible)
and this implies

S(V, p) = µ(∇V +∇V tr)− pId and S(V, p) : ∇V =
µ

2
|∇V +∇V tr|2,

where µ is the viscosity, the symbol “tr” means the trace an “Id” is the identity matrix.
As a consequence, we get:
D.)

ρVt + ρ(V.∇)V −∇.(µ(∇V +∇V tr)) +∇p = ρg
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with g = −∇φ.
E.)

div(V ) = ∇.V = 0

F.)

ρcθt + ρc(V.∇)θ −∇.(κ∇θ) =
µ

2
|∇V +∇V tr|2

In principle, ρ, µ, c, κ should all be positive functions of θ.

1.3 Classical Boussinesq approximation:

Assume that µ, c, κ are constant, and that ρ = ρ0 is constant everywhere except on the
right hand side of D.), where we set ρ = ρ0(1 − αθ) with α > 0. We assume that this
system may not have global-in-time solutions.
We set µ, c, κ, ρ0 equal to one, therefore our final system that we should consider at the
end of this session will be :
G.)

Vt + (V.∇)V −∆V +∇p = ρ(θ)g

H.)
∇.V = 0

I.)
ρ(θ)θt + ρ(θ)(V.∇)θ −∆θ = |∇V +∇V tr|2

The pressure p plays the role of Lagrange multiplier associated to the divergence
constraint on v. For this reason, in the simplified model we took away the ∇p and the
condition div(V ) = 0.

2 Preliminary material: functional spaces

In this section, we shall announce some useful tools on functional. The reader might
found those details and complements in [28, 11, 18, 25, 2].

2.1 “Non evolution” case: Some basic and usual spaces

For an open set Ω (bounded all the time in this course) and 1 6 p 6 ∞, we set

Lp(Ω) =

{
v : Ω → R, measurable ,

∫
Ω

|v|p(x)dx <∞ if p is finite.

}
L∞(Ω) =

{
v : Ω → R, measurable , ess sup

Ω
|v(x)| <∞

}
.

Those spaces are endowed with their usual norms, that is :

|v|pp =

∫
Ω

|v|p(x)dx, if p <∞,

|v|∞ = ess sup Ω|v(x)| otherwise.

The associate and dual space of Lp(Ω) for 1 < p < ∞ is Lp′(Ω) with p′ being the

conjuguate of p, i.e.
1

p
+

1

p′
= 1.
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We have the

Lemma 1.

1. Holder’s inequality: ∫
Ω

|vw|(x)dx 6 |v|p|w|p′ ,

with v ∈ Lp(Ω) and w ∈ Lp′(Ω) (the inequality is true for p = 1, p′ = +∞).

2. Interpolation inequality: Let 1 6 p < r < q 6 +∞ and θ ∈ [0, 1] :
1

r
=
θ

p
+

1− θ

q
.

Then for all u ∈ Lp(Ω) ∩ Lq(Ω), we have:

|u|r 6 |u|θp|u|1−θ
q .

Comments: One proves 2.) using 1.).

Definition 1 (of Hs(Ω), s ∈ [0,+∞[).

1. s = 0 : H0(Ω) = L2(Ω).

2. s ∈ IN, s 6= 0

Hs(Ω) =
{
v ∈ L2(Ω) : Dαv ∈ L2(Ω), |α| 6 s

}
.

Here

Dα =
∂α1+...+αN

∂xa1
1 . . . ∂xαN

N

, (α1, . . . , αN) ∈ INN ; |α| = α1, . . .+ αN .

3. s ∈ [0,+∞[, s /∈ IN. We shall start with

(a) If s = σ ∈]0, 1[.

Hσ(Ω) =
{
v ∈ L2(Ω) : vσ(x, y) =

|v(x)− v(y)|
|x− y|σ+N

2

∈ L2(Ω× Ω)
}
.

(b) If s > 1, s /∈ IN, we set

[s] = the biggest integer less than s and let σ = s− [s] ∈]0, 1[ ,

then
Hs(Ω) =

{
v ∈ H [s](Ω) : Dαv ∈ Hσ(Ω) for |α| = [s]

}
.

Properties 1. Hs(Ω), s ∈ [0,+∞[ are Hilbert spaces under the following norms:

1. For s ∈ IN, : v ∈ Hs(Ω)

|v|2Hs(Ω) =
∑
|α|6s

|Dαv|2L2(Ω).

2. For s = σ ∈]0, 1[
|v|2Hs(Ω) = |v|2L2(Ω) + |vσ|2L2(Ω×Ω).
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3. For s > 1, s /∈ IN, and σ = s− [s]

|v|2Hs(Ω) = |v|2H[s](Ω) + |vσ|2L2(Ω×Ω).

Before giving more properties, there is another definition of Hs(Ω), s ∈ [0,+∞[
using the Fourier transform.
We recall first the

Lemma 2. [Extension properties]
Assume that Ω is an open bounded set of class C`, ` > 1. then, there exists a continuous
linear operator P` from Hm(Ω), m ∈ IN, m 6 ` onto Hm(IRN) such that:

1. P`u = u for all u ∈ Hm(Ω).

2. ∃ c(Ω, `) > 0 : |P`u|Hm(IRN ) 6 c(Ω, `)|u|Hm(Ω).

Definition 2 (of Hs(IRN), s ∈ [0,+∞[).
Let v ∈ L2(IRN), we denote by v̂ the Fourier transform of v ( v̂ = F(v)). We recall the
Plancherel Formula

|v̂|L2(IRN ) = |v|L2(IRN ).

Hs(IRN) =
{
v : IRN → IR :

∫
IRN

(1 + |ξ|2)s|v̂(ξ)|2dξ < +∞
}
.

The norm of Hs(IRN) given previously is equivalent to

|v|2
Hs(IRN )

≈
∫

IRN )

(1 + |ξ|2)s|v̂(ξ)|2dξ.

Definition 3 (of Hs(Ω), s ∈ [0,+∞[).
Assume that Ω is an open bounded set of IRN of class C`, ` > 1. Then, for s 6 `

Hs(Ω) =
{
v ∈ H [s](Ω) : P`v ∈ Hs(IRN)

}
.

|v|Hs(Ω) = |P`v|Hs(IRN ).

Definition 4 (of H−s(Ω), s ∈ [0,+∞[).
We set

C∞
c (Ω) =

{
v : Ω → IR indefinitely differentiable with compact support

}
.

