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INTRODUCTION

General questions: given an open domain�Ω in RN , a partial differential operator
P in Ω (usually non-linear) and a solution u of

(1) P(u) = 0  in  Ω,

then

Q1- Can we define in a natural way the restriction or extended restriction of u to
the boundary of Ω ?

Q2- If this extended restriction exists in some class of objects defined on this
boundary, can we reconstruct the solution u from an element of this class.

This program is obviously too ambitious to be completed, but in the case of
second order elliptic or parabolic equations it has been partially fulfilled, namely
for the non-linear Laplace and heat equations with strong absorption:

(2) Δu = uq

and

(3) ∂u
∂t
− Δu + uq = 0

where Δ =
∂2

∂xj
21≤ j≤N∑  and q > 1. We shall not speak of the parabolic equation is

this series of conferences and shall concentrate on the elliptic equation. Moreover
we shall not go very far in the trace theory but shall give a framework of what
has been done recently by analytical means in that field. Equation (2) plays a key
role in the understanding of super-processes in the range 1< q ≤ 2 and in scalar
curvature questions in  conformal differential geometry when
q = (N + 2) / (N − 2) . In physics the study of this equation was initiated by R.
Emden in 1897 (problems in meteorology) and later on by Thomas-Fermi in the
20-ies (theory of atoms and electronic potential with q = 3 / 2 , N = 3) and
Chandrashekar in 1937 (astrophysics and stars equilibrium problems).

In order to understand the problem, we shall divide our intervention in
three parts. We shall also always assume that Ω  is a bounded open domain with a
regular boundary, say C2 .

Section I The linear Dirichlet Problem

Our aim will be to solve
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(LDP)
  

−Δu = f  in  Ω,
u = g  on  ∂Ω.

 
 
 

in a good enough framework, which means data f and g respectively in
L1(Ω,ρdx)  (ρ(x) = dist (x,∂Ω) ) and L1(∂Ω) , and to prove the Brezis a priori
estimates.

Section II The non-linear Dirichlet problem

We shall present Brezis, Keller-Osserman and Gmira-Véron 's results on the
solvability of

(NLDP)
  

−Δu + u q-1 u = 0  in  Ω,
u = µ  on  ∂Ω.

 
 
 

where q > 1 and   µ∈M (∂Ω) , the space of Radon measures on ∂Ω. We shall also
consider the boundary singularity problem.

Section III The non-linear trace

Although some particular but very important results have been first obtained by
Le Gall in a purely probabilistic framework we shall present Marcus-Veron's
analytic of the boundary trace of any positive solution u of the non-linear elliptic
equation

(NLEE) Δu = uq .

This boundary trace is an outer regular not necessarily bounded Borel measure
ν = Tr(u) . We shall study the properties of the mapping   u a Tr(u)  in some
important cases, in particular in the subcritical case: 1< q < (N + 1) / (N −1) .
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I - THE LINEAR DIRICHLET PROBLEM

Given: Ω  a bounded open domain of RN  with  a C3  boundary ∂Ω (in fact C2

would be enough). Our aim is to solve

(LDP)
  

−Δu = f   in   Ω,
u = g  on  ∂Ω.

 
 
 

In this Section we recall some basic tools in the theory of second order linear
elliptic equations such as Green's functions, regularity theory, Sobolev spaces.
Finally we prove the Brezis estimates.

I-1 Construction of the Green function

If u and v are two C2(Ω )  function, Green's identity gives

(1) vΔu − uΔv( )dx
Ω∫ = v ∂u

∂ν
− u ∂v

∂ν
 
 
 

 
 
 ds

∂Ω∫

where ν is the unit outward normal vector to ∂Ω. Fix a point y in Ω  and define
the Newton's kernel Γ  by

(2)
  
Γ (x − y) = Γ( x − y ) =

− N(N − 2)ωN( )−1 x − y 2−N
 ,   if   N > 2  ,

2π( )−1 ln x − y  ,                        if   N = 2  ,

 
 
 

  

(ωN =  volume of unit ball in RN). It is well-known that   xa
Γy

Γy (x) = Γ (x − y)  is
harmonic in RN \ y{ }  and that

(3) ΔΓy = δy  

in the sense of distributions in RN . Approximation argument shows that v = Γy is
admissible in (1) and that

(4) ΔΓ(x − y)u(x)dx
Ω∫ = u(y) .

Relations (1)-(2) yield Green's representation formula

(5) u(y) = u ∂Γ
∂ν
(x − y) −Γ (x − y) ∂u

∂ν
 
 
 

 
 
 ds

∂Ω∫ + Γ(x − y)Δudx
Ω∫
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∀y ∈Ω( )  and, if u is harmonic,

(6) u(y) = u ∂Γ
∂ν
(x − y) −Γ (x − y) ∂u

∂ν
 
 
 

 
 
 ds

∂Ω∫ .

If h is a C1(Ω )∩C2(Ω)  harmonic function, then (1) implies

hΔudx
Ω∫ = − u ∂h

∂ν
− h ∂u

∂ν
−

 
 
 

 
 
 ds

∂Ω∫ .

If G = Γ + h  (5) becomes

u(y) = u ∂G
∂ν

− G ∂u
∂ν

 
 
 

 
 
 ds

∂Ω∫ + GΔudx
Ω∫

and if G vanishes on ∂Ω,

(7) u(y) = u ∂G
∂ν
ds

∂Ω∫ + GΔudx
Ω∫ .

Formula (7) implies a representation of harmonic functions in terms of their
boundary values. The function G = G(x,y)  is the Green's function of Ω . It is
unique.

The question of finding an harmonic function in Ω  with a given continuous
boundary data g can be solved by the Perron's method of sub-harmonic func-
tions. Let   Sg be the set of C0(Ω )  sub-harmonic functions with respect to g that is
the set of continuous functions w which satisfy

(8) w(y) ≤ 1
ωNR

N w(x)dx
BR(y )∫

∀y∈Ω  ,  ∀R > 0 /  B R (y) ⊂Ω( ) and w ≤ g on ∂Ω. Then Perron's theorem asserts
that the function 

  
u(x) = sup

w∈Sg
w(x)  is harmonic in Ω  and satisfies u = g  on ∂Ω

(since the regularity of ∂Ω implies the existence of barrier functions at each
point).

Remark. Estimate (8) is equivalent to

(8') w(y) ≤ 1
NωNR

N w(x)ds
∂BR (y )∫ .

Sometimes C2  sub-harmonic functions are defined by the fact that Δu ≥ 0 .
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From Perron's method the function G exists. The function ∂G
∂ν

 defined in

Ω ×∂Ω is the Poisson kernel of Ω , it is also often quoted as P. If g belongs to
L1(∂Ω)  the function

(9) Pg (x) = P( x, y)g(y)ds(y)
∂Ω∫

defined for x ∈Ω  is called the Poisson potential of g. It is an harmonic function
in Ω .

