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Galerkin lumped parameter methods for transient problems
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SUMMARY

In this paper we propose a general methodology to obtain lumped parameter models for systems governed
by parabolic partial differential equations which we call Galerkin lumped parameter methods. The idea
consists of decomposing the computational domain into several subdomains connected through so-called
ports. Then a time-independent adapted reduced basis is introduced by numerically solving several elliptic
problems in each subdomain. The proposed lumped parameter model is the Galerkin approximation of
the original problem in the space spanned by this basis. The relationship of these methods with classical
lumped parameter models is analyzed. Numerical results are shown as well as a comparison of the solution
obtained with the lumped model and the ‘exact’ one computed by standard finite element procedures.
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1. INTRODUCTION

A lumped parameter model is a simplification in the mathematical model of a physical system
where variables that are spatially distributed fields are represented by a finite number of single
scalars instead.

A good example of a lumped parameter model is an electrical network, graphically represented
by a circuit diagram in which voltages are assigned to the vertices and currents to the edges of
the diagram. The mathematical analysis of such a circuit model is much simpler than solving the
Maxwell equations for the actual physical system.

Another area where lumped parameter models are frequently used is heat transfer in electric
machines arising from energy losses (see for instance [1–6]). This approach has the advantage that
solving the model is very fast. However, the developer must invest effort in defining a network
that accurately models the main heat-transfer paths. In particular, this process involves determining
some capacitances and resistances which are not defined in a precise way.

The goal of this paper is to introduce a systematic methodology called Galerkin lumped parameter
method (GLPM) to build lumped parameter models avoiding the previous drawbacks. It consists
in viewing these kinds of models as Galerkin approximations of weak formulations of the original
distributed parameter problem. A simple idea is to use reduced basis adapted to the particular
geometry, materials and physics of the problem. For the sake of simplicity, in this presentation the
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944 A. BERMÚDEZ AND F. PENA

method will be described for heat transfer-like problems. However, the underlying ideas are rather
general hence they can be applied to build lumped parameter models in other fields.

Techniques for reduced-order modeling are very popular in the literature. The most well known
are proper orthogonal decomposition (POD) (see, for instance, [7]) and reduced basis methods
[8–11]. The latter are particularly useful for optimization: taking a set of values for parameters
(or ‘snapshots’) and creating a basis related to them can speed up the search of the optimum.
When problems are evolutionary, time is taken as a special parameter.

The approach of these papers is different from ours, where the main goal is to solve time-
dependent partial differential equations by reducing them to lumped parameters models, i.e. ordi-
nary differential systems involving a small number of unknowns. For instance, the reduced basis
method introduced in [8] has a certain resemblance to that presented in this paper. In both methods,
the domain is decomposed into smaller subdomains where local bases are calculated by solving
steady state boundary-value problems. Then they are glued in order to construct a reduced basis in
the original domain. In [8] gluing is done by using mortar techniques hence the global method is
not conforming. However, our approach leads to global bases belonging to the space of the weak
formulation hence they produce conforming approximations to the solution.

The present paper is organized as follows. In Section 2 we state the time-dependent partial
differential equation to be solved. In Section 3, an auxiliary steady-state boundary value problem
and the concept of resistance matrix are introduced. In Section 4 the reduced basis is defined and
some properties are shown. The original transient problem is considered in Section 5 where a semi-
discrete problem associated with the reduced basis (the lumped-parameter model) is introduced
and the concept of capacitance is defined. Section 6 combines domain decomposition with the
above reduced basis and finally, in Section 7, some numerical results are shown for heat transfer
problems in real electric engines.

2. STATEMENT OF THE PROBLEM

Let us consider a body � whose boundary � consists of three parts, �=�P ∪�A ∪�C each of
them possibly having several connected components:

• �P =⋃n P

l=1 �P
l . The �P

l are called the ports of domain �. In practical applications they are
surfaces in contact with other solid bodies.

• �C =⋃nC

l=1 �C
l . The �C

l are called the convective boundaries of domain �.
• �A, to be called the adiabatic boundary of domain �.

We assume that the �P
i , i =1, . . . ,n P are the connected components of �P . In other words,

two different ports cannot touch each other.
Let us introduce the following transient heat transfer problem in �:

Find the temperature field �(x, t) satisfying

�c
��

�t
−div(k grad�) = f in �×[0,T ], (1)

�(x, t) = �P
l (x, t) on �P

l , l =1, . . . ,n P , (2)

k
��

�n
(x, t)+�l (�(x, t)−�C

l (x, t)) = 0 on �C
l , l =1, . . . ,nC , (3)

k
��

�n
= 0 on �A, (4)

�(x,0) = �0(x) in �, (5)
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where the data of the problem are

• � is the density
• c is the specific heat
• k is the thermal conductivity
• f is the volumetric heating
• �P

l (x, t) is the temperature at time t and point x of the lth port
• �C

l (x, t) is the convective temperature at time t and point x of the lth convective boundary
• �l (x) is the time-dependent convective heat transfer coefficient on the lth convective

boundary
• �0(x) is the initial temperature field.

