UMAP CLASSES OF GROUPS

V. TARIELDZE

ABSTRACT. We call a class \mathcal{G} of MAP topological abelian groups a UMAP-class if it has the following property: if G is an abelian group and τ_1, τ_2 are *distinct* group topologies in G such that (G, τ_1) and (G, τ_2) are in \mathcal{G} , then $(G, \tau_1)^{\wedge} \neq (G, \tau_2)^{\wedge}$. Several examples of UMAP-classes are discussed. In particular it is shown that the class PMAP of all Polish MAP-groups is a UMAP-class.

The note is based on [?, ?].

1. Definitions

For groups X, Y the set of all group homomorphisms from X to Y is denoted by Hom(X, Y). For topological groups X, Y the set of all continuous group homomorphisms from X to Y is denoted CHom(X, Y). A set $\Gamma \subset Hom(X, Y)$ will be called separating, if

$$(x_1, x_2) \in X \times X, x_1 \neq x_2 \Longrightarrow \exists \gamma \in \Gamma, \gamma(x_1) \neq \gamma(x_2)$$

For a group X, a topological group Y and a non-empty $\Gamma \subset Hom(X,Y)$ we denote by $\sigma(X,\Gamma)$ the coarsest topology in X with respect to which all members of Γ are continuous. Note that $\sigma(X,\Gamma)$ is a group topology in X; if Y is Hausdorff, then the topology $\sigma(X,\Gamma)$ is Hausdorff iff Γ is separating.

We write:

 $\mathbb{T} := \left\{ t \in \mathbb{C} : |t| = 1 \right\}.$

From now on all considered groups will be abelian.

For a group G we write

$$G^a := Hom(G, \mathbb{T}).$$

A member of G^a is called *character* and G^a itself is *the algebraic dual* of G. For a topological group G we write

$$G^{\wedge} := CHom(G, \mathbb{T})$$
.

A member of G^{\wedge} is called *a continuous character* and G^{\wedge} itself is the topological dual of G. A topological group G is called maximally almost periodic for short a MAP-group, if G^{\wedge} is separating. For a group G and for a group topology τ in G we write:

$$(G,\tau)^{\wedge} := CHom\left((G,\tau),\mathbb{T}\right)$$
.

For a topological group G the topology $\sigma(G, G^{\wedge})$ is called the Bohr topology of G.

For a group G and for a group topology τ in G we write τ^+ for the Bohr topology of (G, τ) . Clearly $\tau^+ \leq \tau$ and τ^+ is a precompact group topology [?].

V. TARIELADZE

2. UMAP-CLASSES

Let us begin with a statement, which justifies the definition of UMAP-class.

Theorem 2.1. The class MAP of all MAP-groups is not a UMAP-class.

Proof. Let G be an abelian group and τ be the discrete topology in G. Then $(G, \tau) \in MAP$. Clearly, $(G, \tau)^{\wedge} = G^a$. It is evident that $(G, \tau^+)^{\wedge} = G^a$. Suppose now that that G is infinite. Then $\tau^+ \neq \tau$ (this is not evident, but true). Therefore in an infinite abelian group G we found two distinct group topologies τ and τ^+ such that $(G, \tau)^{\wedge} = (G, \tau^+)^{\wedge}$. Hence MAP $\not\subset$ UMAP.

Theorem 2.2. (Glicksberg-Varopoulos) The class LCA of all locally compact Hausdorff topological abelian groups is a UMAP-class.

Proof. We have LCA \subset MAP by Peter-Weil-Van Kampen theorem. Let us see that LCA \subset UMAP. Let G be an abelian group and τ_1, τ_2 be *distinct locally compact Hausdorff* group topologies in G. Let us see that then $(G, \tau_1)^{\wedge} \neq (G, \tau_2)^{\wedge}$. Suppose $(G, \tau_1)^{\wedge} = (G, \tau_2)^{\wedge}$. Then $\tau_1^+ = \tau_2^+$ By Glicksberg theorem the topologies τ_1, τ_2 and τ_1^+ have the same collections of compact sets. From this, since a locally compact Hausdorff space is a k-space, we get that $\tau_2 = \tau_1$, a contradiction.