I-2 Regularity results

If Γ  is the Newtonian potential, then it is possible to check directly the regularity
of the second derivatives of   x a Γ(x − y)f(y)dy

RN∫ when f ∈C0
∞ (RN ) . This

regularity is given in two directions:

1- The spaces C2,α  of  C2  functions with Hölder continuous second derivatives
(0 <α <1).

2- The Sobolev spaces W2,p of Lp  functions whose derivatives up to the order
two belong to Lp  (1< p < ∞).

This scope of the regularity estimates goes far beyond the study of the Laplace
equation and applies to very general elliptic operators. A particular case of in-
terest for us is the Helmoltz operator

(10)    u a Δu − cu

where   x a c( x)  is a bounded measurable function in Ω .

Definition 1. Let 1≤ p ≤ ∞ and k ∈N* , then

(11)  ζ
Wk,p (Ω)

= Dβζ
Lp (Ω )β ≤k∑   ∀ζ ∈C0

∞ (Ω)( )

where β = (β1 ,β2 , ...βN ) , β = β jj≤N∑  and Dβ =
∂β

∂x1
β1∂x2

β2 ...∂xN
βN

.

The space Wk,p (Ω)  is the space of distributions belonging to Lp (Ω)  as well as
all their derivatives up to the total order k. It is endowed with the structure of a
Banach space with the norm defined in (11). The space W0

k,p (Ω)  is the closure
of C0

∞ (Ω)  in Wk,p (Ω) .

Definition 2. Let 0 <α <1, then
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(12) ζ[ ]α ,Ω = sup
        x≠y
(x, y)∈Ω×Ω

ζ(x) − ζ(y)
x − y α

and

(13) ζ
α ,Ω = supx∈Ω

ζ( x) + ζ[ ]α,Ω

The space Cα (Ω )  is the space of continuous functions defined in Ω  for which
the above norm α ,Ω  is finite. For k ∈N*  denote

(14) ζ k ,α ,Ω = supβ ≤k
sup
x∈Ω
Dβζ( x) + sup

β =k
sup
x∈Ω

Dβζ[ ]α ,Ω ,

then the space Ck,α (Ω )  is defined similarly to Cα (Ω )  from the above norm..

Theorem 1 (Schauder). Suppose that ∂Ω is of class C2,α  (i.e. locally repre-
sented by C2,α  functions), c∈Cα (Ω )  for some 0 <α <1 and let u ∈C2 (Ω ) ,
g ∈C2,α (∂Ω)  and f ∈Cα (Ω )  such that

(15)
Δu − cu = f   in   Ω,

u = g  on  ∂Ω.
 
 
 

Then there exists a positive constant C = C(α,Ω, c α,Ω )  such that

(16) u 2,α,Ω ≤ C f α,Ω + g 2,α ,Ω + sup uΩ
( ) .

If we define the space Cα (Ω)  as the space of functions ζ  for which ζ
α ,K  is finite

for any compact subset K ⊂Ω , we have a local version of Theorem 1.

Theorem 1'. Suppose that c∈Cα (Ω )  for some 0 <α <1 and let u ∈C2 (Ω )
and f ∈Cα (Ω )  such that

(17) Δu − cu = f   in Ω .

Then u  belongs to C2,α (Ω); more precisely, for any compact subset K ⊂Ω ,
there exists a positive constant C = C(α,Ω, c α,Ω ,dist (K,∂Ω))  such that

(18) u 2,α,K ≤ C f α,Ω + g 2,α ,Ω + sup uΩ
( ) .

Theorem 2 (Agmon-Douglis-Nirenberg). Suppose that ∂Ω is of class C2  (i.e.
locally represented by C2  functions) c∈C(Ω )  and let u ∈W2,p (Ω)∩W0

1,p (Ω)
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and f ∈Lp (Ω)  (for some 1< p < ∞) satisfy (17). Then there exists a positive con-
stant C = C(p,Ω, sup c

Ω
)  such that

(19) u W2,p (,Ω ) ≤ C f Lp (,Ω ) + u Lp (Ω )( ) .

We say that ζ ∈Wloc
k ,p (Ω)  if the restriction of ζ  to any open subset Θ  with

compact closure in Ω  belongs to Wk,p (Θ) . The local A-D-N estimates are

Theorem 2'. Suppose that c is continuous in Ω  and let u ∈W2,p (Ω)  and
f ∈Lp (Ω)  for some 1< p < ∞  such that (17) holds. Then for to any open subset
Θ  as above there exists a positive constant depending on p, Ω , sup

Ω
c  and

dist (Θ,∂Ω)  such that

(20) u W2,p (Θ) ≤ C f Lp(,Ω) + u Lp(Ω)( ) .

Remark. There exist very useful imbedding theorems between Sobolev spaces
Wk,p (Ω)  and   W

l , q (Ω)  for   0 ≤ l < k  and 1≤ p < q ≤ ∞  or Sobolev spaces
Wk,p (Ω)  and   C

l ,α (Ω )  for some   0 ≤ l < k  and α ∈( 0,1) depending on N, k and
p. Their expression is a bit technical but we shall refer to them later on.

I-3 The maximum principles

Theorem 3 (weak maximum principle). Suppose that c is continuous and non-
negative in Ω    and let u ∈C2 (Ω)∩C0 (Ω )  satisfy

(21)     Δu − cu ≥ 0   (resp. = 0)    in Ω .

Then

(22) sup
Ω
u ≤ sup

∂Ω
u+   (resp. sup

Ω
u = sup

∂Ω
u ).

This theorem admits a strong form stating that under the same assumptions on c
and u , the function u cannot achieve a non-negative maximum in Ω  unless it is
constant. This strong maximum principle is a consequence of the so called Hopf
lemma.

Theorem 4 (Hopf). Suppose that c is continuous and non-negative in Ω  and
u ∈C2 (Ω)∩C0 (Ω )  satisfies inequality (21). Suppose  also that x0 ∈∂Ω is such

that u(x0 ) > u( x) ∀x ∈Ω( )  and ∂u
∂ν
(x0 ) exists. If u(x0 ) ≥ 0 , then ∂u

∂ν
(x0 ) < 0 .

If c ≡ 0  no assumption is needed on the sign of u(x0 ) .
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The previous result remains true if c is no longer non-negative provided it is
assumed that u(x0 ) = 0 .

I-4 Dirichlet problem in L1

We recall that ρ(x) = dist (x,∂Ω) .