For s ∈ [0,+∞[, one define

Hs
0(Ω) = C∞

c (Ω)
Hs(Ω)

,

and
H−s(Ω)denotes the dual space of Hs

0(Ω).

Lemma 3 (Compact embeddings for Hs(Ω) and interpolation inequalities be-
tween Hs(Ω)).
Let Ω be a bounded set of class C`, ` > 1.
Then, the injection Hs1(Ω) ⊂> Hs2(Ω) is compact if 0 6 s2 < s1 6 `.
Moreover if s = θs1 + (1− θ)s2 ∈]s2, s1[, θ ∈]0, 1[,
then, there exists a constant c = c(Ω) > 0:

|u|Hs(Ω) 6 c|u|θHs1 (Ω)|u|1−θ
Hs2 (Ω) for u ∈ Hs1(Ω).
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Comments:
• Continuous injection shall be denoted by ⊂>.
• Use the second definition of Hs(Ω): |u|Hsi (Ω) = |P`u|Hsi (IRN ) and apply the Hölder
inequality, noticing that 1 = θ+ (1− θ). In fact the regularity of Ω can be weaken here,
this why another proof can be done, using the first definition or an equivalent one.

Lemma 4 (Sobolev embeddings).
One has:

1. Hs(IRN) ⊂> Lq(IRN) if s <
N

2
and

1

q
=

1

2
− s

N
.

2. |Dαu|L∞(IRN ) 6 c(s, α)|u|Hs(IRN ) if s >
N

2
, |α| < s− N

2

3. If Ω is a bounded subset of IRN of class C`, ` > 2,

Hs(Ω) ⊂> Lq(Ω) if s <
N

2
,

1

q
=

1

2
− s

2
.

4. If Ω is a bounded open set of class C`, ` > [s], then

Hs(Ω) ⊂> C(Ω) if s >
N

2
.

The injection is compact.
More generally,

|Dαu|L∞(Ω 6 c(Ω, s, α)|u|Hs(Ω) with |α| < s− N

2
.

Lemma 5 (Poincaré-Sobolev inequality).
Let Ω be an open bounded set of IRN .
There exists c(Ω) = c > 0 such that

|u|L2(Ω) 6 c(Ω)|∇u|L2(Ω) ∀u ∈ H1
0 (Ω).

In particular
|u|H1(Ω) ≈ |∇u|L2(Ω) on H1

0 (Ω).

Two last interpolation inequalities that we shall use are the Gagliardo-Niremberg
interpolation inequalities and the Agmon’s inequality.

Lemma 6 ( Gagliardo-Niremberg).
Let Ω be an open set of class C3 in IR2.
Then, there exists c > 0

|u|L4(Ω) 6 c|u|
1
2

L2(Ω)|u|
1
2

H1(Ω) ∀u ∈ H1(Ω).

Lemma 7 (Agmon’s Lemma).
Let Ω be a bounded open set of class C4 in IRN .
Then, there exists c(Ω) = c > 0:

If N = 2 then |u|L∞(Ω) 6 c|u|
1
2

L2(Ω)|u|
1
2

H2(Ω).

If N = 3 then |u|L∞(Ω) 6 c|u|
1
2

H1(Ω)|u|
1
2

H2(Ω).

6



2.2 Functional spaces for evolution time dependance

For simplicity, we shall restrict to the case of Hilbert spaces which are separable.

If V is a real Hilbert space with a norm denoted by || · || = | · |V and the scalar
product is ((·, ·)) = (·, ·)V .

Then we have

Definition 5.
Let 1 6 p 6 +∞, T ∈]0,∞[.

Lp(0, T ;V ) =
{
v : [0, T ] → V Bochner measurable,

such that


∫ T

0

||v(t)||pdt < +∞ p < +∞,

ess sup
t∈[0,T ]

||v(t)|| < +∞ otherwise.

}

Endowed with the natural norm,

|v|pLp(0,T ;V ) =

∫ T

0

||v(t)||pdt for p < +∞,

and
|v|L∞(0,T ;V ) = ess sup

t∈[0,T ]

||v(t)||otherwise.

These spaces are complete.

In particular

Lemma 8 (Hilbert space properties).
L2(0, T ;V ) is an Hilbert space, whose dual is L2(0, T ;V ′) if V ′ denotes the dual of V .

Definition 6.
C([0, T ];V ) =

{
v : [0, T ] → V continuous

}
is a Banach space endowed with

|v|C([0,T ];V ) = Max
[0,T ]

||v(t)||.

Definition 7.
D(0, T ) = C∞

c (]0, T [) and D(0, T ;V ) = C∞
c (]0, T [;V ) whose dual is D′(0, T ;V ).

Definition 8.

If v ∈ L1(0, T ;V ) we set vt = v′ =
dv

dt
∈ D′(0, T ;V ) defined by

dv

dt
(ϕ) = −

∫ T

0

v(t)ϕ′(t)dt, ∀ϕ ∈ D(0, T ).

Lemma 9 (Embedding).
Let (V, || · ||) and (H, | · |) be two Hilbert spaces with the following conditions

1. V is campactly embedded in H,
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2. V is dense in H and we have

V ⊂> H = H ′⊂>V
′.

We define

W (0, T ) =
{
v ∈ L2(0, T ;V ′) : v′ ∈ L2(0, T ;V ′)

}
.

Then,

1. W (0, T ⊂> C([0, T ];H),

2.
d

dt
|v(t)|2 = 2 < v(t), v′(t) >V,V ′.

The main compactness lemma for time evolution equation is

Theorem 1 (Compactness for evolution equation).
Let X⊂>

c
Y⊂>Z be three Banach spaces (or Hilbert in our cases).

Let 1 6 p 6 +∞, 1 6 q 6 +∞ and set

Wp,q(0, T ) =
{
v ∈ Lp(0, T ;X) : v′ ∈ Lq(0, T ;Z)

}
1. If p < +∞ then Wp,1(0, T )⊂>

c
Lp(0, T ;Y ),

2. If p = +∞ then W∞,q⊂>
c
C([0, T ], Y ) provided that q > 1.

As a corollary of the two last theorems and Hs-spaces:

Corollary 1 (Compactness for L2(0,T; Hm(Ω))).
Let m > 1, and Ω a bounded Cm open set of IRN .

