Combining distribution and recovery operations in Humanitarian Logistics

F. Liberatore, B. Vitoriano, M.T. Ortuño, G. Tirado, M.P. Scaparra

> Universidad Rey Juan Carlos

Introduction

Background and motivation

Disasters

Definition

- Extraordinary event
- Resources stressed
- Non-standard procedures implemented
- Special authorities invoked
- Emergency Database
 - 7,671 disasters (approx. 2 disasters/day) from 2000 to 2009.

EM-DAT, http://www.emdat.be.

Altay and Green, EJOR, 2006.

Haiti - January 2010

OR for Humanitarian Logistics

Rationale

- As a consequence of the disaster, parts of the distribution infrastructure can be damaged or destroyed.
- Example: Haiti
 - Airport destroyed, port and roads damaged.
 - Access of international aid to the victims was severely constrained

Van Wassenhove, 2010.

RecHADS

Combining recovery operations and distribution of emergency goods in Humanitarian Logistics

Problem Elements

Distribution network

- Nodes
 - Supply
 - Transitional
 - Demand
- Arcs
 - Length
 - Reliability
 - Security
- Subset of damaged arcs
 - Recovery cost
- Recovery budget

Distribution

Multi-criteria Model

Recovery

Recovery

- Subset of damaged arcs
 - Cannot be used unless recovered
 - Characterized by recovery cost
- Recovery budget

Distribution

- Transitional nodes
 - No demand
 - No supply
- Demand nodes
 - Characterized by demand
 - Cannot receive more flow than its demand
- Source nodes
 - Supply flow
 - Characterized by capacity ratio
 - Specifies the portion of the total delivered demand that originates from the node

Attributes - 1

- Equity
 - DG Total demand satisfied
- Time
 - TX Maximum node visiting time
- Security
 - PX Maximum arc ransack probability
 - PG Global ransack probability
- Reliability
 - RMN Minimum arc reliability
 - RG Global reliability measure

Set of attributes *V*, indexed by v.

Attributes - 2

- Used to define criteria
- Decision-maker can specify preference among the criteria by using weights α

Multi-criteria Model - 1

- Hierarchical (lexicographic) model
- 1. Maximize Equity
 - Maximize the quantity of aid delivered DG (i.e., recover arcs so that the maximum demand is reached)
 - Fix the quantity of aid delivered
 - Calculate Ideal (Z⁺) and Anti-ideal (Z⁻) values for each attribute

Multi-criteria Model - 2

2. Minimize infinity norm

• Minimize maximum distance of an attribute to Ideal

$$\min D^{\infty} = \max_{v \in V/ A} \left\{ \alpha_{v} \frac{Z_{v}^{+} - Z_{v}}{Z_{v}^{+} - Z_{v}^{-}} \right\}$$

Multi-criteria Model - 3

3. Minimize norm one

• Minimize sum of distances of the attributes to Ideal

$$\min D^{1} = \sum_{v \in V} \alpha_{v} \frac{Z_{v}^{+} - Z_{v}}{Z_{v}^{+} - Z_{v}^{-}}$$

Computational Experiments

OCHA, http://ochaonline.un.org/.

RED HUM, http://www.redhum.org/.

Dataset - 1

Dataset - 2

Dataset - 3

- 24 nodes
 - 3 supply nodes
 - 9 demand nodes
- 42 arcs
 - I2 damaged arcs with recovery cost 1
- Recovery budget ranging from 0 to 12
- Unitary preference weights: $\alpha_v = 1$
- Average solution time ~70 sec

- How useful is to jointly optimize recovery and distribution operations?
- Sequential Model:
 - 1. Maximize delivered demand and fix arcs recovered
 - 2. Compute distribution plan that minimizes infinity norm distance and norm one distance

- Compare distribution plans found by RecHADS and sequential model.
- Node 10 isolated

Recovery Budget	Time	Max Security	Global Security	Min Reliability	Global Reliability	Average
1	3.64%	0.00%	4.41%	0.00%	0.00%	1.61%

- Removing arc (12,18)
- Nodes 10, 12 isolated

Recovery Budget	Time	Max Security	Global Security	Min Reliability	Global Reliability	Average
1	0.92%	0.00%	8.33%	0.00%	0.00%	1.85%
2	0.00%	0.00%	6.81%	0.00%	0.00%	1.36%

- Removing arcs (12,18), (13,16)
- Nodes 10, 12, 13 isolated

Recovery Budget	Time	Max Security	Global Security	Min Reliability	Global Reliability	Sum
1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
2	0.88%	50.00%	18.79%	0.00%	-3.50%	13.24%
3	-2.65%	50.00%	19.88%	0.00%	19.58%	17.36%

- Removing arcs (12,18), (13,16), (16,6)
- Nodes 10, 12, 13, 16 isolated

Recovery Budget	Time	Max Security	Global Security	Min Reliability	Global Reliability	Sum
1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
2	7.62%	0.00%	7.81%	0.00%	15.97%	13.24%
3	7.62%	0.00%	7.97%	0.00%	15.97%	17.36%
4	7.62%	50.00%	26.09%	0.00%	20.17%	20.77%

Conclusions & Future research

Conclusions

- RecHADS, model for coordinated optimization of
 - Recovery operations of elements of the transportation network
 - Distribution planning of emergency aid goods
- Applications
 - Response phase during an emergency
 - Recovery phase after an emergency
- Usefulness
 - Sequential model maximum average deviation: 20.77%

Future Research

- Collaborating with an international NGO to devise recovery operations in Jipijapa, Ecuador.
- Extending RecHADS to capture other complex features arising from the necessities of the case considered.
- Model for the enhancement of network elements prior to disaster.
 - Mitigation: reduce probability of occurrence and impact of a disaster.