As it is well known, in order to use a finite element method for space discretization we first
introduce a weak formulation by standard procedures (see for instance [12]). Let � be a ‘test
function’ defined in � and null on �P . Multiplying equation (1) by �, integrating in �, using a
Green’s formula, and taking boundary conditions (3) and (4) into account, we get the following
problem:
P. Find �(x, t) satisfying the Dirichlet boundary conditions (2) and

∫
�

�c
��

�t
�dx +

∫
�

k grad� · grad�dx +
nC∑
l=1

∫
�C

l

�l ��d�

=
∫

�
f �dx +

nC∑
l=1

∫
�C

l

�l�
C
l �d�, for all test function �(x) null on �P (6)

�(x,0)=�0(x). (7)

Then, we introduce a Galerkin approximation of this problem by using finite elements. Let Th be
a family of meshes of domain � and Vh a family of finite element spaces associated with it. We
replace the above problem by the semi-discrete approximation:
Ph . For t ∈ [0,T ], find �h(., t)∈Vh satisfying �h(x, t)=�P

lh(x, t) on �P
l , l =1, . . . ,n P , and

∫
�

�c
��h

�t
�h dx +

∫
�

k grad�h · grad�h dx +
nC∑
l=1

∫
�C

l

�l�h�h d�

=
∫

�
f �h dx +

nC∑
l=1

∫
�C

l

�l�
C
i �h d� for all �h ∈Vh null on �P (8)

�h(x,0)=�0h(x) in �, (9)

where �P
lh and �0h are projections of �P

l and �0, respectively, on Vh .
Since Vh is of finite dimension, this Galerkin approximation is equivalent to a system of

ordinary differential equations which can be solved by numerical discretization methods suit-
able for stiff problems. In practical applications, the number of unknowns of this system, i.e.
the number of degrees of freedom is very large hence the time to solve Ph along a time
interval [0,T ] can also be very large, making the simulation of changes in a design process very
costly.

An alternative approach, which is very popular in some engineering areas such as electromag-
netism or thermal analysis of electric motors is to employ the so-called lumped parameters models.
The idea is to look for approximate solutions in very low dimension approximation spaces but
well adapted to the problem.

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:943–961
DOI: 10.1002/nme



946 A. BERMÚDEZ AND F. PENA

3. THE STATIONARY PROBLEM. THERMAL RESISTANCE MATRIX

In order to motivate the choice of the reduced adapted basis to be done in Section 4, let us consider
the following stationary problem:
SP.—Given constant values of temperature at the ports, �P

i , i =1, . . . ,n P , and constant convection
temperatures, �C

i , i =1, . . . ,nC , at the convective boundaries, find the stationary temperature field
�∈ H1(�) satisfying

−div(k grad�) = 0 in �, (10)

�(x) = �P
i on �P

i , i =1, . . . ,n P , (11)

k
��

�n
(x, t)+�i (�(x, t)−�C

i ) = 0 on �C
i , i =1, . . . ,nC , (12)

k
��

�n
= 0 on �A, (13)

where H1(�) is the Sobolev space consisting of the square integrable functions with square
integrable gradient.

The weak formulation of this problem can be easily obtained by standard procedures: find
�∈ H1(�) satisfying

∫
�

k grad� · grad�dx +
nC∑
l=1

∫
�C

l

�l��d�=
nC∑
l=1

∫
�C

l

�l�
C
l �d�,

for all �∈ H1(�) null on �P , (14)

�=�P
i on �P

i , i =1, . . . ,n P . (15)

The corresponding heat flows entering into the domain through the i th port and through the i th
convective boundary are given by

Q P
i =

∫
�P

i

k
��

�n
d�, i =1, . . . ,n P , (16)

QC
i =

∫
�C

i

k
��

�n
d�, i =1, . . . ,nC , (17)

respectively.
It is obvious that the mapping giving these heat fluxes from the temperatures, namely,

K :Rn P+nC −→Rn P+nC

defined by

K(�P
1 , . . . ,�P

n P ,�C
1 , . . . ,�C

nC )= (Q P
1 , . . . , Q P

n P , QC
1 , . . . , QC

nC ),

is linear; it is also symmetric (see Corollary 3 below).
Moreover, we note that K is not invertible. In fact, we are going to show that

Ker(K)=span{e},

where e is the vector in Rn P+nC
having all components equal to 1. Indeed, first of all, K(e)=0

because the solution � of problem SP for �P
1 =·· ·=�P

n P =�C
1 =·· ·=�C

nC =1 is �(x)=1 ∀x ∈�
hence the corresponding fluxes are null.
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Now, we prove that K is positive definite on the orthogonal space to e. Let (�P
1 , . . . ,�P

n P ,�C
1 , . . . ,

�C
nC ) be a non-null element in such space and � the corresponding solution of (14), (15). Then,

n P∑
i=1

�P
i +

nC∑
i=1

�C
i =0

and hence

�min :=min{�P
1 , . . . ,�P

n P ,�C
1 , . . . ,�C

nC }<�max :=max{�P
1 , . . . ,�P

n P ,�C
1 , . . . ,�C

nC }.
We show, by contradiction, that � cannot be constant. Indeed, let us suppose that � is constant in
�. Then one of the following two cases holds:

1. either �max =�P
i for some i ∈{1, . . . ,n P} or

2. �max =�C
i for some i ∈{1, . . . ,nC }.