Then W (0, T ;Hm(Ω)) =
{
v ∈ L2(0, T ;Hm(Ω)) such that v′ ∈ L2(0, T ; (Hm(Ω))′)

}
is

compactly embedded in C([0, T ], Hs(Ω)) for all s < m.

This corollary was widely used in [26].

3 The simplified model and main results

Let V = H1
0 (Ω), H = H1(Ω), with Ω ⊂ IRN , be a smooth bounded (say of class C4)

set with N = 2. We suppose that the function ρ is

ρ(σ) = (1− σ)+ (1)

We denote by Φ a primitive of ρ such that

Φ(s) =

∫ s

0

ρ(σ)dσ = −1

2
(1− s)2

+ +
1

2
.

We shall discuss about the local existence of a couple (v, θ), where v is the simplified
velocity and θ is the simplified temperature satisfying

(BS)


vt −∆v = (1− θ)+ in QT = Ω×]0, T [,

(1− θ)+θt −∆θ = |∇v|2 in QT ,

v(x, t) = 0 =
∂θ

∂n
(x, t) on ΣT = ∂Ω×]0, T [.
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Here ~n(x) = n(x) denotes the outernormal at a point x ∈ ∂Ω.

The initial data are v(x, 0) = v0(x) and θ(x, 0) = θ0(x), x ∈ Ω ⊂ IR2.
The main difficulty in this model is the θ-equation, since it degenerates because of the
term (1− θ)+ which makes the equation to be “parabolic” on

{
θ < 1

}
and “elliptic” on{

θ = 1
}

. We shall show that the solution might not exist (but a simple formal analysis
can show that assertion).
We shall introduce the following definition of truncated problem :

Definition 9.
Let T be in ]0,∞[. A couple (θ, v) such that θ ∈ C([0, T ];L2(Ω))∩L2(0, T ;H1(Ω)) with
Φ(θ) ∈ L2(QT ) and v ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H2(Ω)) is called a “(weak in θ and
strong in v) solution” for the following truncated system (TBS) associated to the equa-
tions given in section 1.1, if there exist a real α and a function gv ∈ [|∇v|2χ{θ<α}, |∇v|2]
a.e. in QT such that

d

dt

∫
Ω

vϕdx+

∫
Ω

∇v · ∇ϕdx =

∫
Ω

(1− θ)+ϕdx, in D′(0, T ), ∀ϕ ∈ H1
0 (Ω),

−1

2

d

dt

∫
Ω

(1− θ)2
+ψdx+

∫
Ω

∇θ · ∇ψdx =

∫
Ω

gvψdx in D′(0, T ), ∀ψ ∈ H1(Ω),

A weak solution (θ, v) is called an ”exact (weak in θ and strong in v) solution” on QT

if it satisfies the following condition :

|∇v|2 = gv, a.e. in QT .

A weak solution (θ, v) is called an ”almost exact (weak in θ and strong in v) solution”
on QT if :

gv = |∇v|2χ{θ<α} a.e. in QT .

An exact solution (resp. almost exact solution with θ ∈ L2(0, T ;H2(Ω)) is called a
(strong in θ and strong in v) exact solution (resp. strong-strong and almost exact solu-
tion).

If there is a time T0 < T for which one those definitions are fulfilled, we will say that it
is a local exact (respectively almost exact) solution.

Remark 1. We note that

|∇v|2χ{θ<α} = |∇v|2 − |∇v|2χ{θ>α}

which proves the relationship with the dissipative (in θ) term |∇v|2χ{θ>α} (for a pre-
scribed v). Moreover, if (θ, v) is a (weak in θ and strong in v) solution and α > θ∞,
with θ∞ = ess sup

QT

θ. Then,

|∇v|2χ{θ<θ∞} 6 |∇v|2χ{θ<α}

and equality holds if (θ, v) is an almost exact solution.
Now, we give some sufficient conditions to obtain an almost solution and an exact

solution:
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Proposition 1.
Let θ be a function such that (θ, v) is a weak solution for the truncated system with

θ ∈ L
3
2
loc(0, T ;W

2, 3
2

loc (Ω)), Φ(θ) ∈ L1
loc(0, T ;W 1,1

loc (Ω)) and θ∞ = ess sup
QT

θ 6 α. Assume

that gv ∈ L
3
2 (QT ). Then

gv = |∇v|2χ{θ<θ∞}.

Furthermore, if θ ∈ C(QT ) and θ0 < α − δ for some δ > 0 then the couple (v, θ) is a
local exact solution.

Proof of Proposition 1. Let us observe that θ satisfy

∂Φ(θ)

∂t
−∆θ = gv in Ω.

If θ ∈ L
3
2
loc(0, T ;W

2, 3
2

loc (Ω)), and gv ∈ L
3
2 (QT ) then

∂Φ(θ)

∂t
∈ L

3
2
loc(QT ). Thus by a Stam-

pacchia result (see e.g. [16]) we have ∆θ =
∂Φ(θ)

∂t
= 0 a.e. on the set

E =
{

(t, x) ∈ QT : θ(t, x) = θ∞

}
.

This means gv(t, x) = 0 a.e. on E, since gv = |∇v|2 on {θ < θ∞}, then we have the
result. If θ ∈ C(QT ) then the choice of δ > 0 so that θ0 + δ < α and the continuity of
θ imply that there exists a time T0 > 0, such that θ(t, x) < α − δ

2
for all (t, x) ∈ QT0 .

Therefore, one has
|∇v|2χ{θ<α} = |∇v|2, in QT0 .

This shows that the couple is a local exact solution. �

Theorem 2.
Let 0 6 θ0 6 1, (θ0, v0) ∈ H1(Ω) × H1

0 (Ω). Then for all T > 0, there exist a function
θ ∈ L2(0, T ;H1(Ω)), 0 6 θ 6 1 with θ ∈ C([0, T ];L2(Ω)), v ∈ C([0, T ];H1

0 (Ω)) ∩
L2(0, T ;H2(Ω)) satisfying ∀ϕ ∈ H1

0 (Ω),∀ψ ∈ H1(Ω) that

d

dt

∫
Ω

v(t, x)ϕ(x)dx+

∫
Ω

∇ϕ(x)·∇v(t, x)dx =

∫
Ω

ϕ(x)(1− θ(t, x))dx

and

−1

2

d

dt

∫
Ω

(1− θ)2ψ(x)dx+

∫
Ω

∇ψ(x)·∇θ(t, x)(t, x)dx =

∫
Ω

ψ(x)gv(t, x)dx, in D′(0, T )

with gv ∈ [|∇v|2χ{θ<1}, |∇v|2] , v(0) = v0, θ(0) = θ0 in Ω.

