
UMAP CLASSES OF GROUPS

V. TARIELDZE

Abstract. We call a class G of MAP topological abelian groups a UMAP-class if it has the following property:
if G is an abelian group and τ1, τ2 are distinct group topologies in G such that (G, τ1) and (G, τ2) are in G, then

(G, τ1)∧ 6= (G, τ2)∧. Several examples of UMAP-classes are discussed. In particular it is shown that the class
PMAP of all Polish MAP-groups is a UMAP-class.

The note is based on [?, ?].

1. Definitions

For groups X, Y the set of all group homomorphisms from X to Y is denoted by Hom(X, Y ).
For topological groups X, Y the set of all continuous group homomorphisms from X to Y is denoted CHom(X, Y ).
A set Γ ⊂ Hom(X, Y ) will be called separating, if

(x1, x2) ∈ X ×X, x1 6= x2 =⇒ ∃γ ∈ Γ, γ(x1) 6= γ(x2) .

For a group X, a topological group Y and a non-empty Γ ⊂ Hom(X, Y ) we denote by σ(X, Γ) the coarsest
topology in X with respect to which all members of Γ are continuous. Note that σ(X, Γ) is a group topology in
X; if Y is Hausdorff, then the topology σ(X, Γ) is Hausdorff iff Γ is separating.

We write:
T := {t ∈ C : |t| = 1} .

From now on all considered groups will be abelian.
For a group G we write

Ga := Hom(G, T) .

A member of Ga is called character and Ga itself is the algebraic dual of G.
For a topological group G we write

G∧ := CHom(G, T) .

A member of G∧ is called a continuous character and G∧ itself is the topological dual of G.
A topological group G is called maximally almost periodic for short a MAP-group, if G∧ is separating.
For a group G and for a group topology τ in G we write:

(G, τ)∧ := CHom ((G, τ), T) .

For a topological group G the topology σ(G, G∧) is called the Bohr topology of G.
For a group G and for a group topology τ in G we write τ+ for the Bohr topology of (G, τ). Clearly τ+ ≤ τ

and τ+ is a precompact group topology [?].
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2. UMAP-classes

Let us begin with a statement, which justifies the definition of UMAP-class.

Theorem 2.1. The class MAP of all MAP-groups is not a UMAP-class.

Proof. Let G be an abelian group and τ be the discrete topology in G. Then (G, τ) ∈ MAP. Clearly, (G, τ)∧ = Ga.
It is evident that (G, τ+)∧ = Ga. Suppose now that that G is infinite. Then τ+ 6= τ (this is not evident, but
true). Therefore in an infinite abelian group G we found two distinct group topologies τ and τ+ such that
(G, τ)∧ = (G, τ+)∧. Hence MAP 6⊂UMAP. �

Theorem 2.2. (Glicksberg-Varopoulos) The class LCA of all locally compact Hausdorff topological abelian groups
is a UMAP-class.

Proof. We have LCA ⊂MAP by Peter-Weil-Van Kampen theorem. Let us see that LCA ⊂UMAP. Let G be
an abelian group and τ1, τ2 be distinct locally compact Hausdorff group topologies in G. Let us see that then
(G, τ1)∧ 6= (G, τ2)∧. Suppose (G, τ1)∧ = (G, τ2)∧. Then τ+

1 = τ+
2 By Glicksberg theorem the topologies τ1, τ2 and

τ+
1 have the same collections of compact sets. From this, since a locally compact Hausdorff space is a k-space, we

get that τ2 = τ1, a contradiction. �

Remark 2.3. A topological group (G, τ) respects compactness (J.Trigos-Arrieta) if τ+-compact sets are τ -compact
as well.

(a) Let RES−MAPK be the class of MAP-groups which respect compactness and which are k-spaces. Then
RES−MAPK is a UMAP-class.
(Proof of Theorem ?? works).

(b) (W. Banaszczyk and E. Mart́ın-Peinador) Let NUC be the class of nuclear groups [?] and NUCK be the
class of nuclear which are k-spaces. Then NUCK is a UMAP-class.
(Use (a) and the fact that nuclear groups respect compactness [?].)

(c) (L. Aussenhofer) Let SCH be the class of locally quasi-convex Schwartz groups and SCHK be the class of
locally quasi-convex Schwartz groups which are k-spaces. Then SCHK is a UMAP-class.
(Use (a) and the fact that locally quasi-convex Schwartz groups groups respect compactness [?].)

