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This paper deals with mathematical modelling and numerical simulation of induction
heating furnaces with axisymmetric geometries. The mathematical model consists of
a coupled thermo-electromagneto-hydrodynamic problem with phase change. For the
numerical solution, we propose finite element methods combined with boundary element
methods (BEM/FEM) for the electromagnetic model, and with the method of characteristics
for the flow equations. Moreover, an iterative fixed point-like algorithm is established for
the whole coupling. Some numerical results for an industrial furnace are shown.
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1. Introduction

In the past years, induction heating techniques have been widely applied in the metallurgical and semiconductor indus-
try, in processes such as metal smelting [14,16,27], metal hardening [13,28] or crystal growth [15,22]. An induction heating
system basically consists of one or several inductors supplied with an alternating electrical current and a metallic workpiece
to be heated. Based on this idea, different kinds of induction furnaces can be designed depending on the application. Thus,
in the past years, with the growth of the photovoltaic industry and the increasing request for high purity silicon, greater
efforts have been made to design operative induction furnaces devoted to the silicon purification [7–9].

This work concerns an induction furnace like the one represented in Fig. 1. It consists of a cylindrical vessel (usually
called the crucible) made from a material such as graphite, surrounded by an inductor coil made of a very conductive
material (copper, for instance), and containing the material to be heated (silicon, in our case) in its interior. The main idea
of the process is quite simple: the coil is supplied with alternating current that produces a rapidly oscillating magnetic field
which, in its turn, induces eddy currents. These eddy currents, due to the Joule effect, cause heat losses and consequently
the electrically conducting materials of the workpiece are heated.

The purification process is based on the fact that most of the impurities tend to remain in the molten region rather than
re-solidify. Controlling this melting-solidifying process enable us to localize most of the impurities near to the liquid surface.
The inductive system can indeed be designed to maintain the silicon in a liquid state, control the shape of its free surface
and provide a strong electromagnetic stirring, ensuring a rapid transfer of pollutants from the liquid bulk to its surface. An
important advantage of induction heating is the efficiency in stirring the liquid metal due to the Lorentz forces generated
by the induced fields. This stirring also improves the melting since the moving fluid transfers heat from the crucible wall to
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Fig. 1. Induction furnace (left) and sketch of the geometry (right).

the solid. The numerical simulation can be used to control the global design of the induction system, analyzing, for instance,
the effect of the power and the frequency on the process.

The overall process is rather complex, involving thermal, electromagnetic and hydrodynamic phenomena. From the math-
ematical point of view, and in order to perform a numerical simulation of the furnace, the physical process is expressed as a
coupled non-linear system of partial differential equations arising from the thermo-electromagneto-hydrodynamic problem.
In the past years several papers have been published dealing with the thermo-electromagnetic problem [5,7,8,14,16,22],
with the electromagneto-hydrodynamic problem [18,24] or with the thermo-electromagneto-hydrodynamic problem [17,21],
but not fully coupled because materials properties are supposed to be independent of temperature.

The electromagnetic model presented in this paper is based on the time-harmonic eddy current problem and has been
numerically solved by using a finite element method in [7] and a hybrid BEM/FEM in [8]. In both cases, the formulation is
based on a particular magnetic vector potential and the current intensities flowing through the inductor coil are imposed
in a weak form. In the present work, we complete the electromagnetic model from a mathematical point of view; we focus
mainly on the technique to impose the current intensities in a weak form and prove that the corresponding mixed problem
is well posed. For the numerical solution, we propose the BEM/FEM already used in [8]. Furthermore, we improve the
thermal model presented in [7,8] by including convective heat transfer which leads us to introduce the numerical solution
of a hydrodynamic problem. The numerical results will illustrate the importance of considering the convective effects when
computing the temperature field. On the other hand, the computation of the velocity field in the molten silicon, allows us
to control the movement of the impurities towards the surface.

The outline of this paper will be as follows. In Section 2 we will state the overall problem and the electromagnetic
submodel. In Section 3 the thermal submodel will be introduced using the enthalpy in order to take into account the phase
change. In Section 4 we will present the hydrodynamic model by using the incompressible Reynolds-averaged Navier–Stokes
equations to handle the effects of turbulence. In Section 5 we will introduce a time-discretization of the coupled problem
and propose an iterative algorithm for its solution. Finally, in Section 6 we will present some numerical results, the first
concerning an academic problem, and the second presenting a numerical simulation of an industrial furnace for silicon
purification.

2. Statement of the problem

An induction furnace consisting of a helical coil surrounding a crucible as the one sketched in Fig. 1 is used as the basis
for the problem. The electrically conducting crucible contains the material to be heated and it is surrounded by a refractory
material to avoid heat losses. An alternating low frequency current passing through the coil produces an oscillating magnetic
field which generates eddy currents in the workpiece. These currents, due to the Joule effect, produce heat in the conducting
crucible in such a way that the metal is also heated until it melts.

In order to state the problem in an axisymmetric setting, the induction coil has to be replaced by m rings having toroidal
geometry. Let Ω0 be the radial section of the workpiece and Ω1,Ω2, . . . ,Ωm be the radial sections of the turns of the coil.
Moreover, we denote by Ω the radial section of the set of conductors, i.e., inductors and workpiece, given by (see Fig. 3),

Ω =
m⋃

k=0

Ωk

and Ωc = R2 \ Ω̄ . Let Δ ⊂ R3 be the bounded open set generated by the rotation about the z-axis of Ω and Δc the
complementary set of Δ̄ in R3. Notice that Δc is an unbounded set corresponding to the air surrounding the whole device.
Analogously, we denote by Δk , k = 0, . . . ,m the subset of R3 generated by the rotation of Ωk , k = 0, . . . ,m, respectively,
around the z-axis (see Fig. 2). In particular, Ω0 is supposed to be simply connected.

We denote by Σ the boundary of Δ and by Γ its intersection with the half-plane {(r, z) ∈ R2; r > 0}. Moreover, we
assume that the boundary of Ω is the union of Γ and Γs, the latter being a subset of the symmetry axis (see Fig. 3).
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Fig. 2. Sketch of a toroidal turn Δk . Fig. 3. Radial section of in-
ductors and workpiece.

2.1. The electromagnetic model

In this section we present the electromagnetic model and perform the mathematical analysis of the resulting weak for-
mulation. The analysis is developed in the framework of the 3D-problem in order to cover more general applications, which
do not present cylindrical symmetry. In particular, Δ is not necessarily axisymmetric, but Δ0 must be simply connected and
each Δk , k = 1, . . . ,m, must be like a torus, in the sense that it is enough one cutting surface Ωk for the set Δk \ Ωk being
simply–connected.

Since we are considering alternating currents, we assume that all of the fields have the form:

F(x, t) = Re
[
eiωt F(x)

]
, (1)

where t is time, x ∈ R3 is the space position, ω is the angular frequency, i the imaginary unit and F(x) is the complex
amplitude of the field. Moreover, since the induction furnace we are interested in works in a low-frequency regime, then
Maxwell’s equations can be reduced to the so-called eddy current model (see [11] for a discussion of parameter ranges in
which the model is valid):

curl H = J in R3, (2)

iωB + curl E = 0 in R3, (3)

div B = 0 in R3, (4)

where H, J, B and E are the complex amplitudes associated with the magnetic field, the current density, the magnetic
induction and the electric field.