Proof.
We consider ε ∈]0, 1[ and the following “nondegenerate” parabolic system (BS)ε

Find a “regular” couple (vε, θε) satisfying

vε
t −∆vε = (1− θε

+)+ in QT

θε
t −

∆θε

(1− θε
+)+ + ε

=
Sε(θ

ε)

(1− θε
+)+ + ε

|∇vε| in QT

vε =
∂θε

∂n
= 0 on ΣT

vε(x, 0) = v0(x), θε(x, 0) = θ0(x), x ∈ Ω.
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Here Sε is a continuous function from IR into [0, 1]. For convenience, we shall set

ρε(θ
ε) = (1− θε

+)+ + ε, Hε(θε) =
Sε(θ

ε)

ρε(θε)
, ρ0(θ

ε) = (1− θε
+)+.

One has the

Lemma 10.
There exist a couple (vε, θε) satisfying the system (BS)ε with the following regularity:

1. vε ∈ C([0, T ;Hs(Ω) ∩H1
0 (Ω)) ∩ L2(0, T ;H2(Ω)) ∀s ∈ [0, 2[.

2. θε ∈ C([0, T ];Hs(Ω)) ∩ L2(0, T ;H2(Ω)) ∀s < 2.

3. vε
t and θε

t are in L2(QT ).

Proof
The proof Lemma 10 using the Galerkin approximation:
We shall use the following eigenfunctions which are elements of C∞(Ω) ∩H2(Ω)

−∆ϕj = λD
j ϕj in Ω, ϕj = 0 on ∂Ω, j = 1, 2, . . . .

−∆ψj + ψj = λN
j ψj in Ω,

∂ψj

∂n
= 0 on ∂Ω j = 1, 2, . . . .

(we note that ψ1 is the constant function 1). For T > 0, we set QT =]0, T [×Ω. We set
Vm = span{ϕj, j 6 m}, Hm = span{ψj, j 6 m} for m > 1.

We recall that
⋃
m>1

Vm (resp.
⋃
m>1

Hm) (see e.g. [25], [18]) is dense in V (resp. in H).

We will use the following orthogonal projections Pm : L2(Ω) → Vm, Qm : L2(Ω) → Hm.
From the Cauchy-Peano’s theorem, there exist for all m > 1 θm ∈ C1([0, Tm);Hm)

and vm ∈ C1([0, Tm);Vm) for some 0 < Tm 6 T , satisfying : ∀ϕ ∈ Vm, ∀ψ ∈ Hm, for
all t ∈ [0, Tm), θm(0) = Qmθ0, vm(0) = Pmv0

d

dt

∫
Ω

vm(t)ϕdx+

∫
Ω

∇vm(t) · ∇ϕdx =

∫
Ω

ρ0(θm(t))ϕdx, (2)

d

dt

∫
Ω

θm(t)ψ+

∫
Ω

∇θm(t) ·∇
(

ψ

ρε(θm(t))

)
dx =

∫
Ω

ψ

ρε(θm(t))
|∇vm(t)|2Sε(θm(t))dx. (3)

To show that Tm = T , we need some estimates on vm and θm. Those estimates will be
uniform in m. �

Lemma 11. For all t ∈ [0, Tm)

(a)
d

dt

∫
Ω

|∇vm(t)|2dx+

∫
Ω

|∆vm(t)|2dx 6 |Ω|, in D′(0, Tm),

(b)
d

dt

∫
Ω

|∇θm(t)|2 +

∫
Ω

|∆θm(t)|2

ρε(θm(t))
6

1

ε2
|Ω|, in D′(0, Tm).
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Proof. To prove (a) we use the fact that vm ∈ C1([0, Tm);Vm), for each t ∈ (0, Tm).
Then we have :

−∆vm(t) ∈ H1
0 (Ω) and,

d

dt

∫
Ω

vm(t)ϕdx =

∫
Ω

∂vm

∂t
(t)ϕ(x)dx ∀ϕ ∈ H1

0 (Ω),

and therefore, we can ϕ = −∆vm(t). An integration by part yields

1

2

d

dt

∫
Ω

|∇vm(t)|2dx+

∫
Ω

|∆vm(t)|2dx = −
∫

Ω

ρ0(θm(t))∆vm(t)dx.

Since 0 6 ρ0(θm) 6 1, then by the Young’s inequality we deduce

d

dt

∫
Ω

|∇vm(t)|2dx+

∫
Ω

|∆vm(t)|2dx 6 |Ω|.

(b) A similar argument holds for θm. Choosing ψ = −∆θm(t) and noticing that
∂ψ

∂n
= 0 on ∂Ω, an integration by parts gives

1

2

d

dt

∫
Ω

|∇θm(t)|2 +

∫
Ω

|∆θm(t)|2

ρε(θm)
dx 6

∫
Ω

|∆θm(t)|
ρε(θm(t))

dx.

But ε 6 ρε(θm(t)), thus the Young’s inequality yields

d

dt

∫
Ω

|∇θm(t)|2 +

∫
Ω

|∆θm(t)|2

ρε(θm)
6

1

ε2
|Ω|.

�

Lemma 1 shows that Tm = T . Moreover, one has an uniform boundedness for vm as
m→ +∞. Indeed, since vm(t) ∈ H1

0 (Ω), the Sobolev-Poincaré inequality with estimate
(a) implies that vm remains in a bounded set of L2(0, T ;H2(Ω)) and in L∞(0, T ;H1

0 (Ω)).

While for θm, we need to control for instance

∫
Ω

θm(t, x)2dx. To do this, we shall denote

by c or ci where i is an integer greater than one, various constants independent of m
and ε. If we want to emphasize the dependence of a constant with respect to ε, we shall
note cε.

Lemma 12. For all t ∈ [0, T ] ∫
Ω

|θm(t, x)|2 dx 6 cε.