Remark 2.3. A topological group (G, τ) respects compactness (J.Trigos-Arrieta) if τ^+ -compact sets are τ -compact as well.

(a) Let RES - MAPK be the class of MAP-groups which respect compactness and which are k-spaces. Then RES - MAPK is a UMAP-class.

(Proof of Theorem ?? works).

(b) (W. Banaszczyk and E. Martín-Peinador) Let NUC be the class of nuclear groups [?] and NUCK be the class of nuclear which are k-spaces. Then NUCK is a UMAP-class.

(Use (a) and the fact that nuclear groups respect compactness [?].)

(c) (L. Aussenhofer) Let SCH be the class of locally quasi-convex Schwartz groups and SCHK be the class of locally quasi-convex Schwartz groups which are k-spaces. Then SCHK is a UMAP-class.

(Use (a) and the fact that locally quasi-convex Schwartz groups groups respect compactness [?].)

Theorem 2.4. (Comfort-Ross, [?, Corollary 1.4]) The class PCA of all precompact Hausdorff topological abelian groups is a UMAP class.

Theorem 2.5. ([?]) Let BTM be the class defined as follows: a topological abelian group G belongs to BTM if

- G is locally quasi-convex Hausdorff [?],
- $Card(G^{\wedge}) \leq \aleph_0$,
- there exists a natural number $n \ge 2$ such that $nx = 0, \forall x \in G$.

Then $BTM \subset PCA$ and hence, BTM is a UMAP-class.

Theorem 2.6. The class LPA of all locally precompact Hausdorff topological abelian groups is not a UMAP-class.

Proof. The same proof as that of Theorem ??. Note that the discrete topology τ is locally precompact and the topology τ^+ is precompact, hence it is locally precompact.

A topological space is called *Polish* if it is homeomorphic to a complete separable metric space. A topological group is Polish if it as a topological space is Polish. We need the following statement.

Theorem 2.7. [?, Satz 10] Let X, Y be Polish abelian groups and $f : X \to Y$ be a group homomorphism whose graph $\{(x, f(x)) : x \in X\}$ is a closed subset of $X \times Y$. Then f is continuous.

Corollary 2.8. Let G be an abelian group and τ_1, τ_2 be the distinct Polish group topologies in G. Then $\tau_1 \cap \tau_2$ is a T_1 -topology, which is not a Hausdorff topology. In particular, $\tau_1 \cap \tau_2$ is not a group topology.

Proof. Suppose that $\sigma := \tau_1 \cap \tau_2$ is a Hausdorff topology. Let $f : G \to G$ be the identity mapping. Its graph $\Delta_G = \{(x, x) : x \in G\}$ is closed in $(G \times G, \sigma \times \sigma)$. Since $\sigma \times \sigma \leq \tau_1 \times \tau_2$, it follows that $\Delta_G = \{(x, x) : x \in G\}$ is closed in $(G \times G, \tau_1 \times \tau_2)$. Therefore, f as a mapping from (G, τ_1) to (G, τ_2) has closed graph. Then by Theorem ??, we get that f is (τ_1, τ_2) -continuous. Consequently $\tau_2 \leq \tau_1$. In a similar way we get that $\tau_1 \leq \tau_2$. Hence, $\tau_2 = \tau_1$, a contradiction.

UMAP CLASSES OF GROUPS

Theorem 2.9. The class PMAP of all Polish MAP-groups is a UMAP class.

Proof. Let G be an infinite abelian group and τ_1, τ_2 be distinct Polish MAP group topologies in G. Let us see that then $(G, \tau_1)^{\wedge} \neq (G, \tau_2)^{\wedge}$. Suppose $(G, \tau_1)^{\wedge} = (G, \tau_2)^{\wedge}$. Then $\sigma := \tau_1^+ = \tau_2^+$. Clearly $\sigma \leq \tau_1$ and $\sigma \leq \tau_2$. Since (G, τ_1) is MAP, σ is a Hausdorff topology. As $\sigma \leq \tau_1 \cap \tau_2$, we get that $\tau_1 \cap \tau_2$ is a Hausdorff topology, but this contradicts to Corollary ??.

