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A debris-flow channel in Utah

From: W. F. Case, Debris-Flow Hazards, Utah Geol. Surv. Pub. Info. Ser. 70, 2000



  

Slope erosion at a bend of the Illgraben gorge (Valais, 
Switzerland) in the course of 7 months (in meters)

From: Oppikofer et al., Talk at 4th Swiss Geoscience Meeting, Bern 2006



  

Spatial mass balance in a snow avalanche (measured at 
Monte Pizzac test site, Italy, in 1998)

From Sovilla et al., Annals Glaciol. 32 (2001), 230–236.



  

Observed 
entrainment rate:

10–200 kg m−2  s−1 ,

diminishing with 
time and erosion 
depth.

FMCW radar plot of snow avalanche at Vallée de la Sionne
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Topics of this talk:

1.  How does entrainment work?

2.  How is entrainment to be included in the governing
 equations?
 (Is there an “entrainment force” term?)

3.  Are there conceptual differences between entrainment
 and deposition?
 (Can deposition accelerate the flow?)

4.  How can we estimate the entrainment rate?
 (3 approaches – rigid block model, analytical toy model,
 numerical solution in 1D along slope-normal direction) 

Four key questions:



  

1. Erosion mechanisms in GMFs

Scour and impact erosion

“Ripping”“Plowing”

“Gobbling”

Frontal mechanisms Mechanisms acting along bottom



  

1. Erosion mechanisms in GMFs (5)

(

Plowing:
➢ Dominant in wet-snow avalanches. Needs different approach

Gobbling:
➢ No experimental evidence so far. Disregard it in the following.

Ripping:
➢ Experimental evidence in dry-snow avalanches from ground-radar 

measurements.

➢ Seems to occur in strongly stratified beds if there is a weak layer 
underneath a strong layer.

➢ Can be approximated by continuous entrainment along bottom with 
sufficient averaging over bottom area and time.

Scour (abrasion) and impact erosion:
➢ Experimental evidence strong.

➢ Can be treated by model for continuous entrainment along bottom.
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Impact traces
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The plowing mechanism:

● Clearly dominant in wet-snow
avalanches.

● Possibly important in dry-snow
avalanches as well, but clear
experimental confirmation is
still lacking.

● Open question for debris flows
and pyroclastic flows.

● Likely condition for plowing to
be possible: Flowing material
must have higher strength than bed and sufficient weight.

● In laboratory granular flows, length of plowing zone = O(flow height).

1. Erosion mechanisms in GMFs (2)

(



  

1. Erosion mechanisms in GMFs (3)

(

Early entrainment model by Eglit and coworkers (~1967) implements 
plowing as jump boundary condition at avalanche front:

Mass balance:

Momentum balance:

Fracture strength of bed, τc, determines frontal dynamics.
Front moves more rapidly than flowing material at front.

hf

he

uf

ub = 0

ui

hbbu f = h f  f u f−ui

hbb⋅0⋅u fk bb g hb
2
/2hbc

= h f  f ui u f−uik f  f g h f
2
/2



  

1. Erosion mechanisms in GMFs (4)

(

Main difficulties are:

➢ Entrainment depth is not determined dynamically.

➢Unrealistically high front heights hf in practical applications.

Modified model with inclined front surface (Grigorian and Ostroumov, 
Eglit et al.):

• Shock front is determined similar to supersonic flow.

• Overburden pressure and bed strength determine inclination α of 
erosion surface and entrainment rate.

• Requires ρf > ρb, but this may not always apply in nature!

α

ui

uf

ρi

ρb



  

Useful distinctions:

Erosion: Detaching bed particles (breaking bonds)

Entrainment: Accelerating/mixing particles into the flow

Erosion-limited flows: Bed shear strength larger than mean bed 
shear stress. Intermittent particle erosion by fluctuations (e.g. 
turbulent eddies).

Entrainment-limited flows:   Bed shear strength less than bed shear 
stress. Erosion limited by capacity of the flow to accelerate the 
eroded particles.

Concentrate on entrainment-limited flows and assume brittle fracture 
behavior of bed material.

1. Erosion mechanisms in GMFs (8)

(



  

2.  Entrainment in the flow equations

• Consider depth-integrated Eulerian models, described by balance 
equations for mass and linear momentum.

