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1. Eikonal equations

Let Ω be an open bounded subset of Rn. Assume that
∂Ω is C1. Then the function v(x) = dist(x, ∂Ω) satisfies
the equation |∇v| = 1 on a neighborhood of ∂Ω in
Rn, as well as the boundary condition v = 0 on ∂Ω.
However, there is no classical solution to the stationary
eikonal problem

|∇v(x)| = 1, x ∈ Ω, (1.1)

v = 0 on ∂Ω.

There are lots of almost everywhere solutions which
are everywhere differentiable, as shown by Deville and
Matheron [12] (on Rn) and Deville and Jaramillo [11]
(on manifolds)
However, the only natural (at least from a geometric
point of view) solution of this equation should be the
Lipschitz function dist(·, ∂Ω), which is not everywhere
differentiable.
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On the other hand, the function u(t, x) = t − v(x) =
t− dist(x, ∂Ω) satisfies the evolution eikonal equation

ut − |∇u(x)| = 0 (1.2)

on a neighborhood of {0} × ∂Ω in R × Rn, but again
there is no classical global solution. This equation can
be rewritten as

ut

|∇u|
= 1, (1.3)

which means that the level sets Γt := {x : u(t, x) = 0}
evolve in time with normal velocity equal to 1, and Γ0 =
∂Ω. Again, there is no global solution to this equation
and the only natural solutions should be those which
satisfy the condition u(t, ·)−1(0) = {x : dist(x, ∂Ω) =
t} (and hence cannot be everywhere differentiable).

Equation 1.3 is a very special example of a more general
class of surface evolution equations.
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2. Classical evolution of hypersurfaces. Examples

In the last 30 years there has been a lot of interest in
the evolution of hypersurfaces of Rn by functions of their
curvatures. In this kind of problem one is asked to find
a one parameter family of orientable, compact hyper-
surfaces Γt which are boundaries of open sets Ut and
satisfy

V = −G(ν, Dν) for t > 0, x ∈ Γt, and (2.1)

Γt|t=0 = Γ0

for some initial set Γ0 = ∂U0, where V is the normal
velocity of Γt, ν = ν(t, ·) is a normal field to Γt at each
x, and G is a given (nonlinear) function.
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Two of the most studied examples are the evolutions by

• mean curvature (when one takes V = H := div ν,
the sum of all principal curvatures in the direction
of ν); and by

• Gaussian curvature (when V = K is the Gaussian
curvature of Γt, that is the product of all principal
curvatures in the direction of ν).
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In both cases (mean and Gaussian curvature), short
time existence of classical solutions has been estab-
lished.
For strictly convex initial data U0, it has been shown
that Ut shrinks to a point in finite time, and moreover,
Γt looks more and more spherical at the end of the con-
traction.
This has been done by B. Andrews, M. Gage, M.A.
Grayson, R. Hamilton, G. Huisken, K. Tso and others.
See [2, 18, 23, 24, 26, 27, 39].
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In the case n = 2, it has moreover been proved (by
Grayson) that (not necessarily convex) embedded plane
curves Γt moving by their mean curvatures become con-
vex in finite time, and afterwards they shrink to a point
(with round limiting shape).
This is not true in the case of surfaces (n ≥ 3).
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The classical motion of hypersurfaces by their mean cur-
vatures has also been studied in the setting of Rieman-
nian manifolds M of dimension n.
When n = 2, the mean curvature flow Γt is sometimes
called curve shortening, because the flow lines in the
the space of closed curves are tangent to the gradient
for the length functional; this means that the curve is
shrinking as fast as it can using only local information.
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Curve shortening processes can be used to find embed-
ded geodesics on surfaces, especially spheres. For in-
stance, Grayson [24] proved that if Γ0 : S1 → M is
a smooth curve embedded in M , then Γt : S1 → M
exists for t ∈ [0, t∞) satisfying

∂C

∂t
= kν,

where k is the curvature of C and ν is its unit normal
vector. If t∞ is finite then C(t) converges to a point. If
t∞ is infinite, then the curvature of C converges to 0 in
the C∞ norm (and one expects to find a geodesic in the
limit).
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Grayson used this result to give a rigorous proof of the
Lusternik-Schnirelmann theorem: a 2-sphere with a
smooth Riemannian metric has at least three sim-
ple closed geodesics.
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3. Development of singularities. Why not allow non-
smooth initial data?