Theorem 5 (Brezis estimates). Let f be a measurable function in Ω  such that
ρf ∈L1 (Ω)  and g ∈L1 (∂Ω) . Then there exists a unique function u ∈L1(Ω)  such
that

(23) − u Δζdx
Ω∫ = f ζdx

Ω∫ −
∂ζ
∂ν

 

∂Ω∫ gds ,

for any ζ ∈C0
1,1 (Ω ) , the space of functions with compact support in Ω  and

Lipschitz continuous gradient. Moreover there exists C = C(Ω) > 0  such that

(24) u L1(Ω ) ≤C ρf L1 (Ω) + g L1(∂Ω )( ) ,
and u satisfies

(25) − u Δζdx
Ω∫ +

∂ζ
∂ν

g ds
∂Ω∫ ≤ f ζ  sgn(u)dx

Ω∫ ,

(26) − u+Δζdx
Ω∫ +

∂ζ
∂ν

g+ds
∂Ω∫ ≤ f ζ sgn+ (u)dx

Ω∫ ,

for any ζ ∈C0
1,1 (Ω ) , ζ ≥ 0 . In these formulas sgn(r) = 1 if r > 0, sgn(r) = −1 if

r < 0 and vanishes at 0, while sgn + (r) = 1 if r ≥ 0 and vanishes if r < 0.

Remark. If ζ ∈C0
1,1 (Ω )  there exists a constant C such that ζ ≤ Cρ.

Proof. Step 1. Take fn ,gn( )∈C0 (Ω ) ×C2 (∂Ω)  and call u n the unique solution
of  the corresponding (LDP). Set γ  a smooth, odd and increasing approximation
of the sgn function with γ ≤ sgn  and let η = ηn  be the solution of

(27)
−Δη = γ (un )   in   Ω,

η = 0  on  ∂Ω.
 
 
 

From Theorem 1 η∈C2,α (Ω )  and
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(28) un γ(un )dxΩ∫ = f nηdxΩ∫ −
∂η
∂ν
gnds∂Ω∫ .

If β  is the solution of

(29)
−Δβ = 1   in   Ω,

β = 0  on  ∂Ω.
 
 
 

then β  is also C2,α , −β ≤ η ≤β ≤ Cρ with C = C(Ω)  and ∂η
∂ν

≤
∂β
∂ν

≤ C  on the

boundary. Therefore

(30) un γ(un )dxΩ∫ ≤ C fn ρdxΩ∫ + gn ds∂Ω∫( ) ,
which gives (24) for un , fn ,gn( )  by letting γ go to sgn.

Step 2. Let ζ ∈C0
1,1 (Ω ) , ζ ≥ 0  and ξ = ξn = ζγ(un ) . Then

(31) − unΔ(ζγ(un ))dxΩ∫ = fnζγ (un )dxΩ∫ −
∂
∂ν

ζγ(un )( )gnds∂Ω∫ .

But  

− unΩ∫ Δ(ζγ(un ))dx = γ(un )Ω∫ ∇un .∇ζdx + ζγ ' (un )∇γ (un )
2 dx

Ω∫

− unγ (un )∂Ω∫
∂ζ

∂ν
ds − ζun γ ' (un )

∂un
∂ν
ds

Ω∫ .

Set j(r) = γ(s)ds
0

r

∫ , then

γ (un )∇un .∇ζdxΩ∫ = ∇j(un ).∇ζdxΩ∫ ,

= − j(un )ΔζdxΩ∫ + j(un )
∂ζ
∂ν
ds

∂Ω∫ .

But  ζγ' (un )∇γ(un )
2 dx

Ω∫ ≥ 0. Since ζ = 0  on ∂Ω, we have

 − un γ(un )∂Ω∫
∂ζ
∂ν
ds − ζu nγ ' (un )

∂un
∂ν
ds

Ω∫ = −
∂
∂ν

ζγ(un )( )gnds∂Ω∫

and
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(32) − j(u n )ΔζdxΩ∫ + j( gn )
∂ζ
∂ν
ds

∂Ω∫ ≤ fnγ (un )ζdxΩ∫ .

By letting γ  go to sgn  we get (25) for un , fn ,gn( ) . We prove (26) in the same
way by replacing γ  by a smooth increasing approximation from below of sgn +

which vanishes on (−∞, 0)  and is positive on (0,∞) .

Step 3. Existence and uniqueness. Assume that ρfn ,gn( ){ } →
n→∞

ρf ,g( ){ }   in
L1(Ω) × L1(∂Ω) . Then un{ }  is a Cauchy sequence in L1(Ω)  from Step 1 and its
limit u satisfies (23)-(26). This gives existence. For uniqueness we suppose that w
is an integrable function which satisfies wΔζdx

Ω∫ = 0  for any ζ ∈C0
1,1 (Ω ) ; for

test function, we take η the solution of

(33)
−Δη = γ (w)   in   Ω,

η = 0  on  ∂Ω.
 
 
 

Although it is not a C2 (Ω )  function it belongs to ∩
p<∞

W2,p ∩W0
1,p( )  by Theorem

2 which is included into ∩
α<1
C1,α (Ω )( )∩C0

1 (Ω )  by Sobolev imbedding theorems.
This is sufficient for a test function since Δη is essentially bounded. Then
wγ (w)dx

Ω∫ = 0  and w ≡ 0 .

Remark. Estimate (26) means that the mapping     PΩ:(f ,g) a u = PΩ (f ,g)  solution
of (LDP) in the sense of Theorem 5 is order preserving from
L1(Ω,ρdx) ×L1(∂Ω)  into L1(Ω) .
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 II - THE NON-LINEAR DIRICHLET PROBLEM

Given Ω  a C3  bounded open domain of RN , our aim is to solve

(NLDP)
−Δu + u q−1 u = 0  in  Ω,

u = µ  on  ∂Ω,

 
 
 

where q > 1 and   µ ∈M (∂Ω), the space of Radon measures on ∂Ω. We also
are interested into the following question: does it exists a non-zero function u
belonging to  C(Ω \ a{ })∩C2 (Ω)  for some a ∈∂Ω and satisfying

(ISP)
  

−Δu + u q−1 u = 0  in  Ω,
u = 0  on  ∂Ω \ a{ }.

 
 
 

II-1 The regular non-linear Dirichlet problem

If we want to consider the problem

(1)
−Δu + u q−1 u = 0  in  Ω,

u = g  on  ∂Ω,

 
 
 

where q > 1 and g ∈C2,α (∂Ω) , we set Φ( x) = P( x, y)g( y)ds
∂Ω∫  (Φ  is

C2,α ), and introduce

(2) J g (v) =
1
2
∇v 2

+
1
q + 1

v +Φ
q+1 

 
 

 

 
 dx

Ω∫

on W0
1,2 (Ω)∩Lq+1(Ω) . The functional J g  is strictly convex and l.s.c. in

W0
1,2 (Ω)∩Lq+1(Ω)  and it satisfies

(3) lim
v W1, 2∩ Lq+ 1→∞

Jg (v) = ∞.