In the second case �(x)=�max on �C
i or otherwise we would have

0=
∫

�C
i

k
��

�n
d�=

∫
�C

i

�i (�−�C
i )d�,

and since �i (x)>0 and �(x)��C
i =�max ∀x ∈ �̄ this can only be achieved if �=�C

i on �C
i .

Similar results can be obtained for the minimum.
Summarizing, temperature � has to be constant on the boundary where �min (respectively, �max)

is attained and its value there has to be �min (respectively, �max). Thus, we get a contradiction.
Moreover, we have

K(�P
1 , . . . ,�P

n P ,�C
1 , . . . ,�C

nC ) ·(�P
1 , . . . ,�P

n P ,�C
1 , . . . ,�C

nC )=
n P∑
i=1

�P
i Q P

i +
nC∑
i=1

�C
i QC

i

=
∫

�P
�k

��

�n
d�+

nC∑
i=1

∫
�C

i

(
1

�i
k
��

�n
+�

)
k
��

�n
d�=

nC∑
i=1

∫
�C

i

1

�i
|k ��

�n
|2 d�+

∫
�

k
��

�n
�d�

=
nC∑
i=1

∫
�C

i

1

�i

∣∣∣∣k ��

�n

∣∣∣∣
2

d�
∫

�
k|grad�|2 dx −

∫
�

div(k grad�)�dx

=
nC∑
i=1

∫
�C

i

1

�i

∣∣∣∣k ��

�n

∣∣∣∣
2

d�+
∫

�
k|grad�|2 dx�0,

where we have used a Green’s formula and Equation (10). We note that the equality to 0 only
holds for constant �, hence K is positive definite on the orthogonal space to span(e), as claimed.

Now we can characterize the image of K. Since K is symmetric we have

Im(K)=Ker(K)⊥ =
{

(Q P
1 , . . . , Q P

n P , QC
1 , . . . , QC

nC )∈Rn P+nC
:

n P∑
i=1

Q P
i +

nC∑
i=1

QC
i =0

}
.

The restriction of K to the quotient space,

W := Rn P+nC

Ker(K)
� Im(K)�Rn P+nC −1,

to be denoted by K̃, is called thermal conductance of the thermal system. We note that
K̃ depends only on the geometry (domain �, ports and convective boundaries), the thermal
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948 A. BERMÚDEZ AND F. PENA

conductivity k and the convective heat transfer coefficients �i . The inverse of K̃ is called thermal
resistance and denoted by R̃. We can choose the representative vector of each element in the
quotient space as the one having its last component null. Then K̃ can be identified to the
isomorphism

K̃ :Rn P+nC −1 −→Rn P+nC −1

defined by

K̃(�P
1 , . . . ,�P

n P ,�C
1 , . . . ,�C

nC−1)= (Q P
1 , . . . , Q P

n P , QC
1 , . . . , QC

nC −1).

We note that in the MKS system the unit for the entries of [R̃] is Kelvin per Watt (K/W). An
example is given below (see Example 1).

4. THE ADAPTED REDUCED BASIS

In order to solve problem P by a lumped parameter method we introduce an adapted reduced

basis consisting of the temperature fields associated with the canonical basis of Rn P+nC
through

problem SP. More precisely, this basis is the set of time-independent functions {�P
i , i =1, . . . ,n P}∪

{�C
i , i =1, . . . ,nC } defined as the unique solutions to the following stationary boundary-value

problems:

• For j =1, . . . ,n P find �P
j ∈ H1(�) satisfying,

−div(k grad�P
j ) = 0 in �, (18)

�P
j = �i j on �P

i , i =1, . . . ,n P , (19)

k
��P

j

�n
+�i�

P
j = 0 on �C

i , i =1, . . . ,nC , (20)

k
��P

j

�n
= 0 on �A. (21)

• For j =1, . . .nC find �C
j ∈ H1(�) satisfying,

−div(k grad�C
j ) = 0 in �, (22)

�C
j = 0 on �P

i , i =1, . . . ,n P , (23)

k
��C

j

�n
+�i (�

C
j −�i j ) = 0 on �C

i , i =1, . . . ,nC , (24)

k
��C

j

�n
= 0 on �A. (25)

Their respective weak formulations are

∫
�

k grad�P
j · grad�dx +

nC∑
l=1

∫
�C

l

�l�
P
j �d�=0 for all �∈ H1(�) null on �P , (26)

�P
j =�i j on �P

i , i =1, . . . ,n P , j =1, . . . ,n P , (27)

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:943–961
DOI: 10.1002/nme
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and ∫
�

k grad�C
j · grad�dx +

nC∑
l=1

∫
�C

l

�l�
C
j �d�=0

∫
�C

j

� j�d�

for all �∈ H1(�) null on �P , (28)

�C
j =0 on �P

i , i =1, . . . ,n P , j =1, . . . ,nC . (29)

Since we have assumed that ports are pairwise disjoint, we can find functions in H1(�) satisfying
boundary conditions (27). Then, by using the Lax-Milgram Lemma, it is straightforward to prove
that the above problems have unique solutions.