For dimension n ≥ 3 it has been shown [22] that a hy-
persurface evolution Γt may develop singularities before
it disappears.
Grayson’s example consists of two disjoint spherical sur-
faces connected by a sufficiently thin neck. The inward
curvature of the neck is so large that it will force the
neck to pinch before the two spherical ends can shrink
appreciably.
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Other examples: a thin torus shrinks to a ring. A fat
torus becomes singular before it can shrink to a point.

Hence it is natural to try to develop weak notions of
solutions to (2.1) which allow to deal with singularities
of the evolutions, and even with nonsmooth initial data
Γ0.
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There are two mainstream approaches concerning weak
solutions of (2.1): the first one uses geometric measure
theory to construct (generally nonunique) varifold solu-
tions [6, 29], while the second one adapts the theory of
second order viscosity solutions developed in the 1980’s
[9] to show existence and uniqueness of level-set weak
solutions to (2.1).
In this talk we will focus on this second approach, which
was initiated in 1991 by L.C. Evans and Spruck [15] in
the case of the mean curvature evolution, and indepen-
dently by Y.G. Chen, Y. Giga and S. Goto [7] for more
general equations (but not including the Gaussian cur-
vature evolution).
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4. Level set method. Equations

A smooth function u : [0, T ] × Rn → R with Du :=
Dxu 6= 0 has the property that all its level sets evolve
by (2.1) if and only if u is a solution of

ut + F (Du, D2u) = 0, (4.1)

where F is related to G in (2.1) through of the following
formula:

F (p, A) = |p|G
(

p

|p|
,

1

|p|

(
I − p⊗ p

|p|2

)
A

)
. (4.2)
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Example 1. Mean curvature evolution. If u is a
function on [0, T ]×Rn such that Du(t, x) 6= 0 for all t, x
with u(t, x) = c, then each level set Γt = {u(t, ·) = c}
evolves according to its mean curvature if and only if u
satisfies

ut

|Du|
= div

(
Du

|Du|

)
,

which in turn is equivalent to ut + F (Du, D2u) = 0,
where

F (ζ, A) = −trace

((
I − ζ ⊗ ζ

|ζ|2

)
A

)
. (4.3)
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Example 2. Gaussian curvature evolution.
Now, if u is a function on [0, T ] × Rn such that
Du(t, x) 6= 0 for all t, x with u(t, x) = c, then all
level sets Γt = {u(t, ·) = c} evolve according to their
Gaussian curvature if and only if u satisfies

ut

|Du|
= det

(
DT

(
∇u

|∇u|

))
,

where DT stands for the orthogonal projection onto TΓt

of the derivative in Rn. This equation is equivalent to
ut + H(Du, D2u) = 0, where

H(ζ, A) = −|ζ|det

((
I − ζ ⊗ ζ

|ζ|2

)
A +

ζ ⊗ ζ

|ζ|2

)
.
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The level set method consists of the following steps

• For a given initial hypersurface Γ0 which is the
boundary of a bounded open set Ut we take an
auxiliary function u0 which is at least continuous
and bounded and such that Γ0 = u−1

0 (0), U0 =
u−1

0 (0,∞).

• We solve (in some weak sense) the initial value prob-
lem

ut + F (Du, D2u) = 0, u(0, x) = u0(x)

• We then set Γt = u(t, ·)−1(0), Γt = u(t, ·)−1(0,∞),
and hope that Γt is a generalized solution in some
sense. In particular Γt should equal the classical
motion whenever the latter exists, and should al-
ways be independent of the function u0 chosen to
represent Γ0.
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Because equation (4.1) is very singular (meaning that F
is undefined at Du = 0, admits no continuous extension
to Rn × Rn2

, and in general F (p, A) is not bounded as
p → 0), classical PDE theory and Sobolev spaces are
not useful to solve the problem.