• Broad agreement on form of mass balance (1D case):

where      = flow depth,
     = depth-averaged flow velocity parallel to bed,
     = entrainment speed [m s−1]

• Old and new controversy: “entrainment force” – yes or no?

∂t h∂x h u=we

∂t h u  ∂x h u2 = gsin   ∂x h  xx  − b − we u

“Entrainment 
 force” ???

Gravitational acceleration Bed shear stress

Slope angle Avg. longitudinal stress

h
u
we



  

2. Entrainment terms in the governing equations (2)

(

Write the mass and momentum balance for a thin flow slice, fixed 
between x and x+x, but with variable bottom and top boundaries:

x

z

x+xx

h(x,t)

ρ



  

2. Entrainment terms in the governing equations (3)

(

Momentum balance in
the control volume:

x

z

x+xx

h(x,t+t)

Change of momentum inside:

[hu ] x,tt −[hu ] x,t  xu



  

2. Entrainment terms in the governing equations (3')

(

Momentum balance in
the control volume:

x

z

x+xx

h(x,t+t)

Change of momentum inside equals:
 – body forces (gravity),
 – bottom shear stress,

[hu] x,tt −[hu] x ,t  x

=[hgsin] x ,t − b x,t  xt
g h sin  x t

−b x t



  

2. Entrainment terms in the governing equations (3'')

(

Momentum balance in
the control volume:

x

z

x+xx

Change of momentum inside equals
 – body forces (gravity),
 – bottom shear stress,
 – longitudinal stresses,

No contribution from material, stress-
free top surface.

[hu] x,tt −[hu] x ,t  x

= [hgsin] x ,t − b x,t  xt

 [h  xx ] xx ,t −[h  xx] x ,t t

 ij
s 
=0



  

2. Entrainment terms in the governing equations (3''')

(

Momentum balance in
the control volume:

x

z

x+xx

h(x,t+t)

Change of momentum inside equals
 – body forces (gravity),
 – bottom shear stress,
 – longitudinal stresses,
 – net advection through sides

No contribution from material, 
stress-free top surface.

[hu] x,tt −[hu] x ,t  x

=[hgsin] x ,t − b x,t  xt

 [h  xx ] xx ,t −[h  xx] x ,t t

 [hu2
] x,t −[hu2

] xx,t t

ρ

 ij
s 
=0

u2 xx,t u2 x ,t 



  

2. Entrainment terms in the governing equations (3'''')

(

Momentum balance in
the control volume:

x

z

x+xx

h(x,t+dt)

Change of momentum inside equals
 – body forces (gravity),
 – bottom shear stress,
 – longitudinal stresses,
 – net advection through sides,
 – influx through bottom boundary
    with velocity we
No contribution from material, stress-
free top surface.

[hu] x,tt −[hu] x ,t  x

=[hgsin] x ,t − b x,t  xt

 [h  xx ] xx ,t −[h  xx] x ,t t

 [hu2
] x,t −[hu2

] xx,t t
ubwext

we

 ij
s 
=0

ub

u2 xx,t u2 x ,t 



  

2. Entrainment terms in the governing equations (3''''')

(

Momentum balance in
the control volume:

x

z

x+xx

h(x,t+t)

Change of momentum inside equals
 – body forces (gravity),
 – bottom shear stress,
 – longitudinal stresses,
 – net advection through sides,
 – influx through bottom boundary
    with velocity we
No contribution from material, 
stress-free top surface.

After division by x, t 0 :

∂thu∂x hu
2 

= hgsin− b∂xh  xxubwe
we

 ij
s 
=0

ub

u2 xx,t u2 x ,t 



  

2. Entrainment terms in the governing equations (4)

(

Most common situation for GMFs:

Bed is at rest, ub = 0

 No “entrainment force” term!

However, other situations are possible (aeolian transport of sand or 
snow, or powder-snow avalanches):

(a) Saltating particles absorbed by bed 
correspond to we < 0, ub > 0    we ub < 0.

(c) Bed particles are ejected with ub > 0 
due to impact, also we > 0    we ub  > 0.



  

2. Entrainment terms in the governing equations (5)

Equation of motion with entrainment?

  Go to the Lagrangean picture using                            .
  Combine mass and momentum balance equations.

A little bit of algebra and the chain rule give

   “Entrainment force” term in the equation of motion
  (modified if particles carry momentum into the flow)!

Accelerating the entrained particles decelerates the flow (or reduces 
acceleration). 