Proof. We take ψ = θm(t) in relation (3). An integration by part and relation (3) yield

1

2

d

dt

∫
Ω

θ2
m(t, x)dx 6 cε

∫
Ω

|θm(t, x)|dx+

∫
Ω

∆θm(t, x)

ρε(θm(t))
θm(t, x)dx. (4)

The statement (b) of Lemma 1 implies that∫ T

0

∫
Ω

|∆θm|2(t, x)

ρε(θm(t))
dxdt 6 cε(T, θ0). (5)
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Relation (4) gives the following Gronwall inequality,

1

2

d

dt

∫
Ω

θ2
m(t, x)dx 6 cε +

c

ε

∫
Ω

θ2
m(t, x)dx+

∫
Ω

|∆θm|2(t, x)

ρε(θm(t))
dx. (6)

From relations (5) and (6), we conclude the Lemma 2. �

The Lemma 1 and Lemma 2 show that θm remains in a bounded set of L2(0, T ;H2(Ω))
and in L∞(0, T ;H1(Ω)) as m → +∞. While for the time derivative, those uniform es-
timates combined with the equations satisfied by vm and θm imply :

Lemma 13. We have:

i)

∣∣∣∣∂vm

∂t

∣∣∣∣
L2(QT )

6 |∆vm|L2(QT ) + |ρ0(θm)|L2(QT ) 6 c,

ii)

∣∣∣∣∂θm

∂t

∣∣∣∣
L2(QT )

6

∣∣∣∣ ∆θm

ρε(θm)

∣∣∣∣
L2(QT )

+
(T |Ω|) 1

2

ε2
6 cε.

In particular, vm and θm remains in a bounded set of W (0, T ;H2(Ω)) as m varies.

Proof. The time derivatives satisfy the following equations for each time t:

∂vm

∂t
(t) = ∆vm(t) + Pm(ρ0(θm(t))), (7)

∂θm

∂t
(t) = Qm

(
∆θm

ρε(θm)
(t)

)
+Qm

(
Sε(θm)|∇vm|2(t)

ρε(θm)

)
(8)

Since the projection is a contraction, relations (7), (8) with Lemma 2 imply Lemma 3. �

Proof of Lemma10 (continuation).
By Aubin-Lions-Simon’s classical compactness results (see Theorem 1 and its corollary),
we have as m→ +∞

a couple (θε, vε) such that



vm → vε

{
strongly in C([0, T ], Hs(Ω) ∩H1

0 (Ω)) for all s < 2,

weakly in L2(0, T ;H2(Ω)),

and

θm → θε

{
strongly in C([0, T ], Hs(Ω)) for all s < 2,

weakly in L2(0, T ;H2(Ω)).

Moreover, we have the following weak convergences in L2(QT ):

∂vm

∂t
⇀

∂vε

∂t
,

∂θm

∂t
⇀

∂θε

∂t
.

Due to the above convergences, one can see easily that the couple (θε, vε) is a solution
of :

∂vε

∂t
= ∆vε + ρ0(θ

ε) (9)
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∂θε

∂t
=

∆θε

ρε(θε)
+
Sε(θ

ε)

ρε(θε)
|∇vε|2, (10)

with the initial data vε(0) = v0 and θε(0) = θ0. Moreover, on the boundary ∂Ω, we

have that the normal trace of θε(t), t ∈ [0, T ]:
∂θε(t)

∂n
and the trace of vε(t) are zero.

This system is equivalent to the following one in D′(0, T ): for all ϕ ∈ H1
0 (Ω), for all

ψ ∈ H1(Ω)
d

dt

∫
Ω

vεϕ+

∫
Ω

∇vε · ∇ϕdx =

∫
Ω

ϕρ0(θ
ε)dx, (11)

d

dt

∫
Ω

Φε(θ
ε)ψdx+

∫
Ω

∇θε · ∇ψdx =

∫
Ω

Sε(θ
ε)|∇vε|2dx. (12)

Here, Φε(s) =

∫ s

0

ρε(y)dy. For the function θε, we need to show first the :

Lemma 14.
Consider from now

Sε(σ) =


1 if σ 6 1− ε,

0 if σ > 1,
1

ε
(1− σ) if 1− ε < σ < 1.

If 0 6 θ0 6 1 a.e. in Ω then 0 6 θε 6 1 a.e. in QT .

Proof. We multiply the equation by ρε(θ
ε)θε

−. Relation (10) gives∫
Ω

∂θε

∂t
ρε(θ

ε)θε
−dx+

∫
Ω

∇θε · ∇θε
−dx =

∫
Ω

Sε(θ
ε)|∇vε|2(θε)−dx.

Since the right hand side is non negative and (1− s+)s− = s−, then one has :

−1 + ε

2

d

dt

∫
Ω

(θε
−)2dx−

∫
Ω

|∇θε
−|2dx > 0,

thus one has : ∫
Ω

((θε)−(t, x))2dx 6
∫

Ω

((θε
0)−)2(x)dx = 0,

and so a.e. in QT : θε > 0. Multiplying the equation by ρε(θ
ε)(θε − 1)+ equation (10)∫

Ω

(θε − 1)+ρε(θ
ε)
∂θε

∂t
dx+

∫
Ω

|∇(θε − 1)+|2dx =

∫
Ω

(θε − 1)+Sε(θ
ε)|∇vε|2dx = 0.

That is
d

dt

∫
Ω

∫ θε

0

[
ρ0(σ) + ε

]
(σ − 1)+dσ +

∫
Ω

|∇(θε − 1)+|2dx = 0.

Then for all t :∫
Ω

∫ θε(t,x)

0

[
ρ0(σ) + ε

]
(σ − 1)+dσdx 6

∫
Ω

∫ θ0(x)

0

[
ρ0(σ) + ε

]
(σ − 1)+dσdx = 0

since for σ > 0, ρ0(σ) = (1− σ)+, then

((1− σ)+ + ε)(σ − 1)+ = ε(σ − 1)+.
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Therefore, we have∫
Ω

∫ θε(t,x)

0

[
ρ0(σ) + ε

]
(σ − 1)+dσdx = ε

∫
Ω

∫ θε

0

(σ − 1)2
+dσdx = 0

we deduce θε 6 1, a.e. in QT . �

To get some uniform a priori estimates in ε on vε, we recall firstly that Lemma 1,
with the previous convergence (or using directly the above equation (9)) imply :

Corollary 2. We have:

(a)
d

dt

∫
Ω

|∇vε(t)|2dx+

∫
Ω

|∆vε(t)|2dx 6 |Ω|, in D′(0, T ).