The system (2)–(4) needs to be completed with the constitutive relations

B = μH in R3, (5)

J =
{

σE in Δ,

0 in Δc,
(6)

where μ is the magnetic permeability and σ is the electric conductivity. Both are supposed to be bounded from below by
a positive constant.

Moreover, we have the following behavior at infinity

E(x) = O
(|x|−1), uniformly for |x| → ∞, (7)

H(x) = O
(|x|−1), uniformly for |x| → ∞. (8)

The model (2)–(8) must be completed with some source data related to the energizing device, which has been removed
from the system. In particular, we would like to impose the current intensities I = (I1, . . . , Im) crossing each transversal
section of the inductor, i.e.,
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Ωk

J · ν = Ik, k = 1, . . . ,m, (9)

where ν denotes a unit normal vector to the sections Ωk .

Remark 2.1. In order to add the constraints given in (9) to the model, we will have to relax some of Eqs. (2)–(8). This need
is due to the fact that problem (2)–(9) does not admit solution unless all the prescribed intensities Ik are null. Indeed,
multiplying the conjugate of (3) and (2) by H and E, respectively, integrating over R3 and using (7), (8) it is straightforward
to conclude that fields B and E vanish in R3, and then, J and the vector I also vanish.

To overcome this difficulty, throughout this paper, we are going to relax Eq. (3) and consider it in conductor and dielectric
separately,

iωB + curl E = 0 in Δ, (10)

iωB + curl E = 0 in Δc. (11)

In Remark 2.2, we will detail another alternative to impose the current intensities, based on the modification of the Ohm’s
law in Δ. This option has been proposed, for instance in [2], in the context of bounded domains.

In order to solve the problem, we start by introducing a magnetic vector potential and a suitable scalar potential.
Firstly, Eq. (4) allows us to affirm that there exists a magnetic vector potential A, defined in R3, such that,

B = curl A, (12)

and from Eq. (10), we obtain

iω curl A + curl E = 0 in Δ.

Now, taking into account the form of the kernel of the curl operator in each connected component of the conductor, we
can say that (see, for instance [3])

iωA + E = −v in Δ, (13)

where

v = g̃rad Ũ ,

with Ũ being a scalar potential having a constant jump through each Ωk , for k = 1, . . . ,m. Here and in the rest of the paper
g̃rad denotes the gradient operator in the space H1(Δ \ ⋃m

k=1 Ωk).
As we will show below, this representation allows us to impose the sources inside the closed circuits Δk (see also

Section 5.2 of [20]). However, in general we will not be able to extend v to Δc having continuous tangential trace on Σ .
We will return later to this question.

For k = 1, . . . ,m, let us denote by ηk the solution in H1(Δk \ Ωk), unique up to a constant, of the following weak
problem:∫

Δk\Ωk

σ g̃radηk · grad ξ = 0 ∀ξ ∈ H1(Δk), (14)

[ηk]Ωk = 1, (15)

where [ηk]Ωk denotes the jump of ηk through Ωk along ν .
By using functions ηk , k = 1, . . . ,m, the scalar potential Ũ can be written as (see again [3]),

Ũ = Φ +
m∑

k=1

Vkηk, (16)

with Φ ∈ H1(Δ) and Vk,k = 1, . . . ,m, some complex numbers. From the definition of ηk we deduce that Vk is the constant
jump of Ũ through each surface Ωk , k = 1, . . . ,m. From a physical point of view, these complex numbers Vk , can be
interpreted as voltage drops (see, for instance, [20]).

Then, taking into account that H = μ−1 curl A and Eq. (2) we obtain

iωσA + curl
(

1

μ
curl A

)
= −σv = −σ

(
gradΦ +

m∑
k=1

Vk g̃radηk

)
. (17)
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Notice, however, that the vector potential A is not unique because it can be altered by any gradient. Thus, in order to get
uniqueness we need to impose some gauge conditions.

Firstly, we set div(σA) = 0 in the conductor Δ and the boundary condition σA · n = 0 on Σ , where n is a unit normal
vector to Σ outward from Δ. Moreover, by using (17) and the fact that

curl
(

1

μ
curl A

)
· n = curl H · n = J · n = 0 on Σ, (18)

the two gauge conditions above lead to div(σv) = 0 in Δ and σv · n = 0 on Σ , which can be written in weak form as∫
Δ

σv · grad ξ = 0 ∀ξ ∈ H1(Δ). (19)

By subtracting Eqs. (14) multiplied by Vk , for k = 1, . . . ,m, from (19), we get∫
Δ

σ gradΦ · grad ξ = 0 ∀ξ ∈ H1(Δ), (20)

which implies gradΦ = 0 in Δ and hence

v =
m∑

k=1

Vk g̃radηk. (21)

Secondly, following [4], in the air Δc we impose the gauge conditions

div A = 0 in Δc and
∫
Σ j

A · n = 0, j = 1, . . . , Nc, (22)

where {Σ j}Nc
j=1 denotes the connected components of Σ . We notice that A ∈ H(div,Δc), but we are not going to assume

that A ∈ H(div,R3) so the normal trace A · n on Σ may be discontinuous and hence the integral conditions in (22) are not
redundant.

Next, we obtain a weak formulation of Eqs. (17) and (22). We will come back later to conditions (9).

2.2. Weak formulation

In order to propose a weak formulation of the previous problem we introduce some functional spaces and sets. Let X
be the Beppo–Levi space (see [25], Section 2.5.4)

X =
{

G:
G(x)√

1 + |x|2 ∈ L2(R3), curl G ∈ L2(R3)},

and its subset

Y =
{

G ∈ X : div G = 0 in Δc,

∫
Σ j

G · n = 0, j = 1, . . . , Nc

}
.

On the other hand, we assume, in a first step, that the complex numbers Vk are given, for k = 1, . . . ,m and try to find
the vector potential A. After that, we will show how to solve the problem by giving the intensity vector I = (I1, . . . , Im) as
data.

Multiplying Eq. (17) by the complex conjugate of a test function G, denoted by Ḡ, integrating in R3 and using a Green’s
formula we can easily obtain the following weak formulation:

Problem PV. Given V = (V 1, . . . , Vm) ∈ Cm , find A ∈ Y such that

iω
∫
R3

σA · Ḡ +
∫
R3

1

μ
curl A · curl Ḡ = −

m∑
k=1

Vk

∫
Δk\Ωk

σ g̃radηk · Ḡ, ∀G ∈ Y . (23)

Remark 2.2. In order to impose the current intensities across the inductors and to avoid relaxing the Faraday’s law as we
did in previous sections, the authors of [2] propose to modify the Ohm’s law as follows

J = σE − σ

m∑
k=1

Vk g̃radηk in Δ. (24)
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Notice that, in this way, the current density is divided into two parts: σE and a source term which is distributed in the
coils Δk . Then, by using the Faraday’s law in R3, we notice that Eq. (13) reads

iωA + E = −gradΦ in R3, (25)

and arguing as in the rest of Section 2.1, we can arrive at the same weak problem PV.

