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1 Introduction

In �nance the yield curve is the relation between the interest rate and the time

to maturity of the debt for a given borrower in a given currency. The value of
an interest rate curve can be known today and can be used to obtain today's
values for �xed income securities, futures, derivatives etc. Now, if we wish to
know the value of these securities in the future, the interest rate curves must be
simulated. Our work deals with this simulation.

We �rst use historical data of interest rates to estimate the parameters re-
quired to describe the future values by a Monte Carlo simulator. The under-
lying assumption is that the interest rates �t a certain model, for instance the
log-normal model. Further work includes the generation of parameters for the
Nelson-Siegel model using historical data and establishing a model that best
describes the evolution of each parameter with time. This allows us to simu-
late future parameter values for the Nelson-Siegel model and hence gives us an
alternate method for predicting future interest rate developments.

2 Modelling

2.1 Monte Carlo Simulator assuming a Lognormal Model

Monte Carlo methods are based on random sampling and are most frequently
used in problems without a deterministic solution. In �nance they are used
to value and analyze basic �nancial models through to complex instruments
by simulating various sources of uncertainty a�ecting their value and then de-
termining their average value over the range of resultant outcomes. We use a
Monte Carlo method to simulate the evolution of interest rate curves with time,
as outlined below. For this purpose we must assume a model for the evolution.
The log-normal model is a suitable and convenient model because it allows us to
use a variety of stochastic calculus methods that are based on this assumption.

Let us consider that the risk factors (interest rates for di�erent maturities)
follow the lognormal stochastic model with constant instantaneous mean µ and
volatility σ:

dX

X
= µdt+ σdW (2.1)

where dW is a Wiener process, ie

dW =
√
dtZ

where Z ∼ N (0, 1), has a standard normal distribution.

This model has an explicit solution for the stochastic variable X, namely:

log (X (t)) = log (X (t0)) +
(
µ− 1

2
σ2

)
(t− t0) + σ

√
t− t0Z Z ∼ N (0, 1) .
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This can be easily checked by Ito's Lemma:

d (log (X)) =
∂

∂X
(log (X)) dX +

1
2

∂

∂X2
(log (X))

(
dX2

)
=
dX

X
− 1

2
dX2

X2

=
(
µ− 1

2
σ2

)
dt+ σ

√
dtZ

Then, log(X (t)) follows a brownian motion with constant drift µ − 1
2σ

2 and
volatity σ. Integrating the process between t0 and t we obtain1:

log (X (t))− log (X (t0)) =
(
µ− σ2

2

)
(t− t0) + σ

√
t− t0Z ,

or

X (t) = X (t0) exp
((

µ− σ2

2

)
(t− t0) + σ

√
t− t0Z

)
. (2.2)

One variable: estimating µ and σ from historical data

Suppose we have only one risk factor with its historical data. We want to
estimate µ and σ from the historical data.

Let us assume that we haveM+1 historical observations xi, i = 1, . . .M+1,
one for each day, and we assume that

dt ∼ 1 day.

First we construct the returns

ri :=
dxi

xi
=
xi+1 − xi

xi
,

and then use the estimator for the daily mean:

r̄ =
1
M

M∑
i=1

ri ∼ µdt . (2.3)

And for the daily volatility:

s =

√√√√ 1
M − 1

M∑
i=1

(ri − r̄)2 ∼ σ
√
dt (unbiased estimator) . (2.4)

Then, we have the estimates for the annual mean and volatitity:

µ =
r̄

dt
σ =

s√
dt
.

For a unique risk factor, the Monte Carlo simulation is now complete; we must
generate a unique sample of a standard normal variable Z and plug the value
into (2.2) to obtain simulations of X (t) given a value X (t0).

1Because of the explicit solution of the SDE we can integrate it. If we change the model

we-ll have to compute the solution step by step from the starting time t0 to the desired time t
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Several variables: covariance matrix.

In the case of several variables we must take into account the stochastic depen-
dence between samples. Let us assume that we have N risk factors that follow
a lognormal model as (2.1):

dXj

Xj
= µjdt+ σjdWj . (2.5)

Notice that the Wiener process is indexed in order to show explicitly that we
have a di�erent stochastic variable for each risk factor.

The way to obtain the parameters for the simulation is the same as for a
unique risk factor, using the returns of each variable and the mean (2.3) and
volatility (2.4). We use now the notation xij for the i historical sample of the
variable j. Assume again that we have M + 1 data for each variable:

rij =
Xi+1,j −Xij

Xij
. (2.6)

r̄j =
1
M

M∑
i=1

rij ∼ µjdt .

sj =

√√√√ 1
M − 1

M∑
i=1

(rij − r̄j)2 ∼ σj

√
dt .