It turns out that an adequate notion of solution of (4.1)
is that of viscosity solution.
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5. Viscosity solutions to second order PDE

Second order subdifferentials, parabolic semi-
jets.
Let f : (0, T )× Rn → (−∞, +∞] be a lower semicon-
tinuous (LSC) function. We define the parabolic second
order subjet of f at a point z0 = (t0, x0) ∈ (0, T )×Rn

by

P2,−f (z0) = {(Dtϕ(z0), Dxϕ(z0), D
2
xϕ(z0)) :

ϕ ∈ C2, f − ϕ attains a local minimum at z0}.

Similarly, for an upper semicontinuous (USC) function
f : (0, T )× Rn → [−∞, +∞), we define the parabolic
second order superjet of f at (z0) by

P2,+f (z0) = {(Dtϕ(z0), Dxϕ(z0), D
2
xϕ(z0)) :

ϕ ∈ C2, f − ϕ attains a local maximum at z0}.
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Standard notion of viscosity solution. Intro-
duced by M. Crandall and P.-L. Lions in the 1980’s.

Let F : (0, T ) × Rn × R × Rn × Rn2

be a continuous
function. Consider the equation

ut + F (t, x, u,Du, D2u) = 0, (5.1)

where u is a function of (t, x). We say that an upper
semicontinuous function u : (0, T ) × Rn → R is a vis-
cosity subsolution of (5.1) provided that

a + F (t, x, u(t, x), ζ, A) ≤ 0

for all (t, x) ∈ (0, T )× Rn and (a, ζ, A) ∈ P2,+u(t, x).
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Similarly, a viscosity supersolution of (5.1) is a lower
semicontinuous function u : (0, T )×Rn → R such that

a + F (t, x, u(t, x), ζ, A) ≥ 0

for every (t, x) ∈ (0, T ) × Rn and (a, ζ, A) ∈
P2,−u(t, x). If u is both a viscosity subsolution and a
viscosity supersolution of ut + F (t, x, u,Du,D2u) = 0,
we say that u is a viscosity solution.
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Here is some motivation for this definition. Assume that
F is elliptic (that is decreasing in the variable D2u).

If u is a classical solution then we have ut(z) +
F (Du(z), D2u(z)) = 0 for all z = (t, x). Then, if ϕ is
such that u−ϕ attains a minimum at z, we have ϕt(z) =
ut(z), Dϕ(z) = Du(z), and D2u(z) ≥ D2ϕ(z). Since
F is elliptic we get

ϕt(z) + F (z, u(z), Dϕ(z), D2ϕ(z)) ≥
ut(z) + F (z, u(z), Du(z), D2u(z)) = 0,

that is, u is a supersolution at z. A similar argument
shows that u is a subsolution.
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Therefore every classical solution of ut+F (Du, D2u) =
0 is a viscosity solution.

This is no longer true if F is not elliptic, as shown by
the example: u(t, x) = t + x2 − 2, which is a classical
solution of ut +u+uxx−x2−1 = 0, but not a viscosity
solution.
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Refined notion of viscosity solution. Introduced
by H. Ishii and P. Souganidis in 1995 [32].

Due to the singularity of F in (4.1), the standard notion
of viscosity solution does not make sense for functions ϕ
at points z0 = (t0, x0) such that Dϕ(z0) = 0 and u−ϕ
attains a maximum or a minimum at z0.
In order to deal with this difficulty, Ishii and Souganidis
suggested to make the class A(F ) of test functions ϕ
smaller, in a clever, rather technical way which we will
not detail here, so that, at a point z0 = (t0, x0) where
Dϕ(z0) = 0, one can show that

lim
z→z0

F (Dϕ(z), D2ϕ(z)) = 0,

and then to demand that a subsolution u of (4.1) should
satisfy that if u−ϕ has a maximum at z0 and Dϕ(z0) =
0 then

ϕt(z0) ≤ 0.

A similar condition is required of u to be a supersolu-
tion.
The class A(F ) of test functions is a proper subset of
C2, but remains dense in C0.
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6. Assumptions on F

The function F is assumed to be of the form

F (ζ, A) = |ζ|G
(

ζ

|ζ|
,

1

|ζ|

(
I − ζ ⊗ ζ

|ζ|2

)
A

)
, (6.1)

where G is any (nonlinear) function such that:

(A) F is continuous off {ζ = 0}.
(B) F is elliptic, that is,

P ≤ Q =⇒ F (ζ, Q) ≤ F (ζ, P ).

