UMAP CLASSES OF GROUPS

V. TARIELDZE

Abstract. We call a class \(G \) of MAP topological abelian groups a UMAP-class if it has the following property: if \(G \) is an abelian group and \(\tau_1, \tau_2 \) are distinct group topologies in \(G \) such that \((G, \tau_1)\) and \((G, \tau_2)\) are in \(G \), then \((G, \tau_1)^\wedge \neq (G, \tau_2)^\wedge\). Several examples of UMAP-classes are discussed. In particular it is shown that the class PMAP of all Polish MAP-groups is a UMAP-class.

The note is based on [? , ?].

1. Definitions

For groups \(X, Y \) the set of all group homomorphisms from \(X \) to \(Y \) is denoted by \(\text{Hom}(X, Y) \).

For topological groups \(X, Y \) the set of all continuous group homomorphisms from \(X \) to \(Y \) is denoted \(\text{CHom}(X, Y) \).

A set \(\Gamma \subset \text{Hom}(X, Y) \) will be called separating, if

\[(x_1, x_2) \in X \times X, x_1 \neq x_2 \Rightarrow \exists \gamma \in \Gamma, \gamma(x_1) \neq \gamma(x_2).\]

For a group \(X \), a topological group \(Y \) and a non-empty \(\Gamma \subset \text{Hom}(X, Y) \) we denote by \(\sigma(X, \Gamma) \) the coarsest topology in \(X \) with respect to which all members of \(\Gamma \) are continuous. Note that \(\sigma(X, \Gamma) \) is a group topology in \(X \); if \(Y \) is Hausdorff, then the topology \(\sigma(X, \Gamma) \) is Hausdorff iff \(\Gamma \) is separating.

We write:

\[\mathbb{T} := \{ t \in \mathbb{C} : |t| = 1 \}. \]

From now on all considered groups will be abelian.

For a group \(G \) we write

\[G^a := \text{Hom}(G, \mathbb{T}). \]

A member of \(G^a \) is called character and \(G^a \) itself is the algebraic dual of \(G \).

For a topological group \(G \) we write

\[G^\wedge := \text{CHom}(G, \mathbb{T}). \]

A member of \(G^\wedge \) is called a continuous character and \(G^\wedge \) itself is the topological dual of \(G \).

A topological group \(G \) is called maximally almost periodic for short a MAP-group, if \(G^\wedge \) is separating.

For a group \(G \) and for a group topology \(\tau \) in \(G \) we write:

\[(G, \tau)^\wedge := \text{CHom}((G, \tau), \mathbb{T}). \]

For a topological group \(G \) the topology \(\sigma(G, G^\wedge) \) is called the Bohr topology of \(G \).

For a group \(G \) and for a group topology \(\tau \) in \(G \) we write \(\tau^+ \) for the Bohr topology of \((G, \tau) \). Clearly \(\tau^+ \leq \tau \) and \(\tau^+ \) is a precompact group topology [?].
2. UMAP-classes

Let us begin with a statement, which justifies the definition of UMAP-class.

Theorem 2.1. The class MAP of all MAP-groups is not a UMAP-class.

Proof. Let G be an abelian group and τ be the discrete topology in G. Then $(G, \tau) \in \text{MAP}$. Clearly, $(G, \tau)^\wedge = G^a$. It is evident that $(G, \tau^\wedge)^\wedge = G^a$. Suppose now that G is infinite. Then $\tau^\wedge \neq \tau$ (this is not evident, but true). Therefore in an infinite abelian group G we found two distinct group topologies τ and τ^\wedge such that $(G, \tau)^\wedge = (G, \tau^\wedge)^\wedge$. Hence MAP $\not\subseteq \text{UMAP}$. □

Theorem 2.2. (Glicksberg-Varopoulos) The class LCA of all locally compact Hausdorff topological abelian groups is a UMAP-class.

Proof. We have LCA \subseteq MAP by Peter-Weil-Van Kampen theorem. Let us see that LCA \subseteq UMAP. Let G be an abelian group and τ_1, τ_2 be distinct locally compact Hausdorff group topologies in G. Let us see that then $(G, \tau_1)^\wedge \neq (G, \tau_2)^\wedge$. Suppose $(G, \tau_1)^\wedge = (G, \tau_2)^\wedge$. Then $\tau_1^+ = \tau_2^+$. By Glicksberg theorem the topologies τ_1, τ_2 and τ_1^+ have the same collections of compact sets. From this, since a locally compact Hausdorff space is a k-space, we get that $\tau_2 = \tau_1$, a contradiction. □

Remark 2.3. A topological group (G, τ) respects compactness (J. Trigos-Arrieta) if τ^+-compact sets are τ-compact as well.

(a) Let RES - MAPK be the class of MAP-groups which respect compactness and which are k-spaces. Then RES - MAPK is a UMAP-class.

(Proof of Theorem ?? works).

(b) W. Banaszczyk and E. Martín-Peinador Let NUC be the class of nuclear groups [?] and NUCK be the class of nuclear which are k-spaces. Then NUCK is a UMAP-class.

(Use (a) and the fact that nuclear groups respect compactness [?].)