Therefore, taking into account the anualised values:

µj =
1

dtM

M∑
i=1

rij

σj =

√√√√ 1
dt (M − 1)

M∑
i=1

(rij − r̄j)2 .

These are the parameters that we will use in the explicit solution for each factor:

Xj (t) = Xj (t0) exp

((
µj −

σ2
j

2

)
(t− t0) + σj

√
t− t0Zj

)
.

The main problem now is how to generate the N normal variables with the
correlation implied by the data. This is a standard procedure that can be done
in several ways. Here we need to take into account the time scaling factor in
the stochastic term of the model (2.5).

Let us call R the matix of returns and R∗ the centered data matrix, that is,
the one that is obtained from R by subtracting the daily mean of each column
(µjdt). Then:

cov (rl, rm) =
1

M − 1

M∑
i=1

r∗ilr
∗
im (unbiased estimator) . (2.7)
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Notice that (due to the model selected) this is an estimate of the quantity:

cov (rl, rm) ∼ σlσmdt cov (Zl, Zm) .

Then our covariance matrix is given by

cov (Zl, Zm) =
cov (rl, rm)
σlσmdt

. (2.8)

Notice that

σlσmdt =
1

(M − 1)

√√√√ M∑
i=1

(ril − r̄l)2
M∑
i=1

(rim − r̄m)2 .

Normal correlated samples generated by Cholesky's factorization

Let us call V the covariance matrix cov(Zl, Zm). A way to generate the samples
is to make a kind of Gram-Schmidt process, generating independent ξi normal
variables:

Z1 = λ11ξ1 ⇒ λ11 = 1 .

Now we want ξ2 independent of ξ1:

Z2 = λ21ξ1 + λ22ξ2

where λ22, λ12 are coe�cients to be determined in such a way that Z1 and Z2

have the correct covariation:

V22 = λ2
22 + λ2

21 = 1

V12 = λ21 ⇒ λ22 =
√

1− V 2
12 .

The following step:
Z3 = λ31ξ1 + λ32ξ2 + λ33ξ3

then:

V13 = λ31

V23 = λ21λ31 + λ22λ32

V33 = λ2
33 + λ2

32 + λ2
31

and so on.
The Cholesky factorization would be:

Z = Ωξ ⇒ V = E
[
ZZT

]
= ΩΩT ,

where E [·] is the expected value applied to each matix component. Comput-
ing Ω is one way to generate N correlated normal variables by means of N
independent ones.

We cannot use the Cholesky factorization of V , because it is not positive
de�nite.

Another way to obtain a factorization of the correlation matrix is explained
in the next paragraph.
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Numbers generated with the data.

Recall that R∗ is the matrix de�ned by the centered data:

r∗ij = rij − µj

and we have by de�nition (cf. 2.7 and 2.8) that

Vml = cov (Zm, Zl) =

{
(R∗)T R∗

}
lm

(M − 1)σlσmdt

So that, if we rescale the data:

Cij =
r∗ij

σj

√
(M − 1) dt

Then
V = CTC

Now consider the output of the product

Z = Ωξ (2.9)

where ξ is an M dimensional vector of independent standard normal variables
and Ω = CT . If we consider the covariance matrix of the variable Z we have
that

E
[
(Ωξ) (Ωξ)T

]
= ΩΩT = CTC = V

Therefore, we can generate a sample of normal correlated variables with V
correlation matrix, with the formula (2.9).

2.2 Fitting yield curves: the Nelson-Siegel model.

The �tting method of Nelson and Siegel [1] allows to construct the instantaneous
forward yield curve by a family of functions consisting of a constant and the
solutions of a second order di�erential equation with constant coe�cients, when
the roots of the associated polinomial are real and equal. In this case we can
write:

r (m) = β0 + β1exp (−m/τ) + β2 (m/τ) exp (−m/τ) . (2.10)

The relationship between forward and continuous rates with maturity m is
as follows. Consider the growing factor on the interval [m,m+ ∆m]:

P (0,m)
P (0,m+ ∆m)

∆m > 0,

where P (t,m) is the price at time t of a unit amount of money that will be
paid in time m. When we compute the forward instantaneous in that interval
for ∆m→ 0 we obtain:

1 + r (m) ∆m ≈ P (0,m)
P (0,m+ ∆m)

⇒ r (m) = lim
∆m→0

P (0,m)− P (0,m+ ∆m)
∆mP (0,m+ ∆m)

,
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and then

r (m) = −∂P (0,m)
∂m

1
P (0,m)

.