In general, these weak formulations are solved by using finite element methods. We emphasize
that they are time independent and that the stiffness matrix is the same for all the n P +nC problems.
Moreover, since this matrix is symmetric and positive definite it can be assembled and factorized
only once. Thus, computing functions �P

j and �C
j is not very costly.

Let

�(x) :=
n P∑
i=1

bP
i �P

i (x)+
nC∑
i=1

bC
i �C

i (x). (30)

Then it is straightforward to see that

�(x) = bP
i ∀x ∈�P

i , i =1, . . . ,n P , (31)

�(x)+ k

�i

��

�n
(x) = bC

i ∀x ∈�C
i , i =1, . . . ,nC . (32)

As a consequence, the n P +nC above functions are linearly independent. Moreover,

n P∑
i=1

�P
i (x)+

nC∑
i=1

�C
i (x)=1 ∀x ∈�. (33)

According to the discussion in Section 2, we observe that for j =1, . . . ,n P the j th column of
matrix [K] is the vector given by(∫

�P
1

k
��P

j

�n
d�, . . . ,

∫
�P

n P

k
��P

j

�n
d�,

∫
�C

1

k
��P

j

�n
d�, . . . ,

∫
�C

nC

k
��P

j

�n
d�

)T

.

Similarly, for j =1, . . . ,nC , the ( j +n P )th column is(∫
�P

1

k
��C

j

�n
d�, . . . ,

∫
�P

n P

k
��C

j

�n
d�,

∫
�C

1

k
��C

j

�n
d�, . . . ,

∫
�C

nC

k
��C

j

�n
d�

)T

.

Note that function �≡1 is the solution to problem SP for (�P
1 , . . . ,�P

n P ,�C
1 , . . . ,�C

nC )=e, which

belongs to the kernel of K. This implies that conductance matrix [K̃] can be obtained from the
latter by deleting any row and the same column, for instance, the last ones.

Example 1
Let us assume that domain � is a cylinder of length L; more precisely �=�×[0, L]. Let us take

�P
1 =�×{0},�P

2 =�×{L} and �A =��×[0, L].

Then n P =2,nC =0 and the adapted reduced basis consists of the two functions

�P
1 (x)=1− x3

L
, �P

2 (x)= x3

L
.
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950 A. BERMÚDEZ AND F. PENA

Therefore,

[K]=

⎛
⎜⎜⎝

k meas(�)

L
−k meas(�)

L

−k meas(�)

L

k meas(�)

L

⎞
⎟⎟⎠ ,

where meas(�) denotes the area of �. This matrix is clearly singular. Then the conductance
matrix is

[K̃]=
(

k meas(�)

L

)

and the resistance matrix is

[R]=
(

L

k meas(�)

)
.

It is worth pointing out that the latter is the formula for the electric resistance of a cylindrical
conductor with electric conductivity k.

The following alternative expressions for the entries of matrix [K] are useful from the compu-
tational point of view. Let us write this matrix in block form, namely,

[K]=
(

K P P K PC

K C P K CC

)
.

Proposition 2
The following equalities hold:

1. K P P
i j :=

∫
�P

i

k
��P

j

�n
d�=

∫
�

k grad�P
j · grad�P

i dx +
nC∑
l=1

∫
�C

l

�l�
P
j �P

i d�, i, j =1, . . . ,n P ,

2. K PC
i j :=

∫
�C

i

k
��P

j

�n
d�=−

∫
�C

i

�i�
P
j d�, i =1, . . . ,nC , j =1, . . . ,n P ,

3. K C P
i j :=

∫
�P

i

k
��C

j

�n
d�=−

∫
�C

j

� j�
P
i d�, i =1, . . . ,n P , j =1, . . . ,nC ,

4. K CC
i j :=

∫
�C

i

k
��C

j

�n
d�=�i j

∫
�C

i

�i d�−
∫

�C
i

�i�
C
j d�, i, j =1, . . . ,nC .

Proof
We have

1.

∫
�P

i

k
��P

j

�n
d� =

n P∑
l=1

∫
�P

l

k
��P

j

�n
�P

i d�=
∫

�
k grad�P

j · grad�P
i dx −

nC∑
l=1

∫
�C

l

k
��P

j

�n
�P

i d�

=
∫

�
k grad�P

j · grad�P
i dx +

nC∑
l=1

∫
�C

l

�l�
P
j �P

i d�

by using (19) and (20).
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2.
∫

�C
i

k
��P

j

�n
d�=−

∫
�C

i

�i�
P
j d�

by using (20).
3. First we have

∫
�

k grad�C
j · grad�P

i dx +
nC∑
l=1

∫
�C

l

�l�
C
j �P

i d�=0.