(c) L. Aussenhofer Let SCH be the class of locally quasi-convex Schwartz groups and SCHK be the class of locally quasi-convex Schwartz groups which are k-spaces. Then SCHK is a UMAP-class.

(Use (a) and the fact that locally quasi-convex Schwartz groups groups respect compactness [?].)

Theorem 2.4. (Comfort-Ross, [?, Corollary 1.4]) The class PCA of all precompact Hausdorff topological abelian groups is a UMAP-class.

Theorem 2.5. ([?] Let BTM be the class defined as follows: a topological abelian group G belongs to BTM if

- G is locally quasi-convex Hausdorff [?],
- $\text{Card}(G^\wedge) \leq 8_0$,
- there exists a natural number $n \geq 2$ such that $nx = 0, \forall x \in G$.

Then BTM \subseteq PCA and hence, BTM is a UMAP-class.

Theorem 2.6. The class LPA of all locally precompact Hausdorff topological abelian groups is not a UMAP-class.

Proof. The same proof as that of Theorem ??.

A topological space is called Polish if it is homeomorphic to a complete separable metric space. A topological group is Polish if it as a topological space is Polish.

We need the following statement.

Theorem 2.7. [?, Satz 10] Let X, Y be Polish abelian groups and $f : X \rightarrow Y$ be a group homomorphism whose graph $\{(x, f(x)) : x \in X\}$ is a closed subset of $X \times Y$. Then f is continuous.

Corollary 2.8. Let G be an abelian group and τ_1, τ_2 be the distinct Polish group topologies in G. Then $\tau_1 \cap \tau_2$ is a T_1-topology, which is not a Hausdorff topology.

In particular, $\tau_1 \cap \tau_2$ is not a group topology.

Proof. Suppose that $\sigma := \tau_1 \cap \tau_2$ is a Hausdorff topology. Let $f : G \rightarrow G$ be the identity mapping. Its graph $\Delta_G = \{(x,x) : x \in G\}$ is closed in $(G \times G, \sigma \times \sigma)$. Since $\sigma \times \sigma \leq \tau_1 \times \tau_2$, it follows that $\Delta_G = \{(x,x) : x \in G\}$ is closed in $(G \times G, \tau_1 \times \tau_2)$. Therefore, f as a mapping from (G, τ_1) to (G, τ_2) has closed graph. Then by Theorem ??, we get that f is (τ_1, τ_2)-continuous. Consequently $\tau_2 \leq \tau_1$. In a similar way we get that $\tau_1 \leq \tau_2$. Hence, $\tau_2 = \tau_1$, a contradiction. □
The class PMAP of all Polish MAP-groups is a UMAP class.

Proof. Let G be an infinite abelian group and τ_1, τ_2 be distinct Polish MAP group topologies in G. Let us see that then $(G, \tau_1)^\wedge \neq (G, \tau_2)^\wedge$. Suppose $(G, \tau_1)^\wedge = (G, \tau_2)^\wedge$. Then $\sigma := \tau_1^\wedge = \tau_2^\wedge$. Clearly $\sigma \leq \tau_1$ and $\sigma \leq \tau_2$. Since (G, τ_1) is MAP, σ is a Hausdorff topology. As $\sigma \leq \tau_1 \cap \tau_2$, we get that $\tau_1 \cap \tau_2$ is a Hausdorff topology, but this contradicts to Corollary 2.12.

Question 2.10. Let CMMAP be the class of all complete metrizable MAP groups. Is then CMMAP a UMAP class?

I have not a counterexample.

Theorem 2.11. Let X, Y be complete metrizable topological vector spaces over the same non-discrete valued division ring K and $f : X \to Y$ be a K-linear mapping whose graph $\{(x, f(x)) : x \in X\}$ is a closed subset of $X \times Y$. Then f is continuous.

Corollary 2.12. Let G be an abelian group and τ_1, τ_2 be the distinct complete metrizable group topologies in G. Assume further that (G, τ_1) and (G, τ_2) admit a structure of topological vector space over the same non-discrete valued division ring K. Then $\tau_1 \cap \tau_2$ is a T_1-topology, which is not a Hausdorff topology.

In particular, $\tau_1 \cap \tau_2$ is not a group topology.

Proof. The same as that off Corollary 2.12: use now Theorem 2.11 and take into account that the identity mapping is K-linear.

Theorem 2.13. Let K be a non-discrete valued division ring and K-TVSCMMAP be the class defined as follows: $G \in K$-TVSCMMAP if $G \in$ CMMAP and G admits a structure of a topological vector space over K.

Then K-TVSCMMAP is a UMAP class.

Proof. Proof is similar to that of Theorem 2.11: instead of Corollary 2.12 use Corollary 2.12.

Acknowledgements. This is the text of a talk given in March 25th, 2010 in ‘Jornada sobre grupos topológicos’ organized by Departamento Geometría y Topología of the UCM in collaboration with IMI.

The author is grateful to both Institutions for their support. Also to Professors L. Aussenhofer, E. Martín-Peinador and L. Ribes for their useful comments.

The author was also partially supported by grant MTM2009-14409-C02-02.

References