Besides, because
(
I − ζ⊗ζ

|ζ|2

)
(ζ ⊗ ζ) = 0, any function

F of the form (6.1) also satisfies

(C) F is geometric, that is,

F (λζ, λA + µζ ⊗ ζ) = λF (ζ, A)

for every λ > 0, µ ∈ R.
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Examples of F ’s satisfying (A-C).
1. Mean curvature evolution equation for
level sets.
2. Positive Gaussian curvature evolution
equation for level sets. The Gaussian curvature
evolution equation is given by ut + H(Du, D2u) = 0,
where

H(ζ, A) = −|ζ|det

((
I − ζ ⊗ ζ

|ζ|2

)
A +

ζ ⊗ ζ

|ζ|2

)
.

However, the function H is not elliptic, so this problem
cannot be treated, in its most general form, with the
theory of viscosity solutions. Nevertheless, if our initial
data u(0, x) = g(x) satisfies that D2g(x) ≥ 0 (that is,
if the initial hypersurface Γ0 = {x ∈ M : g(x) = c}
has nonnegative Gaussian curvature) then it is reason-
able, and consistent with the classical motion of convex
surfaces by their Gaussian curvature, to assume that
D2u(t, x) ≥ 0 for all (t, x) with u(t, x) = c (that is, Γt

will have nonnegative Gaussian curvature as long as it
exists).
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In this case our equation becomes

ut + F (Du, D2u) = 0,

with

F (ζ, A) = −|ζ|det+

(
1

|ζ|

(
I − ζ ⊗ ζ

|ζ|2

)
A +

ζ ⊗ ζ

|ζ|2

)
,

and where

det+(A) =

n∏
j=1

max{λj, 0}

if λ1, ..., λn are the eigenvalues of A.
This F is elliptic and satisfies (A-C). This equation
models the wearing process of a (nonconvex) stone at
the seashore [31].
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7. Existence and uniqueness

Under assumptions (A-C) it is possible to show that
there is a unique level set evolution of Γ0, that is a
unique family of sets Γt, Dt, of the form Γt = {x :
u(t, x) = 0}, Dt = {x : u(t, x) > 0}, where u is a
viscosity solution of

ut + F (Du, D2u) = 0

defined on [0,∞)× Rn.

The proof is done it two steps: first one establishes a
comparison principle (this is the hardest part of the the-
ory, the proof involves deep results of real analysis and
convex functions). Then one may construct a solution
by combining the so-called Perron’s method, compar-
ison, and stability of the equation (that is, limits of
subsolutions are subsolutions, etc), as follows.
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Comparison:
Let u, v be a viscosity subsolution and supersolution,
respectively, of ut+F (Du, D2u) = 0, defined on [0, T )×
Ω. Assume that u ≤ v on the parabolic boundary
{0} × Ω ∪ [0, T )× ∂Ω. Then u ≤ v on [0, T )× Ω.
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Stability

Lemma 1. Assume that u.s.c. (respectively l.s.c.)
functions uk are subsolutions (supersolutions, re-
spectively). Assume also that {uk} converges locally
uniformly to a function u. Then u is subsolution
(supersolution, respectively).
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Perron’s method:
Assume comparison holds for the equation{

ut + F (Du, D2u) = 0
u(0, x) = g(x).

(7.1)

Let u and u be a subsolution and a superso-
lution of (7.1), respectively, satisfying u∗(0, x) =
u∗(0, x) = g(x). Then w = sup{v : u ≤ v ≤
u, v is a subsolution} is a solution of (7.1).
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Now we can prove existence of solutions to the surface evolution problem as
follows. Assume that comparison holds for the equation{

ut + F (Du, D2u) = 0
u(0, x) = g(x).

(7.2)

Take a continuous function g such that g−1(0) = Γ0. Since Γ0 is compact we can
assume that g equals some positive constant outside a closed ball B0 containing
Γ0.