Indeed

∫
�

k grad�C
j · grad�P

i dx +
nC∑
l=1

∫
�C

l

�l�
C
j �P

i d�

=
n P∑
l=1

∫
�P

l

k
��P

i

�n
�C

j d�+
nC∑
l=1

∫
�C

l

k
��P

i

�n
�C

j d�

+
nC∑
l=1

∫
�C

l

�l�
C
j �P

i d�=
nC∑
l=1

∫
�C

l

(
k

��P
i

�n
+�l�

P
i

)
�C

j d�=0

by using (23) and (20).
Moreover,

∫
�P

i

k
��C

j

�n
d� =

n P∑
l=1

∫
�P

l

k
��C

j

�n
�P

i d�=
∫

�
k grad�C

j · grad�P
i dx −

nC∑
l=1

∫
�C

l

k
��C

j

�n
�P

i d�

=
∫

�
k grad�C

j · grad�P
i dx −

nC∑
l=1

∫
�C

l

�l (�l j −�C
j )�P

i d�

=
∫

�
k grad�C

j · grad�P
i dx +

nC∑
l=1

∫
�C

l

�l�
C
j �P

i d�−
∫

�C
j

� j�
P
i d�

= −
∫

�C
j

� j�
P
i d�.

4. Finally

∫
�C

i

k
��C

j

�n
d�=

∫
�C

i

�i (�i j −�C
j )d�=�i j

∫
�C

i

�i d�−
∫

�C
i

�i�
C
j d�

from (24).

Corollary 3
Matrix [K] is symmetric.

Proof
According to the previous computations we only need to show that K CC

i j = K CC
ji or, equiva-

lently, that ∫
�C

i

�i�
C
j d�=

∫
�C

j

� j�
C
i d�.
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For this purpose we note that∫
�C

i

�i�
C
j d� =

nC∑
l=1

∫
�C

l

k
��C

i

�n
�C

j d�+
nC∑
l=1

∫
�C

l

�l�
C
i �C

j d�

=
n P∑
l=1

∫
�P

l

k
��C

i

�n
�C

j d�+
nC∑
l=1

∫
�C

l

k
��C

i

�n
�C

j d�+
nC∑
l=1

∫
�C

l

�l�
C
i �C

j d�

=
∫

�
k grad�C

i · grad�C
j dx +

nC∑
l=1

∫
�C

l

�l�
C
i �C

j d�. (34)

Now the result follows because the last expression is symmetric with respect to i and j .

5. THE TRANSIENT PROBLEM. THERMAL CAPACITANCE

Let us come back to the transient problem (1)–(5). We seek a solution that, at each time t , belongs
to the space Z spanned by the (time independent) reduced basis introduced in the previous section.
More precisely, we look for an approximate solution of the form

�̂(x, t) :=
n P∑
j=1

�P
j (t)�P

j (x)+
nC∑
j=1

�C
j (t)�C

j (x).

In order to determine the time-dependent coefficients �P
i , i =1, . . . ,n P and �C

i , i =1, . . . ,nC , we
introduce the following semi-discrete problem:

n P∑
j=1

d�P
j

dt
(t)
∫

�
�c�P

j �dx +
nC∑
j=1

d�C
j

dt
(t)
∫

�
�c�C

j �dx +
n P∑
j=1

�P
j (t)

∫
�

k grad�P
j · grad�dx

+
nC∑
j=1

�C
j (t)

∫
�

k grad�C
j · grad�dx +

n P∑
j=1

�P
j (t)

nC∑
l=1

∫
�C

l

�l�
P
j �d�

+
nC∑
j=1

�C
j (t)

nC∑
l=1

∫
�C

l

�l �
C
j �d�

=
∫

�
f �dx +

nC∑
l=1

∫
�C

l

�l �̃
C
l �d� for all �∈Z. (35)

Equality (33) shows that the constant function �≡1 belongs to the space of test functions. This
fact allows us to prove the following result.

Lemma 4
The solution of the above semi-discrete problem satisfies the following energy conservation
principle:

d

dt

∫
�

�c�̂(x, t)dx =
∫

�
f dx +

nC∑
l=1

∫
�C

l

�l (�̃
C
l − �̂(x, t))d�. (36)

Moreover, by replacing the test function � by the basis elements �P
i and �C

i we see that
problem (35) is equivalent to an ordinary differential equation system which can be written in a
compact way as follows:

M
dH

dt
+ AH=b, (37)
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where

H(t)= (�P
1 (t), . . . ,�P

n P (t),�C
1 (t), . . . ,�C

nC (t))T,

M is the so-called thermal capacitance matrix given by

M =
(

M P P M PC

MC P MCC

)

with

M P P
i j =

∫
�

�c�P
i �P

j dx, i, j =1, . . . ,n P , (38)