Theorem 2.1. Problem PV has a unique solution.

Proof. Since the function

J0 := −σ

m∑
k=1

Vk g̃radηk

belongs to L2(Δ) the result is an immediate consequence of Theorem 2.1 in [19]. �
The next proposition is a straightforward adaptation to unbounded domains of results included in the Section 2 of [1]:

Proposition 2.1. Let A be the unique solution of problem PV. Then Eq. (23) also holds for any G ∈ X .

Theorem 2.2. Given V = (V 1, . . . , Vm) ∈ Cm, let A be the solution of problem PV. Let us define B := curl A, H := 1
μ B, E := −iωA −∑m

k=1 Vk g̃radηk in Δ, J|Δ := σE and J|Δc := 0. Then the following equalities hold true:

curl H = J in R3, (26)

iωB + curl E = 0 in Δ, (27)

div B = 0 in R3, (28)

J · n = 0 on Σ. (29)

Proof. We notice that, from the previous proposition we are allowed to take as test function G in (23) any smooth function
with compact support in R3. By doing so, we obtain,

iωσA + curl
(

1

μ
curl A

)
+ σ

m∑
k=1

Vk g̃radηk = 0 in R3 (30)

in the sense of distributions. Hence, in particular, curl(μ−1 curl A) belongs to L2(R3). Then, if we define the magnetic
induction B in R3 as

B := curl A,

the magnetic field as H := μ−1B, the electric field by

E := −iωA −
m∑

k=1

Vk g̃radηk in Δ, (31)

J|Δ := σE and J|Δc := 0, we clearly obtain Eqs. (26) and (28) from (30).
Moreover, since curl H = J in L2(R3), then div J = 0. Hence the trace J · n is well defined on Σ and J · n = 0 there since J

vanishes in Δc.
Finally, we can take the curl operator in (31) to get

curl E = −iωB in Δ,

because curl gr̃ad ≡ 0. �
Remark 2.3. If we define a curl-free extension of v to Δc and E := −iωA − v, then the Faraday’s law also holds in this
set. However, one can easily show (see [20]) that there is no such extension belonging to the space X . The conclusion is
that one cannot define E in X so as to satisfy the eddy current model in the whole space together with the conditions
prescribing non-null intensities in the rings Δk .
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Remark 2.4. Notice that, from the definition of E and the properties div(σE) = 0 in Δ (which follows from (26)), and
σE · n = 0 on Σ , we can deduce that the solution A of problem PV also satisfies the imposed gauge conditions in the
conductor, i.e.,

div(σA) = 0 in Δ, (32)

σA · n = 0 on Σ. (33)

We recall that the gauge conditions in the dielectric are directly imposed in the space Y .

Remark 2.5. Under the modified Ohm’s law approach, the electric field E and the current density J in Theorem 2.2 have to
be redefined by

E = −iωA in R3, (34)

J = σE − σ

m∑
k=1

Vk g̃radηk in Δ, (35)

and (27) holds in R3.

2.3. Imposing the current intensities in a weak sense

We recall that we are interested in finding a solution of the eddy current problem satisfying the intensities conditions (9).
To attain this goal, we start by writing these constraints in a weak sense.

Firstly, we notice that, since the current density J = σE satisfies div J = 0 in Δ and J · n = 0 on Σ , we have∫
Δk\Ωk

J · g̃radηk = −
∫

Δk\Ωk

div Jηk +
∫

∂(Δk\Ωk)

J · nηk =
∫
Ωk

[ηk] J · ν = Ik, (36)

k = 1, . . . ,m. Thus, we can impose the current intensities as follows:

m∑
k=1

W̄k

∫
Δk\Ωk

σE · g̃radηk =
m∑

k=1

Ik W̄k, ∀W = (W1, . . . , Wm) ∈ Cm.

Then, taking into account (31), we obtain the following weak form of constraint (9) which is well defined for any vector
function A ∈ Y :

−
m∑

k=1

W̄k

∫
Δk\Ωk

iωσ g̃radηk · A −
m∑

k=1

W̄k

∫
Δk\Ωk

σ Vk| g̃radηk|2 =
m∑

k=1

Ik W̄k, ∀W ∈ Cm. (37)

Therefore, given the vector field I = (I1, . . . , Im), we are led to solve the following mixed problem:

Problem MPI. Given I = (I1, . . . , Im) ∈ Cm , find A ∈ Y and V ∈ Cm , such that

iω
∫
R3

σA · Ḡ +
∫
R3

1

μ
curl A · curl Ḡ +

m∑
k=1

Vk

∫
Δk\Ωk

σ g̃radηk · Ḡ = 0, ∀G ∈ Y,

m∑
k=1

W̄k

∫
Δk\Ωk

σ g̃radηk · A + 1

iω

m∑
k=1

W̄k

∫
Δk\Ωk

σ Vk| g̃radηk|2 = − 1

iω

m∑
k=1

Ik W̄k, ∀W ∈ Cm.

From the solution (A,V), the vector fields H, E and B defined as in Theorem 2.2, would be the solution of the full eddy
current model (2)–(9), except that the Faraday’s law (3) does not hold on the interface separating the conducting and the
dielectric domains.

Notice moreover, that the complex vector of potentials, V, can be interpreted as a Lagrange multiplier introduced to
impose the current intensities in a weak sense.

Remark 2.6. Considering the modified Ohm’s law approach, Eq. (36) also holds for J = σE − σ
∑m

k=1 Vk g̃radηk and taking
into account that E = −iωA, Eq. (37) is easily obtained. Thus, by modifying the Ohm’s law, we also obtain the mixed
problem MPI.
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2.4. Analysis of the mixed problem

An important feature of the mixed problem MPI is that the second equation allows us to obtain the components of
vector V in terms of I and A. Then, by replacing V in the first equation we can obtain a weak problem with A being the
only unknown, which can be analyzed in a classical setting. To attain this goal, we start by introducing some notation.

Firstly, we define the following scalar product in L2(Δk):

(F,G)Δk,2,σ =
∫

Δk\Ωk

σF · Ḡ,

and denote by ‖ · ‖Δk,2,σ the corresponding induced norm.
On the other hand, the space of so-called Neumann harmonic fields in Δ (see [3]) is defined by

C(Δ) := {
G ∈ L2(Δ): curl G = 0,div(σG) = 0 in Δ and σG · n = 0 on Σ

}
.

A basis of this space is given by the set of orthogonal functions {g̃radηk, k = 1, . . . ,m} introduced above. In particular, we
consider the corresponding orthonormal basis {ak, k = 1, . . . ,m}, given by

ak = g̃radηk

‖ g̃radηk‖|Δk,2,σ

.

Given a vector field F ∈ L2(Δ), let us denote by P(F) its projection on C(Δ) defined by

P(F) =
m∑

k=1

(F,ak)Δk,2,σ ak.