Question 2.10. Let CMMAP be the class of all complete metrizable MAP groups. Is then CMMAP a UMAP class?

I have not a counterexample.

Theorem 2.11. [?, Corollaire 3, p.1.37] Let X, Y be complete metrizable topological topological vector spaces over the same non-discrete valued division ring **K** and $f: X \to Y$ be a **K**-linear mapping whose graph $\{(x, f(x)) : x \in X\}$ is a closed subset of $X \times Y$. Then f is continuous.

Corollary 2.12. Let G be an abelian group and τ_1, τ_2 be the distinct complete metrizable group topologies in G. Assume further that (G, τ_1) and (G, τ_2) admit a structure of topological vector space over the same non-discrete valued division ring **K**. Then $\tau_1 \cap \tau_2$ is a T_1 -topology, which is not a Hausdorff topology. In particular, $\tau_1 \cap \tau_2$ is not a group topology.

Proof. The same as that off Corollary ??: use now Theorem ?? and take into account that the identity mapping is \mathbb{K} -linear.

Theorem 2.13. Let \mathbf{K} be a non-discrete valued division ring and \mathbf{K} -TVSCMMAP be the class defined as follows: $G \in \mathbf{K}$ -TVSCMMAP if $G \in \text{CMMAP}$ and G admits a structure of a topological vector space over \mathbf{K} . Then \mathbf{K} -TVSCMMAP is a UMAP class.

Proof. Proof is similar to that of Theorem ??: instead of Corollary ?? use Corollary ??.

Acknowledgements. This is the text of a talk given in March 25th, 2010 in 'Jornada sobre grupos topológicos' organized by Departamento Geometría y Topología of the UCM in collaboration with IMI.

The author is grateful to both Institutions for their support. Also to Professors L. Aussenhofer, E. Martín-Peinador and L. Ribes for their useful comments.

The author was also partially supported by grant MTM2009-14409-C02-02.

References

- Außenhofer, Lydia On the Glicksberg theorem for locally quasi-convex Schwartz groups. Fund. Math. 201 (2008), no. 2, 163–177.
 Banach, S. Uber metrische Gruppen, Studia Math. 3(1931), 101–113.
- [3] W. Banaszczyk, Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics, 1466. Springer-Verlag, Berlin, 1991.
- [4] W. Banaszczyk and E. Martín-Peinador, The Glicksberg theorem on weakly compact sets for nuclear groups. Annals of the New York Academy of Sciences 788 (1996), 34-39.
- [5] F. G. Bonales, F. J. Trigos-Arrieta, and R. Vera Mendoza, A Mackey-Arens theorem for topological abelian groups, Bol. Soc. Mat. Mexicana (3) 9 (2003), no. 1, 79–88.
- [6] N. Bourbaki, Eléments de mathématique. XVIII. Première partie: Les structures fondamentales de l'analyse. Livre V: Espaces vectoriels topologiques. Chapitre III: Espaces d'applications linéaires continues. Chapitre IV: La dualité dans les espaces vectoriels topologiques. Chapitre V: Espaces hilbertiens. (French) Actualités Sci. Ind., no. 1229. Hermann & Cie, Paris, 1955. ii+191 pp.
- [7] M. J. Chasco, E. Martín-Peinador and V. Tarieladze, On Mackey Topology for groups, Stud. Math. 132, No.3, 257-284 (1999).
- [8] W. W. Comfort, K. A. Ross, Topologies induced by groups of characters. Fund. Math. 55 (1964), 283–291.
- [9] D. Dikranjan, L. de Leo, E. Martín-Peinador and V. Tarieladze, Duality theory for groups revisited: g-barrelled, Mackey and Arens groups. Preprint, 2009.
- [10] I. Glicksberg, Uniform boundedness for groups. Canad. J. Math. 14 (1962), 269–276.
- [11] N. Th. Varopoulos, Studies in harmonic analysis, Proc. Cambridge Philos. Soc. 60 1964 465–516.
- [12] N. Ya. Vilenkin, The theory of characters of topological Abelian groups with boundedness given, Izvestiya Akad. Nauk SSSR. Ser. Mat. 15, (1951), 439–162.