UCM Modelling Week

$16^{\text {th }}-24^{\text {th }}$ June 2008 Madrid

New Optimal Strategies for the Station Keeping of Communications Satellites in Geostationary Orbits using Electric Propulsion

Problem proposed by GMV

Miguel Ángel Henche, Matthew Edwards, José Ignacio Martín, Samuel Gamito, Silvia Pierazzini, Elisa Sani

Supervisor: Pilar Romero

Work Structure

1. Statement of the problem: optimal control for a dynamical system
Model for the dynamical system: second order differential equations
2. Solution with the method of variation of the constants
3. Analysis of the evolution of parameters involved
4. Control linear equations
5. Optimization control minimizing a cost function
6. Assumptions for determining the cost function
7. Definition of the cost function
8. Algorithm for minimize the cost function
9. Analysis of the results
10. Future works

Geostationary Orbit

To keep a satellite in a nominal longitude above the Earth

$$
\begin{aligned}
& P=24^{h} \Rightarrow a_{s}=42164.2 \mathrm{Km} \\
& i=0^{\circ} \text { equatorial } \\
& e=0 \text { circular }
\end{aligned}
$$

Perturbations tend to shift a geostationary satellite from its nominal station point.

Problem Specification

The orbit changes with time

Main perturbing forces are:

- Earth Gravitational Field
- Lunisolar Force
- Solar Radiation Pressure

Natural evolution for a month

GENERAL PROBLEM: How to maintain a geostationary satellite within its orbital window.

Station Keeping

Orbital station keeping manoeuvres for a geostationary satellite are performed to compensate for natural perturbations that tends to change the orbit to non geostationary.

Station keeping Modelling:

- Mean orbital elements: obtained by means of linearized Lagrange equations, where the perturbation function contains only those terms causing secular and long period perturbations.
- Linear equations for computing manoeuvres

Classical Approach

-Two thrusters located in normal plane (N/S) and in tangential plane(E/W)

New Model (proposed by GMV):

-One thruster with direction specified by the cant, γ, and, σ, slew angles.

Objectives

Problem definition
Objective function Equality constraints

$$
\begin{gathered}
\min f(x) \\
x \in \mathfrak{R}^{n}: \begin{array}{c}
g_{i}(x)=0 \quad i=1, \ldots, m_{e} \\
g_{i}(x) \geq 0 \quad i=m_{e+1}, \ldots, m
\end{array}
\end{gathered}
$$

Inequality constraints

Objective function

Optimisation variables for each manoeuvre:
Mid-point of the manoeuvre
Duration of the manoeuvre

Geostationary Orbit SYNCHRONOUS ORBITAL ELEMENTS:

Geostationary satellites have e and i values close to zero. To avoid numerical singularities the following orbital elements are considered

- Semimajor axis, a
- Eccentricity vector
- $e_{x}=e \cos (\Omega+\omega)$
- $e_{y}=e \sin (\Omega+\omega)$
- Inclination vector
- $i_{x}=i \cos \Omega$
- $\mathrm{i}_{\mathrm{y}}=\mathrm{i} \sin \Omega$