(b)

∣∣∣∣∂vε

∂t

∣∣∣∣
L2(QT )

6 c.

In particular vε is in a bounded set of W (0, T ;H2(Ω)) as ε varies.

Thus, we can conclude as before, by Corollary 1 of Theorem 1, that vε → v strongly
in C([0, T ], Hs(Ω) ∩H1

0 (Ω)) for all s < 2 and weakly in L2(0, T ;H2(Ω)). Moreover, we
have the following weak convergence in L2(QT ) :

∂vε

∂t
⇀

∂v

∂t
.

Lemma 15.
θε remains in a bounded set of L2(0, T ;H1(Ω)) as ε→ 0.

Proof. We multiply the equation (10) by θερε(θ
ε) to get:∫

Ω

θερε(θ
ε)
∂θε

∂t
dt+

∫
Ω

|∇θε|2dx =

∫
Ω

θεSε(θ
ε)|∇vε|2dx, (13)

∫ T

0

dt

∫
Ω

|∇θε|2dx 6 −
∫ T

0

dt

∫
Ω

θερε(θ
ε)
∂θε

∂t
+

∫ T

0

∫
Ω

|∇vε|2dxdt, (14)

and ∫ T

0

dt

∫
Ω

ρε(θ
ε)
∂θε

∂t
dx =

∫ T

0

d

dt

[∫
Ω

dx

∫ θε

0

σρε(σ)dσ

]
dt. (15)

Since
ρε(σ) = (1− σ+)+ + ε 6 2,

we have, for all t ∫
Ω

dx

∫ θε(x,t)

0

σρε(σ)dσ 6
∫

Ω

(θε)2(x, t)dx.∣∣∣∣∫ T

0

dt

∫
Ω

θερε(θ
ε)
∂θε

∂t
dx

∣∣∣∣ 6 [∫
Ω

(θε)2(T, x)dx+

∫
Ω

θ2
0(x)dx

]
6 c1. (16)

Thus relation (14) with corollary 2 give∫ T

0

∫
Ω

|∇θε|2dxdt 6 c1 + 4T |Ω|+
∫

Ω

|∇v0|2dx = c2.

15



�

End of the proof of Theorem 2.
Let

Φε(θ
ε) =

∫ θε

0

(1− σ)dσ + εθε = −1

2
(1− θε)2 +

1

2
+ εθε.

then from equation (10), we have :∣∣∣∣∂Φε(θ
ε)

∂t

∣∣∣∣
H−1(Ω)

6 |∇θε|L2(Ω) +
∣∣|∇vε|2

∣∣
L2(Ω)

.

Using Gagliardo-Nirenberg’s inequality, one has∣∣|∇vε|2
∣∣
L2(Ω)

= |∇vε|2L4(Ω) 6 c|∇vε|L2(Ω)|vε|H2(Ω) 6 c|vε|H2(Ω). (17)

Since vε remains in a bounded set of L∞(0, T ;H1
0 (Ω)). Thus using the equation satisfied

by θε (see relation (10)), we have∫ T

0

∣∣∣∣∂Φε(θ
ε)

∂t

∣∣∣∣2
H−1(Ω)

dt 6 c
[
|∇θε|2L2(QT ) + |vε|2L2(0,T ;H2(Ω))

]
6 c3. (18)

Thus, Φε(θ
ε)t remains in a bounded set of L2(0, T ;H−1(Ω)). Since, we have

|∇Φε(θ
ε)|2L2(QT ) =

∫
QT

(ρε(θ
ε))2|∇θε|2dx 6 4

∫
QT

|∇θε|2dxdt 6 c8,

This shows that wε=̇Φε(θ
ε) belongs to a bounded set of W (0, T ;H1(Ω)), the Aubin-

Lions-Simon’s compactness result (see Theorem 1 and its corollary) implies the existence
of a function w satisfying Φε(θ

ε) converges to w strongly in C([0, T ];L2(Ω)) and a.e. in

QT . Therefore,

∫ θε(t,x)

0

ρ(σ)dσ converges to w strongly in C([0, T ];L2(Ω)) and a.e. in

QT and

0 6 w 6
∫ 1

0

ρ(σ)dσ =
1

2
, w(0, x) =

∫ θ0(x)

0

ρ(σ)dσ.

Since the restriction of Φ0(σ) to [0, 1], that is the map Φ0 : [0, 1] → IR+ given by

Φ0(σ) =

∫ σ

0

ρ(s)ds = −(1− σ)2

2
+

1

2
, is invertible from [0, 1] to its range, its inverse

Φ−1
0 is continuous, we deduce that :

Φ−1
0

(∫ θε(t,x)

0

ρ(σ)dσ

)
= θε(t, x) → Φ−1

0 (w)(t, x) a.e. on QT .

Then, we can define θ≡̇Φ−1
0 (w) = 1 −

√
1− 2w. Thus θ ∈ L2(0, T ;H1(Ω)) and 0 6

θ 6 1 a.e. in QT . Hence, we have the following convergences: θε ⇀ θ weakly in
L2(0, T ;H1(Ω)), Φε(θ

ε) → Φ(θ) strongly in C([0, T ];L2(Ω)) and a.e. in QT . Therefore
ρ0(θ

ε) → ρ0(θ) = 1− θ in any Lp(QT ), p < +∞ and Sε(θ
ε) → 1 on {θ < 1}.

To show that lim
t→t0

∫
Ω

|θ(t, x)− θ(t0, x)|pdx = 0, it is sufficent to show the case p = 1. We

may assume that t0 = 0. We know that

lim
t→0

∫
Ω

|w(t, x)− w(0, x)|dx = 0,
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thus

lim
t→0

∫
Ω

|Φ−1
0 (w(t, x))− Φ−1

0 (w(0, x))|dx = 0,

(arguing by contradiction and using the continuity of Φ−1
0 ), that is

0 = lim
t→0

∫
Ω

|θ(t, x)− Φ−1
0 (w(0, x))|dx and Φ−1

0 (w(0, x)) = θ0(x).

Passing to the limit in equation (11) and (12), we deduce that (v, θ) is a solution of

d

dt

∫
Ω

vϕdx+

∫
Ω

∇v·∇ϕ =

∫
Ω

ϕ(1− θ)dx,

d

dt

∫
Ω

Φ(θ)ψ +

∫
Ω

∇θ·∇ψdx =

∫
Ω

ψgvdx,

with gv ∈
[
|∇v|2χ{θ<1}, |∇v|2

]
which proves the required question.