D f
D t
=∂t f u ∂x f

Du
D t
=g sin

1
h
[∂xh  xx− b−we u−ub−∂x h u2−u2   ]



  

3.  Differences between erosion and
     deposition?

• Consider simplified situation ( ~ block model, ub = 0 ) on horizontal 
plane, concentrate on basal entrainment/deposition:

Suppose there is deposition, i.e. we < 0:

Acceleration like in a rocket if     !?!

• Related questions:

Under which conditions is (continuous) deposition possible?

What is the difference between deceleration and deposition?

Du
D t
≈−

b
h 
−
weu

h

we −
b
u



  

Is a deposition rate                       possible at all?
 

Consider a simplified situation similar to abrasion of a solid:

wd ≡−we
b
u

wdt

Time t

b

f,max

3. Differences between entrainment and deposition? (2) 

(



  

3. Differences between entrainment and deposition? (2')

(

Is a deposition rate                       possible at all?
 

Consider a simplified situation similar to abrasion of a solid:

wd ≡−we
b
u

wdt

Time t Time t+t

b

f,max

Momentum balance for abraded material:

wd δt u(t) − 0  =  (b − f,max )δt   

Necessary condition b > f,max

wdu > b leads to  f,max  < 0
and violates the 2nd  Law!



  

3. Differences between entrainment and deposition? (3)

(

Analysis carries over to flows with internal shear because shear 
stresses are dissipative.

 GMFs do not accelerate by shedding mass!

 However, a depositing GMF decelerates more slowly than the bed 
shear stress would dictate.
Deposition occurs because the GMF cannot 
internally sustain the bed shear stress.



  

3. Differences between entrainment and deposition? (4)

(

Conditions for deposition along flow bottom:

0. Bed shear strength   >  shear stress exerted by flow, 

i.e.                      c   >  b .

1. Bottom boundary layer must decelerate more rapidly than layers 
above (otherwise bulk of the flow would simply stop).

2. Stopped particles must sinter or lock into bed very rapidly.

Only way to fulfill condition 2 seems to be if the bed exerts larger shear 
stress on the flow than the flow can sustain internally:

bed shear stress   >  max. internal shear stress,

i.e.                                     b   > f,max  .

Fulfilled for granular materials (static friction > dynamic friction), but 
apparently not well understood!



  

4.  How to estimate the entrainment rate?

Assumptions:

• Consider only entrainment along flow bottom.

• Assume brittle behavior of bed material – breaks at stress  c.

Physical consideration:

Entrainment rate must be determined by rheology of GMF and shear 
strength c of bed material. No free parameters!

Approaches:

1. Solve special case of sliding block analytically.

2. Solve “toy” model analytically to study interplay between entrainment 
rate, shear stress and velocity profile.

3. Solve simplified 1D equation for advancement of entrainment front 
numerically.



  

4.  How can we estimate the entrainment rate? (2)

4.1  Analytic solution for sliding blocks:

• Assume a bed (b) friction law of the form

Shear stress at top of bed:

• Jump condition for x-momentum across bed–flow interface:

Now immediately find the entrainment rate:

  

b

≡
 xz z=b


= f u , h , ...

b
−
=c .

we⋅u  z=b

−u  z=b− = we u = b


− b

−
= f u , h , ...− c

qe= w e= {
0 if f u ,h , ...≤c ,
f u , h , ...−c

u
else.

bed

flow

b
−

b
b




  

4.  How can we estimate the entrainment rate? (3)

Some remarks:

• With the assumption of perfectly brittle fracture of the bed material, 

this seems to be the only physically consistent formula.

• However, material behavior may be more complicated if fracture 

propagation speed is not ≫ flow velocity or if it takes considerable 

time to reestablish local flow pattern after erosion of a particle.

• Concept of sliding slab entraining bed material is physically dubious: 

Eroded bed particles must instantaneously accelerate to slab 

velocity, immediately become part of the slab and then be able to 

sustain higher shear stress than before as bed particles...

• If shear stress is held fixed, entrainment rate drops  u−1   !