By using this notation, from the second equation of the mixed problem MPI, the components of V can be written as:

Vk = −Ik

‖ g̃radηk‖
2
Δk,2,σ

− iω
(A,ak)Δk,2,σ

‖ g̃radηk‖Δk,2,σ

, k = 1, . . . ,m. (38)

By replacing this expression in the first equation of the mixed problem and taking into account that σ = 0 in Δc, we have:

iω
∫
Δ

σA · Ḡ +
∫
R3

1

μ
curl A · curl Ḡ − iω

m∑
k=1

(A,ak)Δk,2,σ

∫
Δk\Ωk

σak · Ḡ =
m∑

k=1

Ik

‖ g̃radηk‖Δk,2,σ

∫
Δk\Ωk

σak · Ḡ, ∀G ∈ Y .

Thus, the mixed problem MPI is equivalent to the following one:

Problem PI. Given I = (I1, . . . , Im) ∈ Cm , find A ∈ Y satisfying

iω
∫
Δ0

σA · Ḡ +
∫
R3

1

μ
curl A · curl Ḡ + iω

m∑
k=1

∫
Δk\Ωk

σ
(
A − P(A)

) · Ḡ =
m∑

k=1

Ik

‖ g̃radηk‖Δk,2,σ

∫
Δk\Ωk

σak · Ḡ, ∀G ∈ Y . (39)

Theorem 2.3. Problem PI has a unique solution.

Proof. We follow the technique used in Theorem 2.1 of [19] (see also [4]) and some of the results proved in that paper. We
introduce the sesquilinear form

a(A,G) = iω
m∑

k=0

∫
Δk\Ωk

σ
(
A − P(A)

) · Ḡ +
∫
R3

1

μ
curl A · curl Ḡ,

taking into account that P(A) = 0 in Δ0. Using the fact that (A − P(A),P(G))Δ,2,σ = 0 for all G ∈ Y and the estimate
concerning the dielectric domain obtained in Theorem 2.1 of [19], we have

∣∣a(A,A)
∣∣ + ω√

2

∥∥P(A)
∥∥2

Δ,2,σ
� C

(
‖A‖2

Δ,2,σ + ‖ curl A‖2
L2(R3)

+
∥∥∥∥ (A + w)(x)√

1 + |x|2
∥∥∥∥2

L2(Δc)

)
(40)

where w belongs to a finite dimensional space of harmonic fields in the dielectric domain Δc.
Taking into account that P(A) and w belong to finite dimensional spaces, we deduce that a(·, ·) is Y-coercive, i.e.,

Y-elliptic modulo a compact perturbation (see again [19]). Then, existence of solution of the weak problem follows from
uniqueness.
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In order to prove the uniqueness we are going to see that if I = 0, then the solution of problem PI is A = 0. Indeed, if
I = 0, by taking G = A in (39) we deduce that curl A = 0 in R3 and A|Δ = P(A), and hence A ∈ C(Δ). Then,

A = −gradφ

with φ ∈ W1(R3) := {ψ: ψ√
1+|x|2 ∈ L2(R3),gradψ ∈ L2(R3)} and in particular,

A|Δ = −gradφ, with φ ∈ H1(Δ).

But then A|Δ = 0, because A belongs to C(Δ), which is orthogonal to the gradients of functions in H1(Δ).
Moreover, since A ∈ Y , it must satisfy, in the dielectric,

curl A = 0 in Δc, (41)

div A = 0 in Δc, (42)

A × n = 0 on Σ, (43)∫
Σ j

A · n = 0 j = 1, . . . , Nc . (44)

Thus, A belongs to the finite dimensional space of harmonic Dirichlet vector fields in the dielectric defined by,

D
(
Δc) := {

G ∈ L2(Δc): curl G = 0,div G = 0 in Δc and G × n = 0 on Σ
}
.

Lemma 2.1 in [4] allows us to affirm that a vector field A satisfying (42) and (44) is orthogonal to the space D(Δc) and
since A ∈ D(Δc), we conclude that A|Δc = 0. �
Remark 2.7. We have used the equivalence between problems MPI and PI to analyze the mixed problem. However, since the
term involving P(A) in problem PI leads to a fully dense matrix, we will discretize problem MPI which leads to matrices
where only the last m rows and columns will be dense.

2.5. An axisymmetric BEM/FEM formulation of problem MPI

In order to solve the problem MPI by using a BEM/FEM technique, we are going to write this problem in another form
involving only the values of the magnetic vector potential A in Δ and on its boundary Σ . To attain this goal we first notice
that the field 1

μ curl A, which is the intensity of the magnetic field, belongs to X , and then its tangential trace 1
μ curl A × n

is continuous across Σ . Besides

curl
(

1

μ0
curl A

)
= curl H = 0 in Δc, (45)

where μ0 denotes the vacuum magnetic permeability. Then, by using a Green’s formula in Δc, we have,∫
R3

1

μ
curl A · curl Ḡ =

∫
Δ

1

μ
curl A · curl Ḡ +

∫
Δc

1

μ0
curl A · curl Ḡ

=
∫
Δ

1

μ
curl A · curl Ḡ +

∫
Δc

curl
(

1

μ0
curl A

)
· Ḡ −

∫
Σ

1

μ0
curl A × n · Ḡ

=
∫
Δ

1

μ
curl A · curl Ḡ −

∫
Σ

1

μ0
curl A × n · Ḡ, ∀G ∈ Y .

Thus, the first equation of problem MPI can be formally written as:

iω
∫
Δ

σA · Ḡ +
∫
Δ

1

μ
curl A · curl Ḡ −

∫
Σ

1

μ0
curl A × n · Ḡ +

m∑
k=1

Vk

∫
Δk\Ωk

σ g̃radηk · Ḡ = 0, ∀G ∈ Y . (46)

We notice that the value of (1/μ0) curl A×n on Σ can be determined by solving an exterior problem in Δc. We refer the
reader to [19] for the analysis of a BEM/FEM eddy current formulation in terms of the electric field involving this boundary
term. However, in this paper, we are more interested in the numerical solution of the problem in an axisymmetric domain
Δ and therefore, we will consider a cylindrical coordinate system (r, θ, z) with the z-axis coinciding with the symmetry
axis of the device. Hereafter we denote by er , eθ and ez the local unit vectors in the corresponding coordinate directions.
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Now, cylindrical symmetry leads us to consider that no field depends on the angular variable θ . We further assume that the
current density field has non-zero component only in the tangential direction eθ , namely

J = Jθ (r, z)eθ .

We remark that, due to the assumed conditions on J, (3), (6) and (12), only the θ -component of the magnetic vector
potential, hereafter denoted by Aθ , does not vanish, i.e.,

A = Aθ (r, z)eθ . (47)

Note that this A automatically satisfies (22). Moreover, taking into account the expression for curl in cylindrical coordinates
we have

curl A = −∂ Aθ

∂z
er + 1

r

∂(r Aθ )

∂r
ez. (48)

Let G = ψ(r, z)eθ be a test function and n = nrer + nzez . Thus, taking into account the cylindrical symmetry and the fact
that

g̃radηk = 1

2πr
eθ , in Δk, k = 1, . . . ,m, (49)

the axisymmetric version of problem MPI writes formally as follows:
Given I = (I1, . . . , Im) ∈ Cm, find Aθ and V ∈ Cm, satisfying,

iω
∫
Ω

σ Aθ · ψ̄r dr dz +
∫
Ω

1

μr

∂(r Aθ )

∂r

∂(rψ̄)

∂r
dr dz +

∫
Ω

1

μ

∂ Aθ

∂z

∂ψ̄

∂z
r dr dz

−
∫
Γ

1

μ0

∂(r Aθ )

∂n
ψ̄ dγ + 1

2π

m∑
k=1

Vk

∫
Ωk

σ ψ̄ dr dz = 0, (50)

1

2π

m∑
k=1

( ∫
Ωk

σ Aθ dr dz

)
W̄k + 1

4π2iω

m∑
k=1

( ∫
Ωk

σ
Vk

r
dr dz

)
W̄k = − 1

2π iω

m∑
k=1

Ik W̄k, (51)

where dγ denotes the differential line element.
The term

∫
Γ

μ−1
0 ∂(r Aθ )/∂nψ̄ dγ can be transformed by using the single-double layer potentials; we refer the reader to

[8] for the details concerning this transformation and introduce the same notation of that paper,

A′
θ = r Aθ ,

λ′(r, z) = ∂ A′
θ

∂r
nr + ∂ A′

θ

∂z
nz.