M PC
i j =

∫
�

�c�C
j �P

i dx, i =1, . . . ,n P , j =1, . . . ,nC , (39)

MC P
i j =

∫
�

�c�P
j �C

i dx, i =1, . . . ,nC , j =1, . . . ,n P , (40)

MCC
i j =

∫
�

�c�C
i �C

j dx, i, j =1, . . . ,nC . (41)

Similarly, the ‘stiffness’ matrix A is given by

A=
(

AP P APC

AC P ACC

)

AP P
i j =

∫
�

k grad�P
j · grad�P

i dx +
nC∑
l=1

∫
�C

l

�l�
P
j �P

i d�, i, j =1, · · ·n P , (42)

APC
i j =

∫
�

k grad�C
j · grad�P

i dx +
nC∑
l=1

∫
�C

l

�l�
C
j �P

i d�, i =1, . . . ,nC , j =1, . . . ,n P , (43)

AC P
i j =

∫
�

k grad�P
j · grad�C

i dx +
nC∑
l=1

∫
�C

l

�l�
P
j �C

i d�, i =1, . . . ,nC , j =1, . . . ,n P , (44)

ACC
i j =

∫
�

k grad�C
j · grad�C

i dx +
nC∑
l=1

∫
�C

l

�l�
C
j �C

i d�, i, j =1, . . . ,nC . (45)

Finally, vector b is defined by

b=
(

bP

bC

)
,

with

bP
i (t) =

∫
�

f �P
i dx +

nC∑
l=1

∫
�C

l

�l �̃
C
l �P

i d�, i =1, . . . ,n P , (46)

bC
i (t) =

∫
�

f �C
i dx +

nC∑
l=1

∫
�C

l

�l �̃
C
l �C

i d�, i =1, . . . ,nC . (47)
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Now, let us explore the relation between matrix A and matrix [K]. We have

•

AP P
i j =

∫
�

k grad�P
j · grad�P

i dx +
nC∑
l=1

∫
�C

l

�l�
P
j �P

i d�=
n P∑
l=1

∫
�P

l

k
��P

j

�n
�P

i d�

+
nC∑
l=1

∫
�C

l

k
��P

j

�n
�P

i d�+
nC∑
l=1

∫
�C

l

�l�
P
j �P

i d�=
∫

�P
i

k
��P

j

�n
d�= K P P

i j (48)

from (19) and (20).
•

APC
i j = AC P

ji =
∫

�
k grad�P

j · grad�C
i dx +

nC∑
l=1

∫
�C

l

�l�
P
j �C

i d�

=
n P∑
l=1

∫
�P

l

k
��P

j

�n
�C

i d�+
nC∑
l=1

∫
�C

l

k
��P

j

�n
�C

i d�+
nC∑
l=1

∫
�C

l

�l�
P
j �C

i d�

= K PC
i j +

∫
�C

i

�i�
P
j d� (49)

from (23) and (20).
•

ACC
i j =

∫
�

k grad�C
j · grad�C

i dx +
nC∑
l=1

∫
�C

l

�l�
C
j �C

i d�=
n P∑
l=1

∫
�P

l

k
��C

j

�n
�C

i d�

+
nC∑
l=1

∫
�C

l

k
��C

j

�n
�C

i d�+
nC∑
l=1

∫
�C

l

�l�
C
j �C

i d�

=
∫

�C
j

� j�
C
i d�=�i j

∫
�C

i

�i d�−K CC
i j . (50)

Remark 5
We note that the capacitance matrix M is symmetric and positive definite. Thus, initial-value
problems for the ordinary differential equation system (37) are well posed.

Example 6
In the case of the geometry of Example 1, assuming that all thermo-physical parameters are
constant in � we have

A11 = k meas(�)

L
, (51)

A12 = A21 =−k meas(�)

L
, (52)

A22 = k meas(�)

L
, (53)

and

M11 = M22 =�c
∫

�

(
1− x3

L

)2
dx = 1

3
�c meas(�) L = 1

3
�c meas(�), (54)

M12 = M21 =�c
∫

�

(
1− x3

L

) x3

L
dx = 1

6
�c meas(�) L = 1

6
�c meas(�). (55)
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6. LUMPED PARAMETER DOMAIN DECOMPOSITION METHODS

In this section we combine the above ideas to introduce lumped parameter models with domain
decomposition techniques (see, for instance, [13, 14]). For this purpose we decompose domain �
into subdomains �i , i =1, . . . , N , connected among them through boundaries to be called ‘ports’.
Thus, in the boundary of each subdomain �i , called �i , we distinguish three parts,

• the ports,

�P
i =

n P
i⋃

j=1
�P

i j .

• the convective boundary,

�C
i =

nC
i⋃

j=1
�C

i j ,

• the adiabatic boundary, �A
i .

We assume that each �P
i , i =1, . . . ,n P has been written as the union of its connected components.