- Mean longitude, $\mathrm{I}=\Omega+\omega+\mathrm{M}-\theta_{\mathrm{G}}$

Geostationary Orbit Evolution

$$
\begin{aligned}
\frac{d a}{d t} & =\frac{2}{n a} \cdot \frac{\partial R}{\partial l}, \\
\frac{d l}{d t} & =n-\Omega_{\oplus}-\frac{2}{n a} \cdot \frac{\partial R}{\partial a}+\frac{e\left(1-e^{2}\right)^{1 / 2}}{n a^{2}\left[1+\left(1-e^{2}\right)^{1 / 2}\right]} \cdot \frac{\partial R}{\partial e}+ \\
& +\frac{\tan i / 2}{n a^{2}\left(1-e^{2}\right)^{1 / 2}} \cdot \frac{\partial R}{\partial i}, \\
\frac{d e_{x}}{d t} & =-\frac{\left(1-e^{2}\right)^{1 / 2}}{n a^{2}} \cdot \frac{\partial R}{\partial e_{y}}-\frac{e_{y, t} \tan i / 2}{n a^{2}\left(1-e^{2}\right)^{1 / 2}} \cdot \frac{\partial R}{\partial i}- \\
& -\frac{e_{x}\left(1-e^{2}\right)^{1 / 2}}{n a^{2}\left[1+\left(1-e^{2}\right)^{1 / 2}\right]} \cdot \frac{\partial R}{\partial l}, \\
\frac{d e_{y}}{d t} & =\frac{\left(1-e^{2}\right)^{1 / 2}}{n a^{2}} \cdot \frac{\partial R}{\partial e_{x}}+\frac{e_{x} \tan i / 2}{n a^{2}\left(1-e^{2}\right)^{1 / 2}} \cdot \frac{\partial R}{\partial i}- \\
& -\frac{e_{y}\left(1-e^{2}\right)^{1 / 2}}{n a^{2}\left[1+\left(1-e^{2}\right)^{1 / 2}\right]} \cdot \frac{\partial R}{\partial l}, \\
\frac{d i_{x}}{d t} & =\frac{1}{n a^{2}\left(1-e^{2}\right)^{1 / 2}} \cdot \frac{\partial R}{\partial i_{y}}-\frac{\cos \Omega \tan i / 2}{n a^{2}\left(1-e^{2}\right)^{1 / 2} \operatorname{sen} i} \frac{\partial R}{\partial \omega}, \\
\frac{d i_{y}}{d t} & =\frac{1}{n a^{2}\left(1-e^{2}\right)^{1 / 2}} \cdot \frac{\partial R}{\partial i_{x}}-\frac{\operatorname{sen} \Omega \tan i / 2}{n a^{2}\left(1-e^{2}\right)^{1 / 2}} \frac{\partial R}{\partial \omega},
\end{aligned}
$$

Lagrange equations

Earth Gravitational Field

Acting mainly on the semi major axis and longitude

$$
\begin{aligned}
& \frac{d l}{d t}=n-\Omega_{\oplus}-\frac{2}{n a} \frac{\partial R}{\partial a} \\
& \frac{d a}{d t}=\frac{2}{n a} \frac{\partial R}{\partial l}
\end{aligned}
$$

Terrestrial perturbing potential

Earth Gravitational Field

4 equilibrium points depending on $I\left(I^{\prime \prime}=0\right)$:

$$
\begin{aligned}
& \mathrm{I}_{1}=14^{\circ} .92 \mathrm{~W} \text { (unstable) } \mathrm{I}_{2}=75^{\circ} .08 \mathrm{E} \text { (stable) } \\
& \mathrm{I}_{3}=104^{\circ} .92 \mathrm{~W} \quad \text { (unstable) } \quad \mathrm{I}_{4}=165^{\circ} .08 \mathrm{E} \text { (stable) }
\end{aligned}
$$

Earth Gravitational Field

l (grados)	$\ddot{l}\left(m / 2^{2}\right)$	$\ddot{l}\left(\right.$ gradosidia $\left.{ }^{2}\right)$
73.00	-0.00000000501	0.000152
74.00	-0.00000000261	0.000079
75.00	-0.00000000020	0.000006
76.00	0.00000000222	-0.000068
77.00	0.00000000464	-0.000141
78.00	0.00000000706	-0.000215

The longitude describes a parabola in time:

$$
l(t)=l\left(t_{0}\right)+i\left(t_{0}\right)\left(t-t_{0}\right)+\frac{\ddot{i}}{2}\left(t-t_{0}\right)^{2}
$$

Earth Gravitational Field

Maximum time within the orbital window:

$$
T=4 \sqrt{|\delta l / \ddot{l}|}
$$

\boldsymbol{l} (grados)	\ddot{l} (grados/dia ${ }^{2}$)	T (dias)
75 E	0.000006	365
76 E	-0.000068	108
83 E	-0.000577	37
117 W	-0.001968	20
30 W	-0.000887	30
105 W	0.000006	365

Lunisolar Force

Acting mainly on the inclination vector

$$
\begin{aligned}
& \frac{d i_{x}}{d t}=-\frac{1}{m a^{2}} \frac{\partial R}{\partial i y} \\
& \frac{d i y}{d t}=\frac{1}{n a^{2}} \frac{\partial R}{\partial i_{x}}
\end{aligned}
$$

R Lunisolar Perturbing Potential $\quad R=R_{L}+R_{S}$

Lunisolar Force

- The inclination vector is modified:
$i_{x}=-0^{\circ} .3895 \cos \Omega_{L}-0^{\circ} .00457 \cos 2\left(\omega_{L}+v_{L}\right)-0^{\circ} .02331 \cos 2 \lambda_{\odot}$ $i_{y}=0^{\circ} .8475 t-0^{\circ} .2903 \sin \Omega_{L}-0^{\circ} .004 \sin 2\left(\omega_{L}+v_{L}\right)-0^{\circ} .02139 \sin 2 \lambda_{\odot}$
- Periodical perturbations and secular drift