For continous compounding we have that:

P (0,m) = exp (−mR (m))⇒ ∂P (0,m)
∂m

= − (mR (m))′ exp (−mR (m))

and we obtain:

r (m) = (mR (m))′ ⇒ R (m) =
1
m

∫ m

0
r (x) dx ,

therefore, R (m) is a kind of mean integral value of the forward instantaneous
rates that we observe today. Taking into account this formula and the model
(2.10), we can integrate and obtain:

R (m) =
1
m

(
β0m− τβ1e

−m
τ + β2

(
τ
(

1− e
−m
τ

)
−me

−m
τ

))
= β0 +

τ

m
(β1 + β2)

(
1− e

−m
τ

)
− β2e

−m
τ

In this case β0 is the behaviour form→∞, β0+β1 is the short term behavior,
and β1 + β2 de�nes the mid term behaviour (about two or three years).

3 Implementation of Montecarlo method

As mentioned previously, Monte Carlo methods require a given distribution for
generating random scenarios. We propose the usage of a lognormal distru-

bution and we �rst need to statistically validate this choice using our historical
data.

In general, interest rate samples are distributed around a central value and
exhibit a drift with time. This is an important property of the data since the
majority of tools used in statistical analysis depend on the stationary nature
of the data over time, that is the distribution of samples around their average
without drift.

In �gure 1 we see a typical evolution of the interest rate in a given day. The
variation is due to a unitary root in the stochastic variable. If the root is lower
than 1, the variable average is stationary, with the variable itself varying in a
random way without drifting away from the average value.

We conducted statistical tests to establish whether the interest rate and the
�rst di�erence of its logarithm (which gives the yield) have a unit root. The
data (the signi�cance level in particular) implies that there is no unit root for
the interest rates themselves, but for the �rst di�erence of the logarithm. The
use of the lognormal model can therefore be justi�ed in the latter case only.

As the data for the interest rates is not stationary, it cannot be normally
distributed. Thus the equation

dS = µdt+ σdW (3.1)
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Figure 1: In the �rst column we have the histograms of the development of
interest rates for di�erent maturities (1 week, 1 month, 20 years). The second
column shows the returns based on the interest rates in column 1.

D-Lag t-adf βY1 σ t-DYlag t-prob AIC F-prob

2 -3.686** 0.66740 0.01349 0.3604 0.7193 -8.572
1 -3.841** 0.67941 0.01343 -0.3711 0.7114 -8.591 0.7193
0 -4.405** 0.66662 0.01337 -8.610 0.8755

Table 1: 1 DAY � LIR-EUR-MONEY-TN: ADF tests (T = 99, Constant;
5% = −2.89 1% = −3.50)

D-Lag t-adf βY1 σ t-DYlag t-prob AIC F-prob

2 �1.504 0.94818 0.005580 -1.731 0.0866 -10.34
1 -1.805 0.93808 0.005637 0.3914 0.6963 -10.33 0.0866
0 -1.772 0.94036 0.005613 -10.35 0.2120

Table 2: 1 WEEK � LIR-EUR-MONEY-1W: ADF tests (T = 99, Constant;
5% = −2.89 1% = −3.50)

where W is a Wiener process, does not hold.

Eventually we show that historical returns follow the model

dS

S
= µdt+ σdW (3.2)

.

In fact we can divide it into two parts:
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D-Lag t-adf βY1 σ t-DYlag t-prob AIC F-prob

2 -1.102 0.98104 0.003737 -0.2790 0.7808 -11.14
1 -1.131 0.98069 0.003719 -1.189 0.2375 -11.16 0.7808
0 -1.233 0.97897 0.003727 -11.16 0.4805

Table 3: 1 MONTH � LIR-EUR-MONEY-1M: ADF tests (T = 99, Constant;
5% = −2.89 1% = −3.50)

• unit root test: to look for data stability. So we can summarize in tables,
as we did before. From tables 4, 5, 6 we �gure that we can accept the null
hypotesys so we can �gure that the date of the returns are stables.