Then we are led to solve the following weak problem:

Problem WEP. Given I = (I1, . . . , Im) ∈ Cm , find A′
θ : Ω → C, V ∈ Cm and λ′ : Γ → C such that

iω
∫
Ω

σ

r
A′

θ ψ̄
′ dr dz +

∫
Ω

1

μr
grad A′

θ · grad ψ̄ ′ dr dz −
∫
Γ

1

μr
λ′ψ̄ ′ dγ +

m∑
k=1

Vk

2π

∫
Ωk

σ

r
ψ̄ ′ dr dz = 0, ∀ψ ′,

1

2π

m∑
k=1

( ∫
Ωk

σ

r
A′

θ dr dz

)
W̄k + 1

4π2iω

m∑
k=1

( ∫
Ωk

σ
Vk

r
dr dz

)
W̄k = − 1

2π iω

m∑
k=1

Ik W̄k, ∀W ∈ Cm,

∫
Γ

1

μr
ζ̄ A′

θ −
∫
Γ

1

μ
(Gn A′

θ )ζ̄ (r, z)dγ +
∫
Γ

1

μ
(Gλ′)ζ̄ (r, z)dγ = 0 ∀ζ,

where G and Gn denote the fundamental solution of Laplace’s equations and its normal derivative in cylindrical coordinates
(see again [8], Eqs. (55), (56)).
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3. The thermal model

The electromagnetic model must be coupled with the heat equation to study the thermal effects of the electromagnetic
fields in the workpiece. The computational domain for the thermal model is a radial section Ω0 of the workpiece. Since the
metal is introduced in solid state and then melted, we shall use the transient heat transfer equation with change of phase.
Furthermore, since the molten metal is subject to electromagnetic and buoyancy forces, we also need to consider convective
heat transfer. Let us suppose that we already know the velocity field u which is null in the solid part of the workpiece, then
the equation for energy conservation is(

∂e

∂t
+ u · grad e

)
− div

(
k(x, T ) grad T

) = | J|2
2σ

in Ω0, (52)

where e is the enthalpy, T is the temperature and k is the thermal conductivity, depending on temperature as well. Here-
after, we also assume that other material properties, such as the electric conductivity σ and the magnetic permeability μ
may also depend on temperature. The term | J|2/(2σ) on the right-hand side of (52) represents the heat released by the
electric current due to the Joule effect which is obtained by solving the electromagnetic problem introduced in Section 2.
In fact, since the electromagnetic equations are expressed in the frequency domain, the heat source is determined by taking
the mean value in a cycle (see [7]).

Note that the terms between parenthesis on the left-hand side of Eq. (52) can be rewritten as the material derivative
of enthalpy, which we shall denote by ė. Also, assuming cylindrical symmetry and the fact that T does not depend on the
angular coordinate θ , Eq. (52) becomes

ė − 1

r

∂

∂r

(
rk(r, z, T )

∂T

∂r

)
− ∂

∂z

(
k(r, z, T )

∂T

∂z

)
= | Jθ |2

2σ
. (53)

Note that, since Δ0 is a simply connected set, Eq. (13) in cylindrical coordinates reads

Jθ = −iωσ Aθ in Ω0. (54)

Eq. (53) must be completed with suitable boundary conditions. We shall denote by Γ T
R the boundary of Ω0 except for

the part corresponding to the symmetry axis which will be denoted by ΓS (see Fig. 4). We consider the radiation–convection
condition

k(x, T )
∂T

∂n
= α(Tc − T ) + γ

(
T 4

r − T 4) on Γ T
R , (55)

α being the coefficient of convective heat transfer, Tc and Tr the external convection and radiation temperatures, respec-
tively and the coefficient γ is the product of emissivity by Stefan–Boltzmann constant. Also, we set

k(x, T )
∂T

∂n
= 0 on ΓS.

4. The hydrodynamic model

As mentioned before, in order to achieve a realistic simulation of the overall process occurring in the furnace, convective
heat transfer must be taken into account. The hydrodynamic domain is the molten region of the metal, which varies as the
metal melts or solidifies, making our hydrodynamic domain time-dependent.

Let Ωl(t) be the radial section of the molten metal, and ΓS(t), Γd(t) and Γn(t) the different parts of the boundary at
time t (see Fig. 5). We assume that the fluid motion is governed by the incompressible Navier–Stokes equations:

ρ(x, T )

(
∂u

∂t
+ (grad u)u

)
− div

(
2η(x, T )D(u)

) + grad p = f in Ωl(t), (56)

div u = 0 in Ωl(t), (57)

where ρ denotes the density, u is the velocity field, η is the dynamic viscosity, p is the pressure and D(u) denotes the
symmetric part of grad u, namely

D(u) = grad u + grad ut

2
.

We remark that both density and viscosity are material properties which depend on temperature, i.e., ρ = ρ(x, T ) and
η = η(x, T ). Moreover, the molten region at the time instant t must be computed from the temperature profile, so the
solution of the thermal problem is needed to solve the hydrodynamic problem. We will see below how the domain Ωl(t) is
determined to carry out the numerical simulation.

The right-hand side term f contains the forces supported by the fluid due to natural convection (buoyancy forces, fg )
and those due to the electromagnetic field (Lorentz forces, fl):
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Fig. 4. Computational domain for the
thermal problem.

Fig. 5. Computational domain
for the hydrodynamic prob-
lem.

f = fg(x, T ) + fl(x) (58)

with

fg = ρ(x, T )g, (59)

fl = ω

2π

2π/ω∫
0

J (x, t) × B(x, t)dt, (60)

where g denotes the acceleration of gravity, ω is the angular frequency, and J and B are the current density and the
magnetic induction fields, respectively.