North/South Station keeping

Mean Secular Line Strategy

Year	Δ isec (deg)	Ω sec (deg)
2003	0.9186	96.08
2004	0.9358	93.83
2005	0.9445	91.25
2006	0.9442	88.57
2007	0.9350	86.01
2008	0.9173	83.79
2009	0.8922	82.13
2010	0.8617	81.23
2011	0.8286	81.26
2012	0.7967	82.34
2013	0.7703	84.45
2014	0.7537	87.39
2015	0.7498	90.73
2016	0.7595	93.96
2017	0.7808	96.57
2018	0.8102	98.25

Solar Radiation Pressure

Acting mainly on the eccentricity vector

$$
\begin{aligned}
\frac{d e_{x}}{d t} & =-\frac{1}{n a^{2}} \frac{\partial R}{\partial e_{y}} \\
\frac{d e_{y}}{d t} & =\frac{1}{n a^{2}} \frac{\partial R}{\partial e_{x}}
\end{aligned}
$$

R perturbing potential depends on satellite mass, reflectivity and surface area, as well as shielding (Like the sail of a sailboat).

Solar Radiation Pressure

Eccentricity vector describes a circle with one year period

$$
\begin{aligned}
& e_{x}(t)=e_{x}\left(t_{0}\right)+R_{e}\left(\cos s_{\odot}(t)-\cos s_{\odot}\left(t_{0}\right)\right), \\
& e_{y}(t)=e_{y}\left(t_{0}\right)+R_{e}\left(\sin s_{\odot}(t)-\sin s_{\odot}\left(t_{0}\right)\right),
\end{aligned}
$$

Model for the GEO Orbit Evolution

We consider the evolution of mean orbital elements when the perturbing function only contains those terms causing long period perturbations. Thus,

- The evolution of the mean longitude is parabolic
- The evolution of the mean inclination vector has a secular drift in a direction (varying each year) with periodic components superimposed
- The annual evolution of the mean eccentricity vector can be approximated by a circle.

Linear Manoeuvres

The effects on the synchronous elements due to a velocity increment $\Delta \vec{V}$, (split into the radial, $\Delta \vec{V}_{r}$, tangential, $\Delta \vec{V}_{t}$, and normal, $\Delta \vec{V}_{n}$, directions), from a manoeuvre trust in a sidereal time in the satellite of s_{b}, are given by the following linearized equations:

$$
\left.\begin{array}{l}
\Delta e_{x}=\frac{2 V_{t}}{V} \cos \left(s_{b}\right)+\frac{V_{r}}{V} \sin \left(s_{b}\right) \\
\Delta e_{y}=\frac{2 V_{t}}{V} \sin \left(s_{b}\right)-\frac{V_{r}}{V} \cos \left(s_{b}\right) \\
\Delta i_{x}=-\frac{V_{n}}{V} \cos \left(s_{b}\right) \\
\Delta i_{y}=-\frac{V_{n}}{V} \sin \left(s_{b}\right)
\end{array}\right\}\left\{\begin{array}{l}
\Delta \vec{e} \mid \\
\Delta V_{t}=V \frac{\mid \Delta \bar{e}}{2} \\
\Delta V_{n}=V|\Delta \vec{i}| \\
\Delta V_{r}=V|\Delta \vec{e}|
\end{array}\right.
$$

Assumptions for modelling the cost function

- Fix the longitude $\mathrm{I}_{\mathrm{s}}=30^{\circ} \mathrm{W}$

$$
\ddot{I}=-0.000887 \mathrm{deg} / \mathrm{day}^{2}
$$

- Fix the longitude and latitude dead-bands to be $\pm 0.05^{\circ}$.
- Fix the year to be 2008. So $\Delta \mathrm{i}=0.9173$, $\Omega_{\text {sec }}=83.790$
- Consider each day separately and assume that 21 march corresponds to $\mathrm{S} \odot=0^{\circ}$ and $n \odot=0.9856$ deg/day in order to model the solar radiation pressure effect.