A classical result from convex analysis asserts that J g  achieves its minimum
in W0

1,2 (Ω)∩Lq+1(Ω)  at a unique point w where

(4) ∇w.∇ζ + w + Φ q−1(w + Φ)ζ( )dx
Ω∫ = 0

∀ζ ∈W0
1,2 (Ω)∩ Lq+1(Ω)( ) . This implies that the function u = w + Φ  satisfies

(5)  ∇u.∇ζ + u q−1 uζ( )dx
Ω∫ = 0 .
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In particular if γ  is a smooth increasing approximation of the function
  r a r +  vanishing on −∞, 0( ] and positive on 0,∞( )  and if m = sup

∂Ω
g, then

γ (u − m)  ∈W0
1,2 (Ω)∩ Lq+1 (Ω)  and

(6) γ ' (u − m)∇u 2
+ u q−1 uγ (u − m)( )dx

Ω∫ = 0 .

Therefore γ (u − m) ≡ 0 a.e. which implies that u is essentially bounded from
above. In the same way u is bounded from below and finally u ∈L∞ (Ω) .
Extensions of Theorems 1-2 in Sect. I yield u ∈C2,α (Ω ) . Consequently we
have proved that for any g ∈C2,α (∂Ω)  there exists a function u ∈C2,α (Ω )
satisfying (1); u is unique from Brezis theorem since, if u1 and u2  are
solutions corresponding to boundary data g1 and g2 , we have

(7)
− u1 − u2 Δζdx( )

Ω∫ + u1
q −1u1 − u2

q−1u2 sgn(u1 − u2 )ζdx( )
Ω∫

≤ −
∂ζ

∂ν
sgn(u1 − u2 )ds,

Ω∫

for any ζ ∈C0
1,1 (Ω ) , ζ ≥ 0 . In particular

(8) u1 − u2 L1 (Ω) + u1
q−1 u1 − u2

q−1 u2( )ρ
L1 (Ω)

≤C g1 − g2 L1 (∂Ω ) .

In the same way g1 ≤ g2 ⇒ u1 ≤ u2 . From C2,α  boundary data, we can go
to continuous boundary data, by using (8) and the fact that sup

Ω
u ≤ sup

∂Ω
g .

We shall denote   u = PΩq (g)  the solution of (1) in Ω  with boundary data g.

II-2 The Keller-Osserman estimates and the large solutions

One of the striking properties of any solution of

(9) −Δu + u q−1 u = 0  in Ω ,

(q > 1)  is the existence of an a priori estimate.

Theorem 1 (Keller-Osserman). There exists a constant C = C(q,N) > 0
such that if u is any C2 (Ω)  solution of (9),

(10) u(x) ≤ Cρ(x) −2/(q−1) ∀x ∈Ω( ) .
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Proof. Step 1. Suppose that v ∈C0 (BR (0))  is C2  on   O
+ = x :  v( x) > 0( )

where it satisfies

(11) −Δv + Avq ≤ B.

for some A > 0 and B ≥ 0 . Then we claim that

(12) v(0) ≤ β(N, q)
AR2

 
 
 

 
 
 
1/ (q−1)

+
B
A

 
 
  

 
 
1/( q−1)

.

Take ρ∈ 0,R( )  and set ψ(x) = ψ( r) = λ ρ2 − r2( )_2 /(q−1) +µ , where λ > 0
and µ ≥ 0  have to be determined in order to have

(13) −Δψ + Aψq ≥ B .

Then

  

−Δψ + Aψq

          ≥ λ ρ2 − r2( )−2q /(q−1) Aλq−1 − 2NR
2

q − 1
+

2
q −1

N − 2 q +1
q −1

 

 
 

 

 
 r 2

 

 
 

 

 
 + Aµq

and if we choose β = max 2N
q − 1

, 4(q + 1)
(q −1)2

 

 
 

 

 
 , λ =

β
Aρ2
 

 
 

 

 
 

1/ (q−1)

 and

µ =
B
A
 
 
  

 
 
1 /(q−1)

 we have (13). From Kato's inequality

(14) Δ (v − ψ)+ ≥ sgn+ (v− ψ)Δ( v− ψ)

in the sense of distributions in Bρ (0)  where  (v − ψ)+  has compact support.
Therefore (v − ψ)+ ≡ 0 and v(0) ≤ ψ( 0) . Letting ρ↑R  yields (12)

Step 2. Let x0 ∈Ω  and R = dist (x0,∂Ω) = ρ(x0 ). The function u+  is
continuous in BR(0)  and is C2  on   O

+ = x :  u( x) > 0( )   where there holds

(15) −Δu + uq = 0 .

By applying Step 1 in BR(x0 ), we get

(16) u(x0 ) ≤
β

ρ2(x0 )
 

 
 

 

 
 

1 /(q−1)

,
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and (10) follows by replacing u by −u .

From the Keller-Osserman estimate it is possible to construct a positive solu-
tion u of (9) which blows up everywhere on the boundary it is called the
large solution. In fact the for n > 0  set un  the solution of

(17)
  

−Δun + un
q−1un = 0  in  Ω,
un = n  on  ∂Ω,

 
 
 

Then 0 < un < un'  for n' > n . Because of (10) un{ } is locally bounded in Ω ,
independently of n and therefore it converges, when n goes to infinity, to
some function uΩ  which satisfies

(18) lim
ρ(x )→0

uΩ (x) = ∞.

Going to the limit in the relation

(19) −unΔζ + un
qζ( )dζ

Ω∫ = 0

where ζ ∈C0
∞(Ω)  implies that uΩ  satisfies the same expression. Since it is

locally bounded it is a solution of (9).

One of the main problem concerning the large solution was the question of
uniqueness. This uniqueness was proved:

1- In the case q = (N + 2) / (N − 2)  by Loewner and Nirenberg (1974) in a
geometric framework.

2- When Ω  is star-shaped with respect to some point by Iscoe, by using a
transformation which conserves the equation

(20)     ua
N k

N k (u)  where   N k(u)(x) = k
2/(q−1)u( kx)   (k > 0 ).

3- When ∂Ω is smooth and compact by Bandle and Marcus and separately
Véron (1992). The technique uses the expansion

(21) lim
ρ(x )→0

ρ2 /(q−1) (x)uΩ(x) =
2( q +1)
(q − 1)2

 

 
 

 

 
 

1/ q−1)

.

4- When ∂Ω is not regular, first results are due to Le Gall (1994) for
N = 2 = q  in a probabilistic framework and then Marcus and Véron (1995)
in the general case when ∂Ω is locally the graph of a continuous function (in
that case existence may not hold if q ≥ (N − 1) / (N − 3)).
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5- When 1< q < N / (N− 2)  it has been recently noticed by Véron (MSRI
Oct. 1997) that no assumption on ∂Ω is needed in order to have a large
solution. Moreover, if ∂Ω ⊂Ωc , this large solution is unique.

The following result follows from the Keller-Osserman estimate.

Theorem 2. Suppose g ∈C(∂Ω, 0,∞[ ]) , then there exists a positive solution
u of (1).