Eqs. (56), (57) are completed with the following initial and boundary conditions

u = 0 on Γd(t), (61)

Sn = 0 on Γn(t), (62)

Sn = 0 on Γs(t), (63)

u = 0 in Ωl(0), (64)

where S denotes the Cauchy stress tensor, S = −pI + 2ηD(u), and I is the identity tensor

4.1. Boussinesq approximation

As the range of temperatures in the molten region is not very large, we can use the Boussinesq approximation to
model the fluid motion. This approximation basically consists in modifying the Navier–Stokes equations by taking a certain
reference temperature, and considering the constant values of density and viscosity at this temperature for the inertial and
dissipative terms, while a linear temperature-dependent density is considered in the right-hand side. That is,

ρ0

(
∂u

∂t
+ (grad u)u

)
− div

(
2η0 D(u)

) + grad p′ = −ρ0β0(T − T0)g + fl, (65)

div u = 0, (66)

where ρ0 and η0 denotes the density and the dynamic viscosity at the reference temperature, respectively, β0 is the coeffi-
cient of thermal expansion, and p′ is a modified pressure, such that grad p′ = grad p − ρ0g.

The heat equation is also modified in a similar form, to obtain

ρ0cp0

(
∂T

∂t
+ u · grad T

)
− div(k0 grad T ) = | J|2

2σ
, (67)
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where cp0 represents the specific heat at the reference temperature, and k0 the thermal conductivity at the same tempera-
ture. We remark that this approximation for the thermal model is only used in the molten region of the metal. In the rest
of the domain the heat equation remains non-linear.

4.2. An algebraic turbulence model: Smagorinsky’s model

We recall that the Reynolds number is a dimensionless quantity which gives the ratio of inertial forces to viscosity forces.
It is expressed as

Re = ρU L

η
, (68)

where U and L represent a characteristic velocity and a characteristic length (here taken as the inner radius of the crucible),
respectively. When this number goes beyond a threshold, the flow becomes turbulent, and then it is impossible to model its
behavior using the Navier–Stokes equations due to the big mesh size that the computational domain would require. To deal
with turbulent flows, all the fields are decomposed into a mean part and an oscillating part which takes into account the
small variations due to turbulent flow. By rewriting the Navier–Stokes equations using the decomposed fields, and filtering
the equations (see [23]) we arrive to the Reynolds-averaged Navier–Stokes equations:

ρ0

(
∂û

∂t
+ (grad û) û

)
− div

(
2η0 D(û)

) − ρ0 div û′ ⊗ u′ + grad p̂ = f̂ in Ωl(t), (69)

div û = 0 in Ωl(t), (70)

where û denotes the mean velocity, p̂ the mean pressure, u′ the oscillating part of the velocity field and ⊗ the tensor
product. Hereafter, the symbol ˆ denotes the mean value of a variable or an expression. The term R = ρ0(û′ ⊗ u′) is called
the Reynolds tensor and represents the contribution of the turbulent part to the mean flow.

Analogously, the averaged heat equation is written as

ρ0cp0

(
∂ T̂

∂t
+ û · grad T̂

)
+ ρ0cp0 div T̂ ′u′ − div(k0 grad T̂ ) = |̂ J|2

2σ
, (71)

being T̂ the mean temperature and T ′ its oscillating part. The tensor ρ0cp0 T̂ ′u′ takes into account the contribution of the
turbulent flow to the mean temperature profile.

The Boussinesq assumption consists in taking these two tensors as

−ρ0û′ ⊗ u′ = −1

3
tr(R)I + 2ηt D(û), (72)

ρ0cp0 T̂ ′u′ = −kt grad T̂ , (73)

where ηt is the turbulent viscosity, kt is the turbulent thermal conductivity and tr(·) denotes the trace operator. Using this
assumption we can now rewrite Eqs. (69) and (71) as

ρ0

(
∂û

∂t
+ (grad û) û

)
− div

(
2ηeff D(û)

) + grad p̂∗ = f̂, (74)

ρ0cp0

(
∂ T̂

∂t
+ û · grad T̂

)
− div(keff grad T̂ ) = |̂ J|2

2σ
, (75)

where p∗ = p′ − 1
3 tr(R) and ηeff is the effective viscosity, which is given by ηeff = η0 + ηt . Analogously, keff represents the

effective thermal conductivity, given by keff = k0 + kt . Different models are obtained depending on the way in which the
turbulent viscosity ηt and the turbulent conductivity kt are computed. An efficient and easy to implement model is the one
proposed by Smagorinsky (see [23]), which consists in considering

ηt = ρ0ch2
∣∣D(û)

∣∣, c ∼= 0.01, kt = cp0
ηt

Prt
, (76)

where h(x) is the mesh size of the numerical method around point x, and Prt is the turbulent Prandtl number, which is
taken equal to 0.9 (see [23]).

5. Numerical solution

In this section we introduce a weak formulation and a time-space discretization of the coupled problem as well as the
determination of the hydrodynamic domain. Again, we will exploit the cylindrical symmetry of the domain when solving the
hydrodynamic problem. We notice that u does not depend on θ and it has zero component in the tangential direction eθ .
In order to simplify, in what follows we shall drop index θ for Aθ and Jθ , and index t for Ωl(t). We shall also drop the
superindex notation ˆ for the filtered fields and terms.
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5.1. Computation of the hydrodynamic domain

As said before, the region occupied by the molten material varies over time, and depends on temperature. We consider
a fixed mesh of the region occupied by the metal to be heated, i.e., the solid and molten metal in Fig. 5. At each time
step, in order to determine the hydrodynamic domain, we need to compute the position of the boundary of the molten
region. To do that, we are obliged to solve the thermal problem previously. More precisely, the enthalpy profile given by
the solution of problem (WTP) introduced in Section 5.3, allows us to choose those elements of the mesh belonging to the
liquid region. The hydrodynamic computational mesh is then updated. We notice that the mushy region, that is, the region
where the melting temperature has been reached but the material is not completely molten, is not considered as a part of
the hydrodynamic domain.

5.2. Time discretization

To obtain a suitable discretization of the material time derivative in Eqs. (53) and (56) we shall use the characteristics
method (see [26]). We will only explain the discretization for the material derivative of the enthalpy since the same holds
for the velocity u.

Given a velocity field u we define the characteristic curve going through point x at time t as the solution of the following
Cauchy problem⎧⎨⎩

d

dτ
X(x, t;τ ) = u

(
X(x, t;τ ), τ

)
,

X(x, t; t) = x,

(77)

so X(x, t;τ ) is the trajectory of the material point being at position x at time t . The material time derivative of e is defined
by

ė(x, t) = d

dτ

[
e
(
X(x, t;τ ), τ

)]
|τ=t . (78)

We consider a time interval [0, t f ] and a discretization time step �t = t f /N , to obtain a uniform partition of the interval
Π = {tn = n�t,0 � n � N}. Let en and un be the approximations of e and u at time tn , respectively. We approximate the
material time derivative of e at time tn+1 by

ė
(
x, tn+1) � en+1(x) − en(χn(x))

�t
, (79)

where χn(x) = Xn(x, tn+1; tn) is obtained as the solution of the following Cauchy problem⎧⎨⎩
d

dτ
Xn(

x, tn+1;τ ) = un(
Xn(

x, tn+1;τ )
, τ

)
,

Xn(
x, tn+1; tn+1) = x,

(80)

backward in time. Notice that, since u = 0 in the solid region, the solution of this Cauchy problem is Xn(x, tn+1;τ ) = x
for any τ , and so Eq. (79) in the solid part is equivalent to a standard time discretization without using the method of
characteristics. Analogously to (79), the material time derivative of the velocity at time tn+1 is approximated by

u̇
(
x, tn+1) � un+1(x) − un(χn(x))