Let us first produce a solution of (7.2) for g ∈ A(F ).
Let us define u(t, x) = −Kt + g(x), and u(t, x) = Kt + g(x), where K :=

supx∈B |F (Dg(x), D2g(x))| (which is finite because g ∈ A(F ) and B is compact).
It is immediately seen that u is a subsolution and u is a supersolution of (7.2),
and obviously u∗(0, x) = u∗(0, x) = g(x). According to Perron’s method and
comparison, there exists a unique solution u of (7.2).

Now take g a continuous function. It is easy to check that the class A(F )
of admissible test functions satisfies the hypotheses of the Stone-Weierstrass
theorem, hence it is dense in the space of continuous functions. Therefore we
can find a sequence gk of functions in A(F ) such that gk → g uniformly on
bounded sets. Let uk be the unique solution of (7.2) with initial datum gk. By
comparison, for any ball B ⊃ B0, (uk) is a Cauchy sequence in C([0,∞) × B),
hence it converges to some u ∈ C([0,∞) × Rn) uniformly on bounded sets. By
stability, it follows that u is a solution with initial datum u(0, x) = g(x).
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8. Geometric consistency & Generalized evolution

Condition (C) (geometricity) and stability imply:

Theorem 2. Let θ : R → R be a continuous func-
tion, and let u be a bounded continuous solution.
Then v = θ ◦ u is also a solution.
Moreover, if θ is nondecreasing and u is a subsolu-
tion (resp. supersolution) then v = θ ◦ u is a subso-
lution (resp. supersolution) as well.
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Let g be a continuous function on M with Γ0 = {x ∈
M : g(x) = 0}, and assume that Γ0 is compact. We
may also assume that g is constant outside a bounded
neighborhood of Γ0, and in particular bounded. Let u
be the unique solution of (4.1) with u(0, ·) = g. We
define

Γt = {x ∈ M : u(t, x) = 0}.
Theorem 3. Assume that comparison and existence
hold for (4.1). Let ĝ : M → R be a continuous func-
tion satisfying Γ0 = {x ∈ M : ĝ(x) = 0} and such
that ĝ is constant outside a bounded neighborhood of
Γ0. Let û be the unique continuous solution of (4.1)
with initial condition ĝ. Then

Γt = {x ∈ M : û(t, x) = 0}.
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Corollary 4. The definition of Γt = {x ∈ M :
u(t, x) = 0} does not depend upon the particular
choice of the function g satisfying Γ0 = {x ∈ M :
g(x) = 0}.
It can also be checked that the evolution Γ0 7→
K(t)Γ0 := Γt thus defined has the semigroup property

K(t + s) = K(t)K(s).
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9. Consistency with the classical motion

Assume Γt is a classical evolution of Γ0. More precisely, suppose (Γt)t∈[0,T ] is a
family of smooth, compact, orientable hypersurfaces in Rn evolving according to
a classical geometric motion, locally depending only on its normal vector fields
and second fundamental forms. In particular, we assume that Γt is the boundary
of a bounded open set Ut ⊂ Rn and that there exists a family of diffeomorphisms
of manifolds with boundary

φt : U0 → Ut, t ∈ [0, T ] ,

such that:

(i) φ0 =Id, and,

(ii) for every x ∈ Γ0 the following holds:

d

dt
φt (x) = G

(
ν

(
t, φt (x)

)
,∇Γν

(
t, φt (x)

))
, (9.1)

where ν (t, ·) is a unit normal vector field to Γt, and the linear map

∇Γν (t, x) : (TΓt)x 3 ξ 7→ ∇T
ξ ν (t, x) ∈ (TΓt)x

and ∇T stands for the orthogonal projection onto (TΓt)x of the derivative
in Rn.
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Classical motion by mean curvature corresponds to taking G
(
ν,∇Γν

)
=

tr
(
−∇Γν

)
ν, whereas classical motion by Gaussian curvature is defined by G

(
ν,∇Γν

)
=

det
(
−∇Γν

)
ν. The level set evolution equation induced by (9.1) is of the form

(4.1) where F is related to G through formula (6.1). As before, we assume that
F is continuous, elliptic, translation invariant and geometric.