 Proof. Considering the increasing scheme vn{ }  for n > 0

(22)
  

−Δvn + vn
q−1 vn = 0  in  Ω,

vn = gn = min(n, g)  on  ∂Ω,

 
 
 

then vn  is positive and converges to a solution of (1) when n goes to infinity.

Remark. In 1993 Kondratiev and Nikishkin proved that, within this frame-
work, uniqueness may not hold when 1< q < (N + 1) / (N −1) .

Remark. This large solution is the maximal solution of (9) in Ω  in the sense
that any other solution is dominated by it.

II-3 The L1 non-linear Dirichlet problem

Theorem 3 (Brezis). Let g ∈L1(∂Ω) , then there exists a unique
u ∈L1(Ω)∩  Lq (Ω,ρdx)  such that

(23) −uΔζ + u q−1uζ( )dx
Ω∫ = −

∂ζ
∂ν
gds

∂Ω∫

∀ζ ∈C0
1,1(Ω )( ). Moreover the mapping     g a u = PΩq (g)  is increasing and

(24) u1 − u2 L1(Ω) + ρ h(u1) − h(u2 )( )
L1(Ω)

≤ C g1 − g2 L1(∂Ω )

where   uj = PΩq (gj ) , j = 1,2  and h(r) = r q−1r .

Proof. Let gn{ }∈C3(∂Ω)  such that gn → g in L1(∂Ω)  when n goes to
infinity and denote   un = PΩq(gn ) . Then

(25) −unΔζ + un
q−1 unζ( )dx

Ω∫ = −
∂ζ
∂ν
gnds∂Ω∫



16

for any ζ ∈C0
1,1(Ω ) , and from estimate (8) un ,h(un )( ){ }  is a Cauchy

sequence in L1(Ω) × L1(Ω,ρdx) . Therefore h(unk )→ h(u)  a.e. and in
L1(Ω,ρdx)  which implies (23). The uniqueness follows from the Brezis
linear estimates and the monotonicity from the monotonicity of   PΩ

q  in
C0(∂Ω) .

II-4 Measure boundary data

The Poisson formula (9)-Sect. I which expresses the Poisson potential of a
function g ∈L1(∂Ω)  is extendible to a Radon measure on µ   ∈M (∂Ω). We
set

(26) Pµ(x) = P(x,y) dµ( y)
Ω∫

∀x ∈Ω( ) , and the function Pµ  is harmonic in Ω  and takes the value µ  on
∂Ω in the sense that

(27) − PµΔζdxΩ∫ = −
∂ζ
∂ν
dµ

∂Ω∫

∀ζ ∈C0
1,1(Ω )( ). In order to extend Theorem 3 to measure boundary data,

we need the following estimates on the Poisson kernel: there exists
C = C(Ω) > 0  such that

(28) C−1 x − y −N
ρ(x) ≤ P( x, y) ≤ C x − y −N

ρ(x)

∀( x, y) ∈Ω ×∂Ω( ). Consequently

(29) P(. ,y) Lp(Ω) ≤ Kp,Ω   ∀1≤ p < N / (N −1)  ,  ∀y ∈∂Ω( ) ,

(30) P(. ,y) Lp(Ω,ρdx) ≤ Kp,Ω
*

  ∀1≤ p < (N +1) / (N − 1)  ,  ∀y ∈∂Ω( ) .

Theorem 4 (Gmira-Véron). Suppose that 1< q < (N + 1) / (N −1) , then for
any µ   ∈M (∂Ω) there exists a unique u ∈L1(Ω)∩  Lq (Ω,ρdx)  such that 

(31) −uΔζ + u q−1uζ( )dx
Ω∫ = −

∂ζ
∂ν
dµ

∂Ω∫



17

∀ζ ∈C0
1,1(Ω )( ) and the mapping     g a u = PΩq (g)  is increasing. If µn{ }⊂

  M (∂Ω)  converges weakly to µ   ∈M (∂Ω) when n goes to infinity,   PΩ
q (µn )

converges to   PΩ
q (µ) , locally uniformly  in Ω .

Proof. Uniqueness and monotonicity follow from the Brezis estimates (25)-
(26) in Sect. I. Let gn{ } ⊂ L1(∂Ω)  such that gn → µ  weakly in   M (∂Ω)  and
set   un = PΩq(gn ) . From the maximum principle

(32)  −Pgn− ≤ un ≤ Pgn+ .

Since Pgn± (x) = P( x, y)gn
± (y)ds

∂Ω∫ , we take f ∈Lp' (Ω)  with p' = p / (p − 1)
and 1≤ p < N / (N − 1) , and we have

(33)

Pg n
± (x)

Ω∫  f (x) dx = P(x,y) gn
± (y)ds( y)  

∂Ω∫ f(x)dx,
Ω∫

= P(x,y)
Ω∫ f(x)dx( )gn

± (y)ds( y),
∂Ω∫

≤ K p,Ω f Lp' (Ω) gn
± (y)ds(y)

∂Ω∫ .

This implies

(34) Pgn± Lp (Ω )
≤ Kp,Ω gn

±

L1 (∂Ω)
≤ K .

Similarly

(35) Pgn± Lp (Ω,ρdx )
≤ Kp,Ω

* gn
±

L1 (∂Ω)
≤ K

for 1≤ p < (N + 1) / (N −1) . If we take q < p  in (34), and 1< p  in (35) we
deduce from (32) that un{ } and un

q−1 un{ }  are equi-integrable and
therefore weakly compact in L1(Ω) × L1(Ω,ρdx) . From the Osserman-
Keller estimate un{ } remains also locally uniformly bounded in Ω . By using
Theorem 1' and 2' of Sect. I, for any Θ  open with Θ⊆ Θ ⊆Ω , un C2,α(Θ ){ }
remains bounded and therefore relatively compact by Ascoli's theorem.
Consequently there exist a sequence unk{ } and a C2(Ω) -function u such

that unk → u, and weakly in  L1(Ω) . Moreover unk
q−1
unk → u q−1 u  weakly

in L1(Ω,ρdx) . Letting n go to infinity in (25) yields (31).
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The stability result is proved by the same device. If µn → µ  weakly in

  M (∂Ω) , it remains bounded in the total variation norm and therefore Pµn{ }
remains bounded in Lp1(Ω) × Lp2 (Ω,ρdx)  for any 1≤ p1 < N / (N −1)  and
1≤ p2 < (N +1) / (N − 1). Since   PΩ

q (µn ) ≤ Pµn , we have all the needed com-
pactness to let nk  go to infinity in the weak expression of (31)nk . Therefore
the full convergence result follows from uniqueness.

Remark. The mapping   PΩ
q  is increasing from   M (∂Ω)  to C2(Ω) .