In order to compute an approximate solution to problem (6), (7), we introduce an adapted reduced
basis for the whole domain �, by gluing the ones for each subdomain obtained in Section 4. Recall
that the basis for the i th subdomain consists of n P

i +nC
i elements, to be called �P

i j : j =1, . . . ,n P
i ,

and �C
i j : j =1, . . . ,nC

i which are defined, respectively, as the unique solutions to the following
boundary value problems:

• For i =1, . . . , N and j =1, . . . ,n P
i find �P

i j ∈ H1(�i ) satisfying,

−div(k grad�P
i j ) = 0 in �i , (56)

�P
i j (x) = � jl on �P

il , l =1, . . . ,n P
i , (57)

k
��P

i j

�n
+�l�

P
i j = 0 on �C

il , l =1, . . . ,nC
i , (58)

k
��P

i j

�n
= 0 on �A

i . (59)

• For i =1, . . . , N and j =1, · · ·nC
i find �C

i j ∈ H1(�i ) satisfying,

−div(k grad�C
i j ) = 0 in �, (60)

�C
i j (x) = 0 on �P

il , l =1, . . . ,n P
i , (61)

k
��C

i j

�n
+�l (�

C
i j −� jl ) = 0 on �C

il , l =1, . . . ,nC
i , (62)

k
��C

i j

�n
= 0 on �A

i . (63)

With these functions it is straightforward to introduce an approximation space to functions
defined in the whole domain �. First, the ports are defined as the maximal elements of the set
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{�P
il : l =1, . . . ,n P

i , i =1, . . . , N } with respect to the inclusion relation. Let us denote by n P the
total number of ports and by nC the total number of convective boundaries. We note that

nC =
N∑

i=1
nC

i

but

n P�1

2

N∑
i=1

n P
i ,

because each port is shared by at least two subdomains.
Let us introduce a set of linear independent scalar fields, {wP

l : l =1, . . . ,n P}∪{wC
l : l =

1, . . . ,nC }, defined in � as follows:

1. For the lth global port, let ik,k =1, . . . ,ml , be the numbers of the ml subdomains sharing
it and jk the corresponding number of this port in the local numbering of ports of domain
�ik ,k =1, . . . ,ml . Then wP

l :�−→R is defined by

wP
l (x) := �P

ik jk (x) in �ik , (64)

wP
l (x) := 0 in �m for m 
= ik, k =1, . . . ,ml . (65)

2. For the lth global convective boundary, let �i be the (unique) subdomain of which it is the
convective boundary number j . Then wC

l :�−→R is defined by

wC
l (x) := �C

i j (x) in �i , (66)

wC
l (x) := 0 in �m for m 
= i. (67)

Let us call V the linear space spanned by the above set of n P +nC functions. The lumped
parameter model is defined as the Galerkin approximation of problem P corresponding to this
basis, namely,

LP. For t ∈ [0,T ], find �̃(., t)∈V satisfying

∫
�

�c
��̃

�t
�̃dx +

∫
�

k grad �̃ · grad �̃dx +
nC∑
l=1

∫
�C

l

�l �̃�̃d�

=
∫

�
f �̃dx +

nC∑
l=1

∫
�C

l

�l �̃
C
i �̃d� ∀�̃∈V (68)

�̃(x,0)= �̃0(x) in �, (69)

where �̃0 denotes a projection of the initial condition �0 on the space V.

By writing

�̃(x, t)=
n P∑
l=1

�P
l (t)wP

l (x)+
nC∑
l=1

�C
l (t)wC

l (x),

problem (68), (69) becomes an ordinary differential system of equations similar to (37), namely,

M̃
dH̃

dt
+ ÃH̃= b̃, (70)

where

H̃(t)= (�P
1 (t), . . . ,�P

n P (t),�C
1 (t), . . . ,�C

nC (t))T.
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Remark 7
We note that, by construction, V⊂ H1(�) hence the above lumped model is conforming unlike
the one studied in [8, 9].

Remark 8
The mass and stiffness matrices M̃ and Ã as well as the force vector b̃, can be easily computed
by assembling the ones corresponding to domains �i , i =1, . . . ,n P +nC , computed in Section 5.

Remark 9
All elements in the reduced basis are constant on the ports which can limit the accuracy of the
method. This can be overcome in an easy way. Indeed of considering one single reduced basis
function associated with each port, we can build a family of them by considering a mesh of the
port and then associating to each node a reduced basis function taking the value 1 at this node and
0 on the rest of the nodes on the port.

7. NUMERICAL RESULTS

The lumped parameter method, introduced in the previous section for several domains, has
been implemented by using Matlab. The program consists of two parts, that can be executed
independently:

1. in the first one, a finite element mesh for each domain is loaded; functions �P
i j and �C

i j are
calculated as solution of systems (56)–(59) and (60)–(63); the meshes need not be conforming
on the ports, which makes their construction easier;

2. in the second one, function �̃ is calculated along the time as solution of (68)–(69), using an
implicit Euler method.