More assumptions

Assume only 1 thruster, whose direction is defined by a cant angle, Y , and slew angle, σ.
Assume the thruster is a Stationary Plasma Thruster, which gives $\mathrm{F}=61.5 \times 10^{-3} \mathrm{~N}$.
Assuming the mass of the satellite is 4000 kg we get an acceleration of $a=1.537 \times 10^{-5} \mathrm{~m} / \mathrm{s}^{2}$

Cost function

Define:
c1 $=\mathrm{a} \sin \gamma \cos \sigma$
c2 $=-\mathrm{a} \sin \gamma \sin \sigma$
c3 $=-\mathrm{a} \cos \gamma$

$$
\begin{aligned}
& f\left(T_{d}\left(s_{b}, \gamma, \sigma\right)\right)=3 T_{d}=\frac{\Delta V_{r}}{c_{1}}+\frac{\Delta V_{t}}{c_{2}}+\frac{\Delta V_{n}}{c_{3}} \\
& |\Delta \vec{i}|=? \quad|\Delta \vec{e}|=?
\end{aligned}
$$

Constraints

Equality constraints:

$$
\frac{\Delta V_{t}}{c_{2}}-\frac{\Delta V_{n}}{c_{3}}=0 \quad \frac{\Delta V_{r}}{c_{1}}-\frac{\Delta V_{t}}{c_{2}}=0
$$

Inequality constraints:

$$
c_{1}, c_{2}, c_{3}>0
$$

$\left(\left|c_{4} \cos s_{b}\right|+\left|c_{4} \cos \Omega\right|-i_{x}\right)^{2}+\left(\left|c_{4} \sin s_{b}\right|-\left|c_{4} \sin \Omega\right|+i_{y}\right)^{2}-i_{c}^{2} \leq 0$
Where $\quad c_{4}=\frac{\left|\Delta i_{\text {sec. .year }}\right|}{365}$

Eccentricity correction:

$$
\begin{aligned}
\vec{e}^{-} & =e_{0}^{\prime}+\mathrm{R}_{\mathrm{e}}\left\{\begin{array}{l}
\cos s_{\odot}(t) \\
\sin s_{\odot}(t)
\end{array}\right\} \\
\vec{e}^{+} & =e_{0}\left\{\begin{array}{l}
-\cos s_{b} \\
-\sin s_{b}
\end{array}\right\}+\mathrm{R}_{\mathrm{e}}\left\{\begin{array}{l}
\cos s_{\odot}(t+1) \\
\sin s_{\odot}(t+1)
\end{array}\right\}
\end{aligned}
$$

By

$$
\begin{gathered}
\left|\vec{e}^{+}\right|=e_{c} \\
|\Delta \vec{e}|=\left|\vec{e}^{+}-\vec{e}^{-}\right|
\end{gathered}
$$

Program

```
function returns= func_a_mini(variable)
* This is the cost function that returns the engine's time to correct the
* orbit. This function is wich we have to minimize.
Sb=variable(1);
slew=variable(2);
cant=variable(3);
global day Sun_day;
parameters;
returns = abs(Delta_Vr/c1+Delta_Vt/c2+Delta_Vn/c3);
```


This is the cost function in Matlab.

```
function [c,cec] = restricciones(variable)
% Number of variables: 3
* Functions
% Objective: func_a_mini
% Gradient:
* Hessian:
% Nonlinear constraints:
finite-differencing
% Gradient of nonlinear constraints: finite-differencing
*Constraints
* Number of nonlinear inequality constraints: 5
* Number of nonlinear equality constraints: 2
* Number of linear inequality constraints: 0
* Number of linear equality constraints: 0
% Number of lower bound constraints: 0
% Number of upper bound constraints: 0
* Algorithm selected
* medium-scale
Sb=variable(1);
slew=variable(2);
cant=variable(3);
global day Sun_day;
parameters;
ceq(1)=Delta Vr/ci-Delta Vt/c2;
ceq(2)=Delta_Vt/c2 - Delta_Vn/c3;
c=[];
c(1) = abs(c4*cos(Sb)) +abs(c4*cos(Omega sec))-ic+ix;
c(2) =- abs(c4*sin(Sb)) +abs(c4*sin(Omega_sec))-ic+iv;
c(3) = -c1;
c(4) = -c2;
c(5) = -c3;
```


Results

Daily thrust running time

More results

Sidereal time for the mid-point of the manouver

Number of Days

Final conclusions

Linear relationship between s_{b} and s_{o} due to the prominence of $\Delta \mathrm{i}$, brought about by the lunisolar perturbation.
T_{d} more or less constant at 2.5 hours because we don't consider eclipse effects (during which, manouvres are forbidden).

Further Work

- Eclipse Effects - When the Earth is between the satellite and the sun, manouvres are forbidden and more correction is needed subsequently
- Complexify the model by removing assumptions: Consider different longitudes; consider more than one thruster.