Remark. We shall see in next paragraph that (NLDP) may not have a
solution for any   µ∈M (∂Ω)  when q ≥ (N + 1) / (N −1) . For example there
exists no solution if µ = δa  for some a ∈∂Ω. The full treatment of the
solvability of (NLDP) has been completed very recently by Dynkin and
Kuznetsov in the case 1< q ≤ 2 and Marcus and Véron when 1< q . This
treatment involves Bessel capacities.

Remark. A more elaborated analytic tool (weighted Marcinkiewicz spaces)
allowed Gmira and Véron to prove an existence and uniqueness result for
the general problem

(35)
  

−Δu + g( u) = 0  in  Ω,
u = µ  on  ∂Ω,

 
 
 

where g is continuous and non-decreasing,   µ∈M (∂Ω)  and

(36) g(Pµ )Ω∫ ρdx < ∞ .

II-5 Isolated singularities

As we have seen it above, if 1≤ q < (N + 1) / (N −1)  and a ∈∂Ω, for any
n > 0  the function   ua,n = PΩq (nδ a )  is a solution of (9) which vanishes on
∂Ω \ a{ } . Moreover, when n increases, it is the same with ua,n{ } . From the
Osserman Keller estimate, this sequence is locally uniformly bounded in Ω ,
therefore it converges to some positive solution ua,∞  of (9). By using some
local estimate on the boundary it can be checked that ua,n{ }  is
equicontinuous on any compact subset of Ω \ a{ } . Therefore ua,∞  vanishes
on ∂Ω \ a{ } . This solution ua,∞  is the maximal solution of (9) which
vanishes on ∂Ω \ a{ } . As for the behaviour of ua,n (x)  near a it can be
obtained from perturbation theory. Actually  estimates (28) and
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(37)   0 ≤ PΩq (nδa )( x) ≤ Pnδ a (x) = nPδa (x) = nP(x, a ) ,

gives

(38) 0 ≤ ua,∞(x) ≤ Cn x − a
−N
ρ( x) .

Finally it is possible to prove that the non-linear term is negligible near a in
some sense and that

(39) lim
x→a

ua,n (x)
P( x, a)

= n.

Always in the range 1< q < (N + 1) / (N −1) , the function ua,∞  has a much
stronger blow-up than ua,n . The expression of this blow-up needs to
introduce spherical coordinates centered at a. In fact there exists a functions
ω  defined on the half unit sphere S+

N−1 the equator of which belongs to the
plane Ta∂Ω tangent to ∂Ω at the point a such that

(40)   limx→a  x − a
2/(q−1) ua,∞(x) = ω x − a( ) / x − a( ) .

Moreover ua,∞  is the unique solution of (ISP) which satisfies (39).

The following result asserts that (39) and (40) characterise all the iso-
lated singularities of the solutions of (9).

Theorem 5 (Gmira-Véron). Let 1< q < (N + 1) / (N −1) ,  a ∈∂Ω,
g ∈C0 (∂Ω)  and u ∈C(Ω \ a{ })∩C2(Ω)  is a positive solution of (9) which
coincides with g on  ∂Ω \ a{ } . Then either
    (i)   u = PΩq (g) , and u is regular in Ω ; either
    (ii) there exists n > 0  such that   u = PΩq (g + nδa )  and u(x) ≈ ua,n (x)  in
the sense of (39); or
    (iii)   u = PΩq (g + ∞δa ):= limn→∞

u = PΩq (g + nδa )  and u(x) ≈ ua,∞(x)  in the
sense of (40).

When q ≥ (N + 1) / (N −1)  the situation is completely different since
all the isolated boundary singularities of the solutions of (9) are removable

Theorem 6 (Gmira-Véron). Let q ≥ (N + 1) / (N −1) , a ∈∂Ω, g ∈C0 (∂Ω)
and u ∈C(Ω \ a{ })∩C2(Ω)  is a positive solution of (9) which coincides
with g on  ∂Ω \ a{ } . Then u can be extended to Ω  as a continuous
function and in fact   u = PΩq (g) .

The proof of this result is rather technical, however it can be noticed that if
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(41) u(x) = o P(x, a)( ) + b( x)

near a, for some bounded function b, then u remains uniformly bounded in
Ω . Actually for any ε > 0, the function   x a wε (x) = εP(x,a ) + b L∞  is a
supersolution of (9) which dominates u in a neighbourhood of ∂Ω. By the
maximum principle u ≤ wε , and u ≤ b L∞  by letting ε  go to zero. In the
same way u ≥ − b L∞ . The boundedness of u implies its continuity. As for
estimate (41) it is a consequence of the Keller-Osserman estimate when
q > (N + 1) / (N −1) . In the case q = (N +1) / (N − 1) the scheme of the
proof is more complicated.
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THE NON-LINEAR TRACE

III-1 The boundary trace of harmonic functions

It is easy to check that every positive harmonic function u in the unit N-ball B
possesses a boundary trace given by a positive Radon measure   µ∈M + (∂B)
which is attained in the sense of weak convergence of measures:

(1) lim
r→1

ζ(σ )u(rσ)dσ
∂B∫ = ζdµ

∂B∫

for every ζ ∈C0 (∂B) . By the Riesz-Herglotz theorem, for every non-negative
Radon measure µon ∂B there exists a unique harmonic function with boundary
trace µ , and it is represented by the Poisson integral

(2) u(x) = P( x,σ)dµ(σ)
∂B∫ .

This result is still valid if harmonic is replaced by super-harmonic (Doob).
Moreover, the positivity assumption on u can be replaced by an integrability
condition (for example Δu ∈L1(B,ρdx)) and in that case the boundary trace is a
general Radon measure on ∂B.

III-2 The non-linear boundary trace

For simplicity we shall still consider the case where the open subset is the unit N-
ball B. If q > 1 and u is a positive solution of

(3) −Δu + uq = 0  in B,

Keller-Osserman estimate gives

(4) u(x) ≤ C(N,q)(1− x )−2/( q−1).

The existence of a boundary trace for positive solutions of (3) has been
discovered in the case q = 2 = N  by Le Gall who gave a probabilistic represen-
tation of any positive solution of (3) in that case (1993). The notion of trace that
will be presented is due to Marcus and Véron (1995); it is a purely analytic
presentation and is extendible to much more general nonlinearities.

Theorem 1 (Marcus-Véron). Suppose q > 1 and u is a positive solution of (3) in
B. Then for any ω ∈∂B we have the following alternative. Either
    (i) for every relatively open neighbourhood U of ω  on ∂B

(5) lim
r→1

u(rσ )dσ
U∫ = ∞ ,
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or
    (ii) there exists a relatively open neighbourhood U of ω  on ∂B such that for
every ζ ∈C0

∞(U)

(6)   limr→1 u(rσ )ζ(σ)dσ
U∫ = l (ζ) ,

where   l  is a positive linear functional on C0
∞(U) .