�t
. (81)

5.3. Weak formulation

If we consider in (74) the discretization for the material time derivative of u introduced above, then, taking into account
the cylindrical symmetry, multiplying Eqs. (74) and (70) by suitable test functions, and integrating in the liquid domain Ωl
we obtain, after using the Green’s formula, the following weak formulation of the semi-discretized hydrodynamic problem

Problem WHP. For each n = 0,1, . . . , M − 1, find functions un+1 and pn+1 such that un+1 = 0 on Γd and furthermore

1

�t

∫
Ωl

ρ0un+1 · wr dr dz +
∫
Ωl

ηeff
(
grad un+1 : grad w

)
r dr dz

+
∫
Ωl

ηeff
((

grad un+1)t : grad w
)
r dr dz −

∫
Ωl

pn+1 div wr dr dz

=
∫
Ωl

fn+1
g · wr dr dz +

∫
Ωl

fn+1
l · wr dr dz + 1

�t

∫
Ωl

ρ0
(
un ◦ χn) · wr dr dz,
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Ωl

div un+1qr dr dz = 0,

for all test functions w null on Γd and q.
The notation (· : ·) represents the scalar product of two tensors. Similarly, if we multiply Eq. (53) discretized in time by

a test function, after using a Green’s formula we obtain the following weak formulation of the semi-discretized thermal
problem:

Problem WTP. For each n = 0,1, . . . , M − 1, find a function T n+1 such that∫
Ω0

1

�t
en+1 Zr dr dz +

∫
Ω0

keff
(
r, z, T n+1)grad T n+1 · grad Zr dr dz

=
∫
Γ T

R

(
α

(
Tc − T n+1) + γ

(
T 4

r − (
T n+1)4))

Zr dΓ +
∫
Ω0

1

�t

(
en ◦ χn)

Zr dr dz +
∫
Ω0

1

2σ(r, z, T n+1)

∣∣ Jn+1
∣∣2

Zr dr dz, (82)

for all test function Z .

Finally, an approximation of field A at time tn+1 is determined as the solution of the weak formulation obtained in
Section 2:

Problem WEP. Given I = (I1, . . . , Im) ∈ Cm , find A′ : Ω → C, V ∈ Cm and λ′ : Γ → C such that

iω
∫
Ω

σ(r, z, T n+1)

r
A′ψ̄ ′ dr dz +

∫
Ω

1

μ(r, z, T n+1)r
grad A′ · grad ψ̄ ′ dr dz

−
∫
Γ

1

μ(r, z, T n+1)r
λ′ψ̄ ′ dγ +

m∑
k=1

Vk

2π

∫
Ωk

σ(r, z, T n+1)

r
ψ̄ ′ dr dz = 0, ∀ψ ′,

1

2π

m∑
k=1

W̄k

∫
Ωk

σ(r, z, T n+1)

r
A′ dr dz + 1

4π2iω

m∑
k=1

W̄k

∫
Ωk

σ
(
r, z, T n+1) Vk

r
dr dz = − 1

2π iω

m∑
k=1

Ik W̄k, ∀W ∈ Cm,

∫
Γ

1

μ(r, z, T n+1)r
ζ̄ A′ −

∫
Γ

1

μ(r, z, T n+1)
(Gn A′)ζ̄ (r, z)dγ +

∫
Γ

1

μ(r, z, T n+1)
(Gλ′)ζ̄ (r, z)dγ = 0 ∀ζ.

5.4. Space discretization

Problem WTP has been spatially discretized by a piecewise linear finite element method defined in a triangular mesh of
the workpiece domain Ω0. On the other hand problem WEP has been spatially discretized by a finite and boundary element
method (see [8] for further details). Problem WHP has been spatially discretized by the finite element couple P1-bubble/P1,
which is known to satisfy the inf-sup condition (see, for instance, [12]). We should also remark that the hydrodynamic
problem is only solved in the liquid domain Ωl , which must be computed at each time step.

We notice that, at each time step, the three problems form a coupled non-linear system. In the thermal problem the heat
source depends on the solution of the electromagnetic problem, while the convective heat transfer needs the solution of the
hydrodynamic problem. Also, the Lorentz force in the hydrodynamic problem depends on the solution of the electromagnetic
problem. On the other hand, parameters k, σ , μ, ρ and η depend on temperature. The radiation–convection boundary
condition in the thermal problem depends on T 4. To handle the coupling between the three problems and in order to
deal with the non-linearities in the enthalpy and the radiation–convection boundary condition, we propose a fixed point
algorithm which is described in Fig. 6 (see [6] and [7] for the details). Note that the thermal problem only needs the
solution of the hydrodynamic problem at the previous time step. Since we are neglecting velocity in Ohm’s law, we are
allowed to solve the hydrodynamic problem segregated from the two others.

6. Numerical results

In this section we present some numerical results which have been obtained by using the computer code THESIF
(http://www.usc.es/~thesif/) implementing the algorithm introduced above. Two different cases are considered: the former
is a comparison of the results of the axisymmetric code with the analytical solution of an academic problem. The latter is
the numerical simulation of an industrial furnace.
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Fig. 6. Scheme of the algorithm.

Fig. 7. Error versus meshsize (log–log scale). Fields T (left) and u (right).

6.1. Academic test

The thermo-electrical problem stated in this paper has already been tested by the authors in a previous work (see [7]).
That is why in this paper we only test the thermo-hydrodynamic problem with phase change, by comparing the numeri-
cal results with the analytical solution of the academic problem introduced below (see Appendix A for a more extensive
description). This problem consists of a solid ball of exponentially decreasing radius and a liquid region outside the ball.

Since the velocity is now the solution of a steady equation, the code has been slightly modified to solve the correct
problem, and time discretization is no longer used for the hydrodynamic problem. Therefore, gravity and Lorentz force are
not taken into account.

The numerical method has been used on several successively refined two-dimensional meshes, and the numerical results
obtained have been compared with the analytical solution. We have computed the error in L∞ (in time)–L2 (in space)
norm. Fig. 7 shows the log–log plots of the errors for the computed temperature T and velocity u, respectively, versus the
meshsize h, where we can observe a linear dependence on this parameter.
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Fig. 8. Sketch of the geometry.

Table 1
Geometrical data.

A. Height of silicon 0.45 m
B. Inner radius of crucible 0.125 m
C. Outer radius of crucible 0.225 m
D. Crucible height 1.05 m
E. Crucible width 0.05 m
F. Alumina layer width 0.05 m
G. Turn diameter 0.05 m
H. Turn height 0.05 m
I. Distance between coil and crucible 0.025 m
J. Distance between the turns 0.01 m
Number of coil turns 12
P, Q. Measure points

Table 2
Operating parameters for each simulation.