  

4.  How can we estimate the entrainment rate? (4)

• Typical bed friction law:
 

with σn = normal stress on bed,
   δ = bed friction angle (assume tan δ < sin θ)

 

• Pure Coulomb friction law is problematic:

(i)  If                      , infinite entrainment as           ,

(ii) otherwise no entrainment at all.

b
= sgn u  n tanb∣u∣k u

2 

we = { 0 if ∣u∣≤−
b
2k
 b

2

4 k 2
c− n tan

k
,

n tan−c
u

bk u else.

u0c tan



  



  

4.2  A useful toy model
Infinitely long inclined plane

Steady flow conditions, flow height h

Assume flow is Newtonian fluid with 
kinematic viscosity , non-turbulent.

Erodible bed of brittle material with 
shear strength                            .

Flow height held constant by 
replenishing bed at the entrainment 
rate and skimming flow at same rate.

Momentum balance simplifies to

where                 .

z

ux(z)

we

θ

h

̇≡d u /d z

4.  How can we estimate the entrainment rate? (5)

(

c0≡g h sin

we ̇=g sin
1


d xz

d z

=g sin
d ̇
d z



  

4.  How can we estimate the entrainment rate? (6)

Procedure:

1. Assume entrainment velocity we to be given, solve ODE

2. Find appropriate boundary condition, determine physically consistent 
entrainment rate.

First-order ODE easy to solve for Newtonian or Bingham fluid, most 
other rheologies lead to non-linear equations:

u z  =
g sin

we [ z − 

we
e
−we h / ewe z /

−1  ]
z  =

g sin
we

1−e
−h−z we / 

d ̇
d z
−

we

̇ =−

g sin 


.



  

4.  How can we estimate the entrainment rate? (7)

Boundary condition for bottom shear stress τb:

• b  ≥  c for erosion and entrainment to be possible.

• If b < c, erosion stops, b rapidly increases to 0 = g h sin θ > c, 
erosion resumes.

• If b > c, more mass is eroded but less excess shear stress 
available to entrain the eroded mass, so b must decrease again.

               Equilibrium value for the bottom shear stress is σb = c.

Entrainment rate can be determined (numerically) from

N.B. Similar b.c. proposed for aeolian transport by Owen (1964).

c =
 g sin

we
1−e

−h we / 



  

Shape of the velocity 
profiles is moderately 
modified by entrain-
ment or deposition.

Excess shear stress 
is used for entraining 
the eroded material.

Entrainment reduces the 
equilibrium flow velocity, 
deposition increases it.

4.  How can we estimate the entrainment rate? (8)



  

Does the model give realistic entrainment rates?

• Assume slope angle θ = 30°
              flow height h = 1 m
             density ρ = 200 kg m−3

              viscosity  = 0.0556 m2 s−1

• This gives “gravitational traction” 0 = 1000 Pa
surface velocity uh = 45.0 m s−1  without entrainment

• Then the entrainment rates and velocities are

  c [Pa] uh [m s−1 ] we [m s−1 ] qe [kg m−2  s−1 ]

    500 28.2 0.089 17.8
    700 35.5 0.042   8.4
    900 41.9 0.012   2.4
  1000 45.0 0.0   0.0

4.  How can we estimate the entrainment rate? (9)



  

4.3  1D simulation of erosion front
       advancement and profile evolution

Toy model:

+ Useful because it is analytically solvable, helps in understanding 
interplay between erosion rate and velocity profile.

– Analytical solvability restricted to simple rheology.

– Stationarity essential, but unrealistic.

Develop a more advanced tool:

➢ Compute time evolution of velocity profile and advancement of 
entrainment front numerically.

➢ Neglect longitudinal stress gradients for the time being.

➢ Implement a rather general rheology covering most models of 
practical interest.

4.  How can we estimate the entrainment rate? (10)



  

4.  How can we estimate the entrainment rate? (11)

b(t)



  

Governing equations and boundary conditions:

• Assume velocity u(z,t) always parallel to bed.   Mass balance OK.

• Assume constitutive equation  

• Momentum balance equation:

in variable domain 0 ≤ z ≤ b(t).

• Initial condition:    b(t0) = b0,    u(z,t0) = u0(z).

• Boundary conditions:   u(b(t),t) = 0,                                              .

• Entrainment speed we = db / dt must be determined by local 

conditions at interface, i.e., by shear stress gradient.
Rheology connects shear stress to shear rate gradient.

b t  , t  = c

4.  How can we estimate the entrainment rate? (12)

 xz  z , t  ≡  z , t  = f ̇ z , t  , h t  , ... .