We first note that if θ < γ < 1 implies that ρε(θ) > 1− γ > 0 .We recall that ρε(θ) 6 2.
From relation (10) one has

1

2

d

dt

∫
Ω

|∇θε|2dx+

∫
Ω

|∆θε|2

ρε(θε)
dx 6

∫
Ω

|∇vε|2|∆θε|
ρε(θε)

dx. (19)

From which we deduce from the above equation and Young inequality

1

2

d

dt

∫
Ω

|∇θε|2dx+
1

4

∫
Ω

|∆θε|2dx 6
1

2(1− γ)

∫
Ω

|∇vε|4dx. (20)

Since vε belongs to a bounded set of L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)), we know that

if N=2 , |∇vε| belongs to a bounded set of L4(QT ). This shows that∫ T

0

∫
Ω

|∆θε|2dxdt+ sup
t

∫
Ω

|∇θε(t, x)|2dx 6 c. (21)

Therefore, θε
t remains in a bounded set of L2(0, T ;L2(Ω). We conclude that (vε, θε) is

in a bounded set of W (0, T ;H2(Ω)) , then using compactness result (see Corollary 1 of
theorem 1) : (vε, θε) converges to (v, θ) strongly in C([0, T ];Hs(Ω))2 for all s < 2 and
weakly in L2(0, T ;H2(Ω))2. This allows to pass easily to the limit in the equation. If
θ0 < 1 − δ with some δ > 0, then this weak solution is a local exact solution since one
has θ ∈ C([0, T ];Hs(Ω)) ⊂ C(QT ) for s > 1 .Thus, we may apply the first proposition
to arrive to the following additionnal conclusion.

Corollary 3. . Let N=2, θ0 ∈ C(Ω) ∩H1(Ω) with 0 6 Min
Ω

θ0 6 Max
Ω

θ0 = a0 < 1− δ,

for some δ > 0 and v0 ∈ H1
0 (Ω).Then there is a couple (θ, v) in [L2(0, T ;H2(Ω)) ∩

C([0, T ];Hs(Ω))]2 for all s < 2, with
∂θ

∂t
and

∂v

∂t
in L2(QT ) satisfying :

∂v

∂t
−∆v = 1− θ, in QT

(1− θ )
∂θ

∂t
−∆θ = |∇v|2χ{θ<1−δ} in QT ,

∂θ

∂n
= v = 0 on (0, T )× ∂Ω,

θ(0) = θ0, : v(0) = v0 in Ω.

�
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4 Some Extensions and Qualitative Properties

The above method can be applied if we replace vt in the v-equation by (1 − θ)vt, we
have

Corollary 4. . Let N=2, θ0 ∈ C(Ω) ∩H1(Ω) with 0 6 Min
Ω

θ0 6 Max
Ω

θ0 = a0 < 1− δ,

for some δ > 0 and v0 ∈ H1
0 (Ω). Then there is a couple (θ, v) in [L2(0, T ;H2(Ω)) ∩

C([0, T ];Hs(Ω))]2 for all s < 2, with
∂θ

∂t
and

∂v

∂t
in L2(QT ) satisfying :

(1− θ)
∂v

∂t
−∆v = 1− θ, in QT ;

(1− θ )
∂θ

∂t
−∆θ = |∇v|2χ{θ<1−δ}, in QT ;

∂θ

∂n
= v = 0, on (0, T )× ∂Ω;

θ(0) = θ0, v(0) = v0 in Ω.

Moreover, 0 6 Min
Ω

θ(t) 6 Max
Ω

θ(t) 6 1− δ for all t > 0. This solution is a local strong

and exact solution, that is a solution of (BS) with the density (1 − θ) with the time
derivative in v.

We have a non existence result of exact local-in-time if the initial data exceed the
value one. More precisely

Theorem 3 (A non existence result).
Let θ0 ∈ L2(Ω), θ0(x) > 1, for a.e. x ∈ Ω, v0 6= 0 and ρ(σ) = (1− σ)+, σ ∈ IR. Then
there exists no local exact solution satisfying (TBS).

�

5 Recalling Navier-Stokes equation framework

The results of this section can be found in [11, 28] where additional details . Let Ω be an
open smooth set of IRN , N = 2, f : Ω×]0, T [→ IR2 and u0 : Ω → IR2 being given. The
Navier Stokes equations consist in finding a vector field u = (u1, u2) : Ω×]0, T [→ IR2

and p : Ω×]0, T [→ IR a scalar function such that:

(N.S.)



∂u

∂t
− ν∆u+

2∑
i=1

ui ·
∂u

∂xi

+∇p = f in Ω×]0, T [,

div u =
N∑

i=1

∂ui

∂xi

= 0 in Ω×]0, T [,

u = 0 in ∂Ω×]0, T [,

u(0, x) = u0(x) (initial data), x ∈ Ω.

The spaces H and V defined by

H = closure in L2(Ω)2 of V =
{
v ∈ C∞

c (Ω)2, div v = 0
}
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V = closure in H1
0 (Ω)2 of V

For the variational formulation, we need the following bilinear form on V and scalar
products: 

b(u, v, w) =
2∑

i,j=1

∫
Ω

ui
∂vj

∂xi

wjdx


u = (u1, u2)

v = (v1, v2)

w = (w1, w2)

,

((u, v)) =

∫
Ω

∇u · ∇vdx,

(u, v) =

∫
Ω

u · vdx,

< T,w >= the duality product between T ∈ V ′ and w ∈ V.

V ′ is the dual of V . The bilinear form and the scalar product ((·, ·)) define operators by
setting, for u ∈ V , {

< B(u, u), w >= b(u, v, w) ∀w ∈ V,
< Au,w >= ((u,w)) ∀w ∈ V ;

Thus for u ∈  L2(0, T ;V ), T < +∞, we haveB(u, u) ∈ L1(0, T ;V ′) andAu ∈ L2(0, T ;V ′),
where A is linear. Thus, the variational formulation of (N.S.) for f ∈ L2(0, T ;H), u0 ∈
V gives 

d

dt
(u, v) + ν((u, v)) + b(u, u, v) = (f, v) ∀v ∈ V,

u(0) = u0.

Which is equivalent to
du

dt
+ νAu+B(u, u) = f (equality in V ′),

u(0) = u0.