Simulation Frequency (Hz) RMS coil current (A)

1 100 5500
2 1000 2000

6.2. Industrial furnace

In this case we have applied the algorithm to simulate an industrial furnace used for silicon purification. The workpiece
we are considering consists of a graphite crucible containing silicon to be melted and surrounded by an alumina layer to
avoid heat losses through the boundary. The initial temperature of the workpiece is 30 ◦C. The induction coil is made with
copper. As we detailed in Section 2, the thermal model has been simplified and does not include the coil. The geometrical
data of this furnace are summarized in Fig. 8 and Table 1. A detail of the computational mesh can be seen in Fig. 9. The
physical properties of the three materials in the workpiece depend on temperature and have been obtained from literature
while, in the coil, the electromagnetic parameters are supposed to be constant.

Two different simulations have been carried out varying current frequency and intensity. The physical parameters for
each simulation are detailed in Table 2.

Figs. 10 and 11 show the temperature field in the workpiece for both simulations and at 30 minutes and 150 minutes
from the beginning. Figs. 12 and 13 show the modulus of current density for both simulations and at the same times.

Note that at low frequencies the skin-depth is higher, and so the electromagnetic field penetrates deeper into the work-
piece, as can be seen in Fig. 13. This causes electromagnetic stirring in the molten silicon due to Lorentz force. At higher
frequencies, Lorentz force concentrates near the graphite crucible, and so buoyancy forces become more important (see
Fig. 14).

Fig. 15 illustrates the importance of considering heat transfer when computing the temperature field. One can check
how neglecting the convection term in the heat equation could cause the materials to reach very high and unrealistic
temperatures that would originate the crucible to melt.

We complete these results by representing, in Figs. 16 and 17, the evolution in time of the temperature and the current
density for both simulations and for two different points in the silicon: a point P close to the symmetry axis and a point Q
close to the graphite crucible. As can be seen from Fig. 16, at low frequency, when Lorentz forces dominate, the temperature
profile is quite stable reaching almost a steady state. However, at higher frequencies, when buoyancy forces become more
important, the solution does not reach the steady state but it varies in a sort of periodic way. The big variations in the
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Fig. 9. Detail of the mesh.

Fig. 10. Temperature at time t = 30 min for simulation 1 (left) and 2 (right).

current density magnitude are due to the fact that solid silicon is a dielectric whereas molten silicon is a good electrical
conductor. These graphics also confirm the fact that the lower the frequency the larger the skin-depth.

Finally, Fig. 18 shows the velocity fields at time 150 minutes for each of the simulations. We can appreciate the swirls
due to Lorentz forces.
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Appendix A. Analytical solution of a thermo-hydrodynamic problem with phase change

In this section we present a simplified problem having an analytical solution which has been used for the validation of
the code. Due to the difficulty in obtaining a problem with analytical solution for the whole coupled equations, and since
the velocity field has no influence on the electromagnetic problem, we are just considering a thermo-hydrodynamic problem
with phase change. This problem is an adaptation of another one used in [10] for the same purpose of validation.
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Fig. 11. Temperature at time t = 150 min for simulation 1 (left) and 2 (right).

Fig. 12. Modulus of current density at time t = 30 min for simulation 1 (left) and 2 (right).

We take t f = 1 as the final time. The spatial domain we consider is given, in cylindrical coordinates, by Ω = (0,1) ×
(0,2π) × (−1,1).

For each time t we define the function

g(r, z, t) = r2 + z2 − 0.25e−t , (A.1)

and we suppose the temperature is given by

T (r, z, t) =
{

2g(r, z, t) + 1, if g(r, z, t) � 0,

g(r, z, t) + 1, if g(r, z, t) < 0.
(A.2)

The temperature defined in this way is a continuous function. The phase change temperature is Ts = 1, and so the free
boundary between the solid and the liquid region is given by

S(t) = {
x = (r, θ, z) | r2 + z2 = 0.25e−t}, (A.3)

that is, the solid region is the ball centered at the origin and radius 0.5e−0.5t .
The thermophysical parameters considered are ρ(T ) = 1, k(T ) = 1 and
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Fig. 13. Modulus of current density at time t = 150 min for simulation 1 (left) and 2 (right).

Fig. 14. Silicon temperature at time t = 150 min for simulation 1 (left) and 2 (right).

c(T ) =
{

2, if T � 1,

6, if T > 1,
(A.4)

i.e., the density and the thermal conductivity are constant, while the specific heat is constant on each phase separately. The
latent heat is L = 4.

As we mentioned above, the temperature T is a continuous function, but grad T is discontinuous across the inter-
phase S(t). It can be seen that for the parameters and the function T given before, the Stefan condition on the interphase
is satisfied. This condition is expressed by the following equality[

k(T )
∂T

∂n

]
= ρLU · n, (A.5)

where [ϕ] denotes the jump of function ϕ through the interphase, n is the unit vector normal to the interphase S(t)
outward to the solid region and U is the velocity of the interphase advance.

For the thermal problem we consider Eq. (52), substituting the heat source from the Joule effect by a function f(
∂e

∂t
+ u · grad e

)
− div

(
k(x, T )grad T

) = f in Ω, (A.6)

where f is

f (r, z, t) =
{

3e−t − 12 + u · (24r,24z), if g(r, z, t) � 0,

0.5e−t − 6, if g(r, z, t) < 0.
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Fig. 15. Temperature at time t = 150 min for simulation 2 with and without convection.

Fig. 16. Evolution of temperature at points P and Q .

For the boundary condition in (55) we have taken α = 0 and γ = 1 so that only the radiation condition is taken into
account, namely

k
∂T

∂n
= T 4

r − T 4, (A.7)

If we replace in this equation the value of T given in (A.2), we conclude that

Tr = 4
√(

2g(r, z, t) + 1
)4 + kn · (r, z), (A.8)

where n is the outward unit normal vector to the boundary and k is the thermal conductivity which is equal to 1.
Finally, we must define a velocity field in the liquid region. We choose the Stokes’ flow around the sphere occupied by

the solid region. We recall that this flow is the solution of the Stokes stationary equations

−η�u + grad p = 0, (A.9)
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Fig. 17. Evolution of current density at points P and Q .

Fig. 18. Velocity field at t = 150 min for simulation 1 (left) and 2 (right).

div u = 0, (A.10)

where Eq. (A.9) corresponds to the motion equation for low Reynolds number. The velocity field we are interested in is the
solution of (A.9)–(A.10) together with conditions

u = 0 on r = R, (A.11)

u = ue3, p = p∞ at r → ∞, (A.12)

where R is the radius of the ball containing the solid region and u is a constant representing the velocity at infinity.
To solve the problem, we take into account that the dynamic viscosity is constant and equal to one, η = 1. Then the

velocity field which is the solution of Eqs. (A.9)–(A.12) can be expressed in cylindrical coordinates as follows:

ur = 3u

4

rz

r2 + z2

(
R3

(r2 + z2)3/2
− R

(r2 + z2)1/2

)
,

uz = 3u

4

z2

r2 + z2

(
R3

(r2 + z2)3/2
− R

(r2 + z2)1/2

)
+ u

(
1 − 3R

4(r2 + z2)1/2
− R3

4(r2 + z2)3/2

)
. (A.13)
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In our case we will take R = R(t) as the radius of the ball containing the solid region at instant t , i.e., R(t) = 0.5e−0.5t .
In the hydrodynamic problem we impose Dirichlet boundary conditions, taking u as given in (A.13) in the boundary of

the box surrounding the ball, and u = 0 on the ball.
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