We denote (r,σ)∈SN−1 × (0,∞)  the spherical coordinates in RN  and Δ SN−1  the
Laplace-Beltrami operator on  the unit sphere SN−1 that we identify with ∂B. If V
is an open domain of SN−1, we denote by ϕV  the first eigenfunction of −ΔSN−1 in
W0

1,2(V)  with the normalisation condition

(7) max
σ∈V

ϕV (σ) = 1.

The corresponding eigenvalue is λV > 0 , and if the boundary ∂V  on SN−1 is C2

Hopf Lemma applies and

(8) ∂ϕV

∂ν
SN−1

< 0  on ∂V .

Lemma 1. Let V be an open domain of SN−1 with a C2  boundary, u a positive
solution of (3) in B and α > (q +1) / (q − 1) . Then we have the following di-
chotomy. Either
   (i)

(9) uqϕV
α (1− r)rNdσ

V∫ dr
0

1

∫ = ∞

and in that case

(10) lim
r→1

(uϕV
α )(r,σ)dσ

V∫ = ∞,

or
    (ii)

(10) uqϕV
α (1− r)rNdσ

V∫ dr
0

1

∫ < ∞ ,

and in that case, for any C2  function ζ  on V which satisfies

(11) 0 ≤ ζ ≤ kϕV
α    and   Δζ ≤ kϕV

α−2
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for some k ≥ 0 , the following limit exists

(12)   limr→1 u(r,σ)ζ(σ )dσ
V∫ = l (ζ)

and the mapping   ζ a l (ζ)  is a positive linear functional defined on the subset
of C2(V)  of functions which satisfy (11).

Proof. Step 1. The following integral is finite

(13) I = ΔSN−1ϕV
α q /( q−1)

V∫ ϕV
−α / (q−1)dσ .

From Hopf boundary Lemma

(14) ϕV(σ) ≥ C1ρS(σ)

for any σ ∈V, where ρS (σ ) = dist SN−1(σ,∂V)  is the geodesic distance on SN−1

and C1 > 0 . Since

(15) Δ SN−1ϕV
α = −αλVϕV

α +α(α −1)ϕV
α−2 ∇ϕV

2
,

(16) Δ SN−1ϕV
α q /(q−1)

≤ C2ρS
q(α−2) /(q−1),

and finally

(17) Δ SN−1ϕV
α q /(q−1)

ϕV
−α / ( q−1)(σ ) ≤ C3ρS

(q (α−2)−α )/ (q−1).

But α > (q +1) / (q − 1)⇒ (q(α − 2) −α) / (q − 1) = α − 2q / (q −1) > −1, and
(13) follows.

Step 2. Reduction of the equation. We shall suppose N ≥ 3, the case N = 2  re-
quiring a special treatment. In spherical coordinates (3) reads

(18) ∂2u
∂r2

+
N − 1
r

∂u
∂r

+
1
r2
ΔSN−1u − u

q = 0

in (0,1) × SN−1. We set

(19) s = rN−2

N − 2
,   u(r,σ) = r2−Nv(s,σ ),

and
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(20) s2 d
2v
ds2

+
1

(N − 2)2
ΔSN−1v − Ks

N/(N−2 )−qvq = 0

in (0,a ) ×SN−1 = (0,(N − 2)−1) × SN−1 where K = K(N, q) > 0 . Then

(21) s2 d
2

ds2
vϕV

αdσ
V∫ +

1
(N − 2)2

vΔSN−1ϕV
αdσ

V∫ − sN /(N−2 )−qK vqϕV
αdσ

V∫ = 0.

We set X(s) = vϕV
αdσ

V∫  and Y(s) = vqϕV
αdσ

V∫( )
1/q

. From Hölder's inequality

(22)
vΔ

SN−1
ϕV
αdσ

V∫ ≤ vqϕV
αdσ

V∫( )1/ q Δ
SN−1
ϕV
α q /( q−1)

ϕV
−α / (q−1)dσ

V∫( )
1−1/ q

≤ I1−1/qY(s)

and (21) becomes

(23)+ s2X" + JY −KsN/(N−2)−qYq ≥ 0

(23)- s2X" − JY −KsN/(N−2)−qYq ≤ 0

where J = I1−1/q (N − 2)−2 .

Step 3. End of the proof (N ≥ 3).
Case 1: suppose that (9) holds, then

(24) vqϕV
α (1− sa −1 )dσ

V∫ ds
a/2

a

∫ = a−1 Yq (a − s)ds
a /2

a

∫ = ∞.

From (23)+ we deduce that there exist two constants A,B > 0  (and depending
on a) such that

(25) X" ≥ AYq − B

on (a/2,a). Then

(26)
X(s) ≥ X(a / 2) + (s − a / 2)X' (a / 2)

+A (s − τ)Yq (τ)dτ
a/2

s

∫ −
B
2
(s − a / 2)2,

and lim
s→a
X(s) = ∞ from (24); this means that (10) holds.

Case 2: suppose that (11) holds, then
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(27) vqϕV
α (1− sa −1 )dσ

V∫ ds
a/2

a

∫ = a−1 Yq (a − s)ds
a /2

a

∫ < ∞ ;

inequality (25) is replaced by

(28) X" ≤ AYq + B

and

(29) d2

ds2
X(s)− A (s − τ)Yq(τ)dτ

a /2

s

∫ −
B
2
(s − a / 2)2 

 
  

 
 ≤ 0 .

From concavity and (27), lim
s→a
X(s) < ∞ . If ζ  is a C2  function which satisfies (11),

we set   Xζ(s) =  v
V∫  ζdσ  and (21) implies

(30) s2Xζ
" + 1
(N − 2)2

vΔSN−1ζdσV∫ −KsN/(N−2)−q vqζdσ
V∫ = 0.

But

(31) vΔSN−1ζdσV∫ ≤ k vϕV
α−2dσ

V∫ ≤ k vqϕV
αdσ

V∫( )
1/q

ϕV
α−2q /(q−1)dσ

V∫( )
1−1/ q

,

and

(32) vqζdσ
V∫ ≤ k vqϕV

αdσ
V∫ .

Therefore it follows from (27) that

(33) vΔSN−1ζdσV∫ (a − s)ds
a/2

a

∫ < ∞  and vqζdσ
V∫ (a − s)ds

a/2

a

∫ < ∞.

Integrating (30) twice implies that   lims→a
Xζ (s) = l (ζ)  exists and obviously the

correspondence   ζ a l (ζ)  is a positive linear functional on the set of C2   func-
tions ζ  which satisfy (11). Therefore it can be extended as a positive measure on
V.

In the case N = 2 the principle remains the same but the change of variable
(19) is replaced by

(34) r = e−t ,  u(r,σ) = v(t,σ) ,

which transforms (18) into



26

(35)

on (0,∞) ×S1.

