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Work Structure
1. Statement of the problem: optimal control for a dynamical

system
2. Model for the dynamical system: second order differential

equations
3. Solution with the method of variation of the constants
4. Analysis of the evolution of parameters involved
5. Control linear equations
6. Optimization control minimizing a cost function
7. Assumptions for determining the cost function
8. Definition of the cost function
9. Algorithm for minimize the cost function
10. Analysis of the results
11. Future works



Geostationary Orbit
To keep a satellite in a 
nominal longitude above the
Earth

P = 24h ⇒ as=42164.2Km
i = 0º equatorial
e = 0 circular

Perturbations tend to shift a geostationary
satellite from its nominal station point.



Problem Specification

The orbit changes with  
time 

Main perturbing forces are:
Earth Gravitational Field
Lunisolar Force
Solar Radiation Pressure

GENERAL PROBLEM: How to maintain a geostationary
satellite within its orbital window.

Natural evolution for a month



Station Keeping

Orbital station keeping manoeuvres for a geostationary satellite are 
performed to compensate for natural perturbations that tends to
change the orbit to non geostationary.

Station keeping Modelling:

Mean orbital elements: obtained by means of linearized Lagrange
equations, where the perturbation function contains only those
terms causing secular and long period perturbations.

Linear equations for computing manoeuvres

Classical Approach

Two thrusters located in normal plane (N/S) and in tangential
plane(E/W)

New Model (proposed by GMV):

One thruster with direction specified by the cant, γ, and, σ, slew
angles.



Objectives
Problem definition

Objective function
Equality constraints
Inequality constraints

Objective function

Optimisation variables for each manoeuvre:
Mid-point of the manoeuvre
Duration of the manoeuvre
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Geostationary Orbit
SYNCHRONOUS ORBITAL ELEMENTS:
Geostationary satellites have e and i values close to
zero. To avoid numerical singularities the following
orbital elements are considered

Semimajor axis, a

Eccentricity vector
ex = e cos(Ω + ω)
ey = e sin(Ω + ω)

Inclination vector
ix = i cosΩ
iy = i sinΩ

Mean longitude, l = Ω + ω + M - θG



Geostationary Orbit Evolution

Lagrange equations



Earth Gravitational Field

Acting mainly on the semi major axis
and  longitude 

Terrestrial perturbing potential



Earth Gravitational Field

4 equilibrium points depending on l (l”=0):
l1 = 14º.92 W  (unstable)    l2 = 75º.08 E  (stable)
l3 = 104º.92 W    (unstable)    l4 = 165º.08 E  (stable)



Earth Gravitational Field

The longitude describes a parabola in time:



Earth Gravitational Field
Maximum time within the orbital window:



Lunisolar Force

R = RL + RS

Acting mainly on the inclination vector

R Lunisolar Perturbing Potential



Lunisolar Force

The inclination vector is modified:
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North/South Station keeping

Mean Secular Line Strategy



Solar Radiation Pressure
Acting mainly on the eccentricity vector

R perturbing potential depends on satellite mass, 
reflectivity and surface area, as well as shielding 
(Like the sail of a sailboat).



Solar Radiation Pressure

Eccentricity vector 
describes a circle 
with one year
period
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Model for the GEO Orbit Evolution

We consider the evolution of mean orbital elements
when the perturbing function only contains those
terms causing long period perturbations. Thus,

The evolution of the mean longitude is parabolic
The evolution of the mean inclination vector has 
a secular drift in a direction (varying each year) 
with periodic components superimposed
The annual evolution of the mean eccentricity
vector can be approximated by a circle.



Linear Manoeuvres
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Assumptions for modelling the
cost function

Fix the longitude ls=30ºW

Fix the longitude and latitude dead-bands to be 
±0.05º. 
Fix the year to be 2008. So Δi=0.9173, 
Ωsec=83.79º
Consider each day separately and assume that
21 march corresponds to s๏=0º and n๏=0.9856 
deg/day in order to model the solar radiation
pressure effect.

20.000887deg/l day= −



More assumptions
Assume only 1 thruster, whose direction is defined by a cant angle, 

γ, and slew angle, σ.
Assume the thruster is a Stationary Plasma Thruster, which gives

F=61.5 X 10-3 N.
Assuming the mass of the satellite is 4000kg we get an acceleration

of a=1.537 X 10-5 m/s2



Cost function

Define:
c1=a sinγ cosσ
c2=-a sinγ sinσ
c3= -a cosγ
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Constraints
Equality constraints:

Inequality constraints:        
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Eccentricity correction:
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Program

This is the cost function in Matlab.





Results

Daily thrust running time 
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More results
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Linear relationship between sb and s๏ due to the
prominence of Δi, brought about by the lunisolar
perturbation.

Td more or less constant at 2.5 hours because we don´t
consider eclipse effects (during which, manouvres are 
forbidden).

Final conclusions



Further Work

Eclipse Effects – When the Earth is between the 
satellite and the sun, manouvres are forbidden and 
more correction is needed subsequently
Complexify the model by removing assumptions:

Consider different longitudes;
consider more than one thruster.
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