Theorem 2.4. (Comfort-Ross, [?, Corollary 1.4]) The class PCA of all precompact Hausdorff topological abelian
groups is a UMAP class.

Theorem 2.5. ( [?]) Let BTM be the class defined as follows: a topological abelian group G belongs to BTM if
• G is locally quasi-convex Hausdorff [?],
• Card(G∧) ≤ ℵ0,
• there exists a natural number n ≥ 2 such that nx = 0,∀x ∈ G.

Then BTM ⊂ PCA and hence, BTM is a UMAP-class.

Theorem 2.6. The class LPA of all locally precompact Hausdorff topological abelian groups is not a UMAP-class.

Proof. The same proof as that of Theorem ??. Note that the discrete topology τ is locally precompact and the
topology τ+ is precompact, hence it is locally precompact. �

A topological space is called Polish if it is homeomorphic to a complete separable metric space. A topological
group is Polish if it as a topological space is Polish.
We need the following statement.

Theorem 2.7. [?, Satz 10] Let X, Y be Polish abelian groups and f : X → Y be a group homomorphism whose
graph {(x, f(x)) : x ∈ X} is a closed subset of X × Y . Then f is continuous.

Corollary 2.8. Let G be an abelian group and τ1, τ2 be the distinct Polish group topologies in G. Then τ1 ∩ τ2 is
a T1-topology, which is not a Hausdorff topology.
In particular, τ1 ∩ τ2 is not a group topology.

Proof. Suppose that σ := τ1 ∩ τ2 is a Hausdorff topology. Let f : G → G be the identity mapping. Its graph
∆G = {(x, x) : x ∈ G} is closed in (G×G, σ × σ). Since σ × σ ≤ τ1 × τ2, it follows that ∆G = {(x, x) : x ∈ G} is
closed in (G×G, τ1 × τ2). Therefore, f as a mapping from (G, τ1) to (G, τ2) has closed graph. Then by Theorem
??, we get that f is (τ1, τ2)-continuous. Consequently τ2 ≤ τ1. In a similar way we get that τ1 ≤ τ2. Hence,
τ2 = τ1, a contradiction. �
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Theorem 2.9. The class PMAP of all Polish MAP-groups is a UMAP class.

Proof. Let G be an infinite abelian group and τ1, τ2 be distinct Polish MAP group topologies in G. Let us see that
then (G, τ1)∧ 6= (G, τ2)∧. Suppose (G, τ1)∧ = (G, τ2)∧. Then σ := τ+

1 = τ+
2 . Clearly σ ≤ τ1 and σ ≤ τ2. Since

(G, τ1) is MAP, σ is a Hausdorff topology. As σ ≤ τ1 ∩ τ2, we get that τ1 ∩ τ2 is a Hausdorff topology, but this
contradicts to Corollary ??. �

Question 2.10. Let CMMAP be the class of all complete metrizable MAP groups. Is then CMMAP a UMAP
class?

I have not a counterexample.

Theorem 2.11. [?, Corollaire 3, p.1.37] Let X, Y be complete metrizable topological topological vector spaces over
the same non-discrete valued division ring K and f : X → Y be a K-linear mapping whose graph {(x, f(x)) : x ∈
X} is a closed subset of X × Y . Then f is continuous.

Corollary 2.12. Let G be an abelian group and τ1, τ2 be the distinct complete metrizable group topologies in G.
Assume further that (G, τ1) and (G, τ2) admit a structure of topological vector space over the same non-discrete
valued division ring K. Then τ1 ∩ τ2 is a T1-topology, which is not a Hausdorff topology.
In particular, τ1 ∩ τ2 is not a group topology.

Proof. The same as that off Corollary ??: use now Theorem ?? and take into account that the identity mapping
is K-linear. �

Theorem 2.13. Let K be a non-discrete valued division ring and K-TVSCMMAP be the class defined as follows:
G ∈ K-TVSCMMAP if G ∈ CMMAP and G admits a structure of a topological vector space over K.

Then K-TVSCMMAP is a UMAP class.

Proof. Proof is similar to that of Theorem ??: instead of Corollary ?? use Corollary ??. �
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