∂t u = g sin ∂z 

 0, t  = 0 ,



  

• Velocity at time t + dt of particles eroded at time t:

• Shear rate at erosion front must be critical shear rate: 

4.  How can we estimate the entrainment rate? (13)

u b t  , tdt  = 0g sin ∂z  dt .

̇ b , t  =
u b , tdt −0

dz
=

 g sin ∂z b , t  dt
we t dt

=
!
̇c where f ̇c , b=c

we t  =
g sin ∂z   ̇c , b , ...

̇c
.

b(t)

zz

b(t+dt)

Time t Time t+dt

dz = we dt

u u

du = a dt =  γcdz
.



  

Numerical techniques:

Explicit 1st  order time stepping.

Finite differences on uniform Eulerian grid.
Central differencing ➔ 2nd  order in space.

Staggered grid – shear rates and shear
stresses evaluated at midpoints between
nodes.

Front tracking and improved accuracy due
to uniform fine mesh following the interface
(shifted by weΔt every timestep).

Quadratic interpolation/extrapolation at
front and when needed at interface coarse/
fine grid.

4.  How can we estimate the entrainment rate? (14)

t+Δtt

γ, σ

u

weΔt



  

Code validation ‒ no entrainment

4.  How can we estimate the entrainment rate? (15)

Time evolution of velocity profile
for Newtonian fluid starting from
rest

Time evolution of velocity profile
for Bagnoldian fluid starting from
rest



  

Newtonian fluid: Time evolution of distance and avg. velocity

4.  How can we estimate the entrainment rate? (16)



  

Newtonian fluid: Time evolution of flow depth and erosion rate

4.  How can we estimate the entrainment rate? (17)



  

Newtonian fluid: Evolution of velocity and shear stress profiles

4.  How can we estimate the entrainment rate? (18)



  

Bagnoldian fluid: Travel distance and average velocity vs. time

4.  How can we estimate the entrainment rate? (19)



  

Bagnoldian fluid: Flow depth and erosion rate vs. time

4.  How can we estimate the entrainment rate? (19)



  

Bagnoldian fluid: Evolution of velocity and shear stress profiles

4.  How can we estimate the entrainment rate? (20)



  

4.4  Can we understand the numerical results?

Preliminary inferences from the numerical simulations:

After initial phase, independent of rheology,

• the flow accelerates uniformly at ≈ ½ g sin θ, 

• the erosion rate is constant, the flow depth grows linearly,

• the velocity profiles are quite flat near the bed.

  This looks almost like a granular flow with Coulomb friction!

Recent statistical reanalysis of ~ 300 extreme dry-snow avalanches 
(Gauer et al., Cold Regions Sci. Technol., in press) indicates

➢ Coulomb model with strongly slope-dependent friction coefficient 
gives best fit for both runout distance and front velocity,

➢ maximum velocity grows as ~ (drop height)½.
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Use paper, pencil and your head once more...

Seek asymptotic solution to depth-integrated equations with the 
following properties:

Then, equation of motion                                         transforms into

 

Simple algebra yields
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ht  = h0we t , u t  = u0a t , we , a = cst.

d h u/dt = h g sin − c

̇ut  = g sin −
c
ht 

−
u t dh /dt
ht 

= g sin−
 cwe u0we a t

h0we t
must be indep. of t

=
!
a

a =
g
2
, we =

1
u0

 12 g h0−c 



  

Somewhat surprising...

… but in nearly perfect agreement with the simulations!

(Less than 1% discrepancy – due to setting entrainment rate to 99% of 

theoretical value to avoid oscillations.)

N.B. Both relations are independent of rheology! However, rheology 

determines relation between h0 and ū0 as well as velocity profile.

Open question: Need better understanding of stability and domain of 

attraction of this solution. (It appears to be rather stable!)
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5. Conclusions
• Correct form of momentum balance equation / equation of motion 

unambiguously determined, depends on properties of mass 
exchange processes.

• In continuum models, deposition occurs if

bed shear stress  >  max. shear strength of flow

Deposition cannot accelerate flow, but reduces deceleration.

• If bed shows perfectly brittle behavior with shear strength τc, simple 
formulas for entrainment rate are found for rigid-plug models with 
slip condition, stationary flow of Bingham fluid with constant flow 
height and asymptotic solutions for a wide class of rheologies. 

• More work is needed on alternative entrainment mechanisms, in 
particular frontal entrainment.