The main properties of B are given in [28, 29]. In particular, b(u, u, v) = −b(u, v, u),
b(u, u, u) = 0.
These formulas can be obtained by integration by part with the condition div (u) = 0.
To solve the above problem, we follow the same scheme as for the “simple” model:

1st step: Use Galerkin method.
Introducing ϕj ∈ V such that, j > 1

((ϕj, v)) = λj(ϕj, v), ∀v ∈ V,

where λj > 0 is the jth eigenvalue of the operator satisfying

< Aϕ, v >= ((ϕ, v)), ∀ϕ ∈ V, ∀v ∈ V.

We have ϕj ∈ H`+2(Ω) if Ω ∈ C`, ` > 1.

Set Vm = span
{
ϕj, j 6 m

}
.

Then, by Cauchy- Peano’s theorem, one has

um ∈ C1([0, Tm), Vm), Tm ∈]0, T ].
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d

dt
(um(t), ϕj) + ν((um(t), ϕj)) + b(um(t), um(t), ϕj) = (f(t), ϕj), j = 1, . . . ,m,

um(0) = Pmu0 (Pm : H → Vm orthogonal projection).

2nd step: Uniform proiri estimates in m

Proposition 2. One has

1

2

d

dt
|um(t)|2 + ν||um(t)||2 = (f(t), um(t)).

Then

|um(t)|2 + ν

∫ T

0

||um(t)||2 6 c(T, u0, |f |L2(0,T ;H)).

In particular,

um belongs to a bounded set of L∞(0, T,H) ∩ L2(0, T ;V ) as m→ +∞.

Proof:
We take um(t) as a test function and use the fact that b(um(t), um(t), um(t)) = 0. For
convenience we recall that one has for the operator B the

Definition 10. (u, v, ψ) ∈ V 3, u = (u1, u2), v = (v1, v2), ψ = (ψ1, ψ2),

< B(u, v), ψ > ≡̇b(u, v, ψ) =
∑
i,j62

∫
Ω

uj
∂vi

∂xj

ψidx.

Remark 1 Since V ⊂ L4(Ω)2 this inclusion is continuous, we then have from Holder
inequality ∫

Ω

uj
∂vi

∂xj

ψidx 6 ||u|| ||v|| ||ψ||

Lemma 16.
Aum belongs to a bounded set of L2(0, T ;V ′) as m→ +∞,
and B(um, um) belongs to a bounded set of L2(0, T ;V ′) as m→ +∞.

Proof:
∀v ∈ V : ||v|| = 1, one has

| < Aum(t), v > | 6 ||um(t)|| · ||v|| = ||um(t)||,

this shows that |Am(t)|V ′ 6 ||um(t)||. We conclude with Proposition 2.

Corollary 5. One has: |B(um(t), um(t))|V ′ 6 c|um(t)|H ||um(t)||

b(um(t), um(t), ψ) = −b(um(t), um(t), ψ)

6 c|um(t)|L4(Ω)||ψ|| |um(t)|L4(Ω)

6 c|um(t)|
1
2

L2(Ω)||um(t)||
1
2 ||ψ|| |um(t)|

1
2

L2(Ω)||um(t)||
1
2

6 c|um(t)|H ||um(t)|| ||ψ||.
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Corollary 6 ( of Lemma16).
dum

dt
belongs to a bounded set of L2(0, T ;V ′) as m→ +∞.

Proof:
dum

dt
(t) + νAum(t) + PmB(um(t), um(t)) = Pmf.

Using Lemma 16 and knowing that

|PmB(um(t), um(t))|V ′ 6 |B(um(t), um(t))|V ′

we get the result. �

Conclusion By compactness result (see theorem 2) there exist u ∈ L∞(0, T ;H) ∩
L2(0, T ;V ) a subsequence still denoted um so that:

um → u in L2(0, T ;H)-strong

um → u in C([0, T ], V ′)-strong

um ⇀ u in L2(0, T ;V )-weak.

Notice that ∀ψ ∈ V ∩ C∞
c (Ω)∫

QT

umj(t)
∂umi

∂xj

(t)ψdxdt =

∫
QT

(umj−uj)
∂umi

∂xj

(t)ψdxdt+

∫
QT

uj
∂umi

∂xj

(t)ψdxdt = I1m+I2m.

|I1m 6 |umj − uj|L2(0,T ;H)|um|L2(0,T ;H)|ψ|∞ −−−−→
m→+∞

0,

I2m →
∫

QT

u
∂ui

∂xj

ψdxdt.

�

Therefore
b(um(t), um(t), ψ) → b(u(t), u(t), ψ) in D′(0, T ).

One can show that u(0) = u0 by usual argument.

6 Navier-Stokes equations coupled with the heat equa-

tion

We adopt the notations of the preceeding section on Navier-Stokes. The aim of this
section is to study the full system G.), H.), I.) given in the first section, when ρ(θ) =
(1− θ)+~g, where ~g is the gravitational field. Roughly speaking, using the same method
as for the simplified model, we can show that :

- if θ0 ∈ C(Ω), sup
Ω

θ0(x) < 1, then we have a local strong solution (we assume here

that N = 2).
- if θ0 ∈ L2(Ω) with θ0(x) > 0 then, we have no solution for the θ-equation satisfying

|∇u| 6= 0 (that is u0 6≡ 0).
More precisely, we can show the following
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Theorem 4.
Let T ∈]0,+∞[, u0 ∈ V and θ0 ∈ H1(Ω)∩C(Ω), Ω is a smooth bounded open set of IR2.

If sup
Ω

θ0(x) < 1, then there exist a time T1 ∈]0, T ] (that can be chosen maximal),

a vector valued function u ∈ C([0, T1], V ) ∩ L2(0, T1;V ∩ H2(Ω)), θ ∈ C([0, T1], V ) ∩
L2(0, T1;H

2(Ω)), θ < 1 in QT1 satisfying

1.
d

dt
(u(t), ϕ)+ν((u(t), u(t), ϕ))+b(u(t), u(t), ϕ) = ((1−θ)~g, ϕ) in D′(0, T1), ∀ϕ ∈ V,

2. (1− θ)θt −∆θ + u · ∇θ = |∇u|2 in QT1 = Ω×]0, T1[,

3.
∂θ

∂n
= 0 on ∂Ω×]0, T1[,

4. u(0) = u0, θ(0) = θ0.
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