The lumped parameter method is suitable for problems where the global mesh is very large and
it can be decomposed on smaller pieces. Thus, problems to be solved in the first part are much
smaller than the global one and are time independent. Since they can be solved independently,
without any information exchange among them, parallelization is straightforward. Moreover, since
functions �P

i j and �C
i j only depend on meshes and functions k and �i , they can be calculated only

once, even when heating or boundary conditions are time dependent.
The solution of the lumped parameter method has been compared with the solution of a classical

finite element method for a real-life engineering application. As a previous step and in order to
validate the implementation of the latter, a transient thermal test problem has been solved in the
domain [0,1]×[0,1.1]×[0,1.2] along the time interval [0,1]. A set of meshes {mi }10

i=3, composed
of tetrahedra, has been considered. For i =3, . . . ,10, mesh mi has i intervals along each edge of
the domain (see Figure 1). The exact solution of the problem is

u(x, y, z, t)=cos x e−2y e−3z t3.

The expected error reduction is quadratic in space and linear in time for the L2([0,T ];�) norm.
Taking a time step of the type �t = O(h2), where h is the maximum edge length, we can observe

such quadratic decay of the error in the following table (and in Figure 2).

Mesh �t Error

m3 1.1111e−01 2.0080e−02
m4 6.2500e−02 1.1596e−02
m5 4.0000e−02 7.5715e−03
m6 2.7778e−02 5.3369e−03
m7 2.0408e−02 3.9647e−03
m8 1.5625e−02 3.0609e−03
m9 1.2346e−02 2.4339e−03
m10 1.0000e−02 1.9813e−03

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:943–961
DOI: 10.1002/nme



958 A. BERMÚDEZ AND F. PENA

Figure 1. Mesh m3 of a parallelepiped (three intervals along each edge).

21 3 4 5 6 7

Figure 2. Quadratic decay of the error for the classical finite element approximation.

The comparison between the lumped parameter method and the classical finite element method
has been carried out in a ‘brushless permanent-magnet’ motor, divided into 34 pieces. The electric
motor has been designed by the University of Mondragón and the Orona company. The values for
electric losses, physical magnitudes and coefficients for boundary conditions have been provided
to us by the former institution.

At the beginning of the simulation, the electric motor is at room temperature and it is running
for 2 h. Natural convection has been considered outside the motor, while a constant temperature
has been taken for air in the inner cavities.

We should note that it is not possible to carry out an error reduction analysis similar to the finite
element method. Indeed, theoretically the convergence of the solution of the lumped parameter
method would occur when the number of ports tend to infinity. In a realistic case, the number
of pieces remains constant, and the only possible improvement can be done in the mesh used to
compute the basis functions and/or in the time step. For the purpose of comparison, we created
two meshes for the motor:

• the coarse one, composed of 5081 nodes, 21 099 elements, and a maximum edge length of
0.04457 m;
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Figure 3. Solution by the finite element method for the thin mesh.

Figure 4. Solution by the lumped parameter method for the coarse mesh.

Figure 5. Solution by the lumped parameter method for the fine mesh.

• the fine one, composed of 26 066 nodes, 126 006 elements, and a maximum edge length of
0.022554 m.

The time step was 10 s.
Figure 3 shows the solution of the finite element method at time t =2 h, whereas Figures 4

and 5 show the solution of the lumped parameter method at time t =2 h for the coarse and the
thin meshes, respectively.

First, for the coarse mesh we have compared the solution of problem P obtained by the finite
element method with the one of the lumped parameter model LP after computing the reduced
basis with the same mesh. The relative error in the L2([0,T ];�) norm was 2.127%. The same
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Figure 6. Evolution of temperature in nodes belonging to winding and stator.

computations have been done for the fine mesh. In this case the relative error was 2.056%. We note
that the slight improvement should be attributed to a better calculation of the basis functions �P

i j

and �C
i j because we have not increased the dimension of the reduced basis space.

Figure 6 shows the evolution of temperature according to both methods in some nodes, belonging
to the winding and the stator, by using the thin mesh.

Of course, the computing time is favorable to the lumped parameter method. For the thin mesh,
the first part of the computations lasted 275 s (the basis was computed sequentially) and for the

second part it lasted only 83 s. We took advantage of the fact that air temperature �̃
C
i and heating

f were time independent, allowing to precalculate a part of vector b̃ in (70). The computing time
for the finite element method was 715 s. We note that a mesh refinement used in the first part does
not involve a longer computing time in the second part, since the degrees of freedom for the latter
are only related to the number of ports and convective boundaries.

8. CONCLUSIONS

We have introduced a family of lumped parameter models for solving parabolic partial differential
equations as those arising from transient heat transfer problems. The approach consists of a Galerkin
method corresponding to reduced bases defined for a domain decomposition. These bases are
well adapted to the geometry and the physics of the problem hence good approximations can be
obtained with a very low number of degrees of freedom.

One of the advantages of the method with respect to the lumped parameter methods existing in
the bibliography is that the capacitance and resistance matrices are built in a general and automatic
way hence we are not obliged to introduce any geometrical parameters which are, in general, rather
arbitrary.
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