Define d : [0, T ]×M → R, the signed distance function from Γt, as:

d (t, x) :=

{
dist (x,Γt) if x ∈ Ut

−dist (x,Γt) if x ∈ M \ Ut.

Theorem 5. Let u be the unique viscosity solution to the level set equation (4.1)
with initial datum u|t=0 = d|t=0. Then, for every t ∈ [0, T ], the zero level set of
u (t, ·) coincides with Γt:

Γt = {x ∈ M : u (t, x) = 0} .
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10. Why not make it on manifolds?

In the case of the F corresponding to the mean curva-
ture evolution, this theory has been extended to Rie-
mannian manifolds by T. Ilmanen [28].

Recently, in a joint work with M. Jiménez-Sevilla and F.
Macià [5], we have extended this theory to Riemannian
manifolds of nonnegative curvature for all F ’s such that
F is continuous off {Du = 0}, elliptic, geometric, and
locally invariant by parallel translation. This includes
the case of the (positive) Gaussian curvature evolution.

When M is not of nonnegative curvature, the same re-
sults hold if one additionally requires that F is uni-
formly continuous with respect to D2u (but this ex-
cludes the motion by positive Gaussian curvature).
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Open problem. Is there a (well defined, unique,
consistent) generalized evolution of level sets by their
Gaussian curvatures in Riemannian manifolds of nega-
tive curvature?
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11. Counterexamples and conjectures in the setting
of Riemannian manifolds

Several well known properties of the evolutions in Rn

are no longer true in the case when the Riemannian
manifold M has negative sectional curvature.
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Example 6. When (M, g) is the Euclidean space equipped with the canonical
metric, Ambrosio and Soner have proved in [1] that the distance function |d| is
always a supersolution to the mean curvature equation for level sets. This is no
longer the case of a general Riemannian manifold.
Conjecture: If M has nonnegative sectional curvature then |d| is always a
supersolution. If M has negative curvature then there always exists Γ0 such
that |d| is not a supersolution.

Example 7. When M = Rn, Evans and Spruck [15, Theorem 7.3] showed that
if Γ0, Γ̂0 are compact level sets and Γt, Γ̂t are the corresponding generalized
evolutions by mean curvature, then

dist(Γ0, Γ̂0) ≤ dist(Γt, Γ̂t)

for all t > 0. This result fails for manifolds of negative curvature. For instance,
let M = {(x, y, z) ∈ R3 : x2 + y2 = 1 + z2} be a hyperboloid of revolution
embedded in R3. Let

Γ0 = {(x, y, z) ∈ M : z = 0},

and
Γ̂0 = {(x, y, z) ∈ M : z = 1}.

Then
Γt = Γ0 for all t > 0, and dist(Γ0, Γ̂0) > 0,
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but
dist(Γt, Γ̂t) = dist(Γ0, Γ̂t) → 0 as t →∞.

Conjecture: Evans-Spruck’s [15, Theorem 7.3] result holds true for all mani-
folds of nonnegative sectional curvature, but fails for all manifolds of negative
curvature.

Example 8. In the case M = Rn it is well known that equation (4.1) preserves
Lipschitz properties of the initial data. Namely, if g is L-Lipschitz and u is
the unique solution of (4.1) then u(t, ·) is L-Lipschitz too, for all t > 0; see
[19, Chapter 3]. Since the proof of Theorem 7.3 in [15] remains valid for any
manifold provided that one assumes the Lipschitz preserving property of (4.1),
the preceding example also shows that (4.1) does not preserve Lipschitz constants
when M is a hyperboloid of revolution.

Conjecture: The equation (4.1) has the Lipschitz preserving property if and
only if M has nonnegative sectional curvature.
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12. General theory on manifolds

For general theory on viscosity solutions to PDE on
manifolds, we refer to

D. Azagra, J. Ferrera, B. Sanz, Viscosity solu-
tions to second order partial differential equations I,
preprint, 2006 (math.AP/0612742v2),

for stationary equations, and to the Appendix in

D. Azagra, M. Jiménez-Sevilla, F. Macià,
Generalized motion of level sets by functions of
their curvatures on Riemannian manifolds, preprint,
arXiv:0707.2012v2 [math.AP],

for evolution equations.
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