Proof of Theorem 1. If ω ∈∂B and there exists an open neighbourhood V such
that (10) holds, we have the existence of a positive Radon measure µU  such that

(36) lim
r→1

u(r,σ)dσ
V∫ = ζdµ(σ )

V∫ ∀ζ ∈C0
0 (V)( ) .

If such a neighbourhood does not exist, we are in case (i).

Let   R be the set of the ω ∈∂B such that (ii) holds;   R  is relatively open and there
exists a unique (non-negative) Radon measure µ  such that µ V = µV . The set
  S = ∂B \ R  is closed.

Definition. The couple   S,µ( )  is called the boundary trace of u. The set   S is the
singular part of this trace and the measure µ  on   R = ∂B \ S, the regular part
of the trace.

For convenience it is often useful to introduce the Borel measure
framework. Actually there is a one to one correspondence between the family
CM of couples   S,µ( )  where   S is a compact subset of ∂B and µ  a positive
Radon measures on   R = ∂B \ S and the set   Breg of outer regular, positive Borel
measures on ∂B (β  is outer regular if for every Borel subset E of ∂B,

  
µ(E) = inf

O∈VE
µ(O)  where   VE  is the set of relatively open subsets of ∂B containing

E). Let   β∈Breg, we define  the regular set   R β  and the blow-up set   Sβ  of β  as
follows

  R β = ω ∈∂B:  ∃U,rel. open neighbourhood of ω s.t.  β(U) < ∞{ }

  Sβ = ∂B \ R β = ω∈∂B:  ∀U,rel. open neighbourhood of ω ,  β(U) = ∞{ } .

The correspondence   CM→
M

Breg is given by

(37)   M ((S,µ)) = ˜ µ   where 
  
˜ µ (A) =

µ(A)  if  A ⊆ R ,
∞         if   A∩ S ≠ ∅,
 
 
 

for every Borel subset A ⊂ ∂B, and

(38)
  
M -1(β) = (Sβ,βR β

) .
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With this notation we shall denote

(39)   Tr(u) = µ∈Breg where 
  
µ = M (Sβ ,β R β

) .

The general non-linear boundary value problem is to solve

(GNBVP)
  

−Δu + u q−1 u = 0  in  Ω,
Tr(u) = µ∈Breg.

 
 
 

The problem is completely different according 1< q < (N + 1) / (N −1)  or
q ≥ (N + 1) / (N −1) . This is due to the following pointwise blow-up estimate.

Theorem 2. Suppose 1< q < (N + 1) / (N −1) , u is a non negative solution of (3)
in B with   tr(u) = (S,µ)  and   ω ∈S. Then

(40) lim
r→1

u( r,ω) = ∞,

and more precisely

(41) lim inf
r→1

(1− r)2 /(q−1)u(r ,ω) > 0.

Proof. We use a scaling-concentration argument. If   ω ∈S

(42) lim
r→1

u( r,σ)dσ
Dη (ω )∫ = ∞

for any η > 0, where Dη(ω)  is the geodesic ball on ∂B with center ω  and radius
η < π . If 0 < k < 1 we set   uk = N k(u)  defined by uk (x) = k

2/( q−1)u( kx) , and uk
is a solution of (3) in B1/k . We denote

(43) Mε,η = u(1− ε,σ)dσ
Dη (ω )∫

for 0 < ε < 1. For m > 0 large enough and η∈(0, π) there exists ε =  ε(η,m)
such that m =Mε,η . Let wη  be the solution of (3) in B with the following
boundary value (in which χE  is the characteristic function of the set E)

(44) wη(1,σ ) = u1−ε (1,σ )χDη(ω ) (σ) .

From comparison principle wη ≤ u1−ε  in B. When η goes to 0, it is the same with
ε . From Theorem 4-Sect. II, wη  converges to   uω,m = PΩq (mδω )  and u1−ε  to u.
Therefore uω,m ≤ u ,  for any m > 0, which implies
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(45) uω,∞ ≤ u .

We get (41) from Theorem 5-Sect. 2.

The main result of the subcritical case is that the general non-linear
boundary value problem is well posed in terms of boundary trace.

Theorem 3. Suppose 1< q < (N + 1) / (N −1) . Then the correspondence
  u a Tr(u)  which assigns to each non negative solution u of (3) in B, its bound-
ary trace in   Breg is one to one.

This theorem was proved by Le Gall in the case q = N = 2  with probabilistic
techniques and in the general case by Marcus and Véron by an analytic method.
We present below the skeleton of their proof:

(I) The problem can be reduced to the case when µ  only takes the values 0 and
∞ . The advantage is that this set of boundary values is conserved by sum and
positive multiplications

(II) Construction of a maximal solution. Let   S = Sµ  the singular set of µ  and put

  S( ε) = σ ∈∂B: dist (σ,Sµ ) < ε{ } . If µε  is the Borel measure with singular set   S( ε)
and is zero elsewhere, there exists uε  a solution with Tr(uε ) = µε . uε{ }  increases
when ε  decreases to 0 and u = lim

ε→0
uε  is the maximal solution.

(III) Construction of a minimal solution. Let yk{ } be a dense sequence in   S. Put
µn = n δyk

1≤ k≤ n
∑  and un  the solution with un = Tr(µn )  (Gmira-Véron). Then un{ }

increases with n and u = lim
n→∞

un   is the minimal solution.

(IV) There exists C > 0 such that u ≤ Cu  (scaling methods).

(V) Show that u − 1
2C

u − u( )  is a positive super solution which is dominated
by u  if u < u  and construct a solution v with same trace, strictly dominated by
u .

The super critical case q ≥ (N + 1) / (N −1)  is more difficult and much less
is known. Too concentrated Radon measures are not admissible for being the
measure part of the boundary trace of a solution, and too small sets on ∂B are
removable boundary singularities. Moreover a compatibility condition between a
closed set   S⊂ ∂B  and a positive Radon measure µ  on   R = ∂B \ S is needed.
Those conditions are expressed in terms of Bessel capacities on ∂B. Those
conditions where shown to be necessary and sufficient conditions for the exis-
tence of a maximal solution u of (3) in B with   tr(u) = (S,µ) . This was proved by
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Dynkin-Kuznetsov (1997) for (N +1) / (N − 1) ≤ q ≤ 2 and Marcus-Véron (1996-
1997) for (N +1) / (N − 1) ≤ q . It was also noticed by Le Gall (1996) that there
may exist many solutions of (3) with a given boundary trace. Actually Marcus
and Véron proved that if q > (N + 1) / (N −1) , then for any ε > 0 there exists a
Borel subset Kε ⊂ ∂B with meas.(Kε ) ≤ ε  and a positive solution u of (3) in B
with tr(u) = (∂B,0)  such that

(46) lim
r→1
u(r ,σ) = 0

a.e. on ∂B \ Kε . An attempt to modify the definition of the trace has been re-
cently (August 1997) by Dynkin-Kuznetsov and similar researches are also
conducted by Marcus-Véron.
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