D-Lag t-adf βY1 σ t-DYlag t-prob AIC F-prob

4 -5.503** -0.65021 0.01451 0.7836 0.4353 -8.405
3 -6.079** -0.52145 0.01448 1.562 0.1217 -8.419 0.4353
2 -6.192** -0.30764 0.01459 -0.03037 0.9758 -8.414 0.2238
1 -8.216** -0.31181 0.01452 0.9226 0.3586 -8.434 0.3899
0 -11.86** -0.19775 0.01450 -8.446 0.4258

Table 4: 1 DAY � DLIR-EUR-MONEY-TN: ADF tests (T = 96, Constant;
5% = −2.89 1% = −3.50)

D-Lag t-adf βY1 σ t-DYlag t-prob AIC F-prob

4 -4.132** -0.17232 0.005640 -1.458 0.1484 -10.30
3 -5.850** -0.39837 0.005674 0.7507 0.4547 -10.29 0.1484
2 -6.667** -0.29412 0.005661 0.6985 0.4866 -10.31 0.2650
1 -8.484** -0.20170 0.005645 2.171 0.0324 -10.32 0.3692
0 -9.564** 0.013591 0.005756 -10.29 0.1046

Table 5: 1 WEEK � DLIR-EUR-MONEY-TN: ADF tests (T = 96, Constant;
5% = −2.89 1% = −3.50)

D-Lag t-adf βY1 σ t-DYlag t-prob AIC F-prob

4 -3.050* 0.24405 0.003293 -5.425 0.0000 -11.37
3 -6.127** -0.47223 0.003773 1.673 0.0978 -11.11 0.0000
2 -6.128** -0.25784 0.003809 0.4947 0.6220 -11.10 0.0000
1 -7.615** -0.19258 0.003794 0.4405 0.6606 -11.12 0.0000
0 -11.14** -0.14053 0.003778 -11.14 0.0000

Table 6: 1 MONTH� DLIR-EUR-MONEY-TN: ADF tests (T = 96, Constant;
5% = −2.89 1% = −3.50)

• normal test: to verify that the returns are normal distributed. We can
split the data in two parts. The data in the short run and those in the
long run. For the short run we can see that the normal model doesn't �t
the data. In fact the normal test refuse the null hypothesis:
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H0: does a normal distribution �t the data for the returns?

as we can observe by table 7 (the behaviour is the same until the 2 years).

On the other hand data in the long run accept the null hypothesis, as we
can observe by table 8 and the behaviour is quite the same for all dates
after 3 years.

Observations 101
Mean -0.00012613
Std Dev. 0.014406
Skewness 0.16399
Excess Kurtosis 3.9402
Minimum -0.058064
Maximum 0.058064
Asymptotic test: χ2(2) = 65.786 [0.0000]**
Normality test: χ2(2) = 44.356 [0.0000]**

Table 7: 1 DAY normality test

Observations 101
Mean 0.0024918
Std Dev. 0.0024918
Skewness 0.0024918
Excess Kurtosis 0.28271
Minimum -0.027448
Maximum 0.045584
Asymptotic test: χ2(2) = 1.4467 [0.4851]
Normality test: χ2(2) = 1.8847 [0.3897]

Table 8: 3 YEARS normality test

We have �nally to test one more thing to see if the returns �ts the model.
When we assume that they follow a model like in 2.1, we're assuming that the
process have independent increments. If we take a daily discretization of time
and we consider

drt
rt

=µdt+Wt

drt+1

rt+1
=µdt+Wt+1

where drt = rt+1 − rt, rt is the interest rate for a �xed risk factor and Wt is
a Wiener process, we are assuming that Wt and Wt+1 are independent. So we
we look at the autocorrelation function in �g. 2 we notice that there is not
evidence of a correlation of the returns computed today with those that were
given by previous days. We can observe this behaviour by the histogram of the
autocorrelation of the returns, �g. 2 and notice that a periodic correlation with
the 5th day, 10th day, ...
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Figure 2: Autocorrelation of returns of di�erent risk factors (1 week, 1 month,
20 years).

3.1 Criticism of the Montecarlo method

Problems with the Montecarlo method

We focus now on the problems that arise using this kind of model. The �rst
evident problem is that the curves generated with the Montecarlo method are
discontinuous as we can observe by �gure 3 Another problem is connected with
the distribution. As mentioned before we noticed that in the short run data
doesn't have a normal distribution while they �t it well in the long run. This is
put into evidence also by �g. 4.

We can notice that while for the long run the curves approach each other,
in the short run they show signi�cant di�erences.

Possibly solutions

Looking at �g. 4 we notice that the density function generated by the data
shows higher tails than the normal, so we could try to modi�ed the normal
distribution with the t-Student or other distribution with thick tails. But in
this case we'll miss the power of the stochastic calculus and the more similarity
with the data will change in a more di�cult model, with heavier computations.

We'll try a di�erent approach with the Nelson-Siegel model, as shown in the
next paragraphs.
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Figure 3: Simulated interest rate curve using Montecarlo simulator.

Figure 4: Density graphs. Here we've put the theoric density function (normal,
red line) together with the estimated density function for the data.

4 Implementation of Nelson Siegel model

As we've done for the Montecarlo method we're going to analyze statistically
the data and to get few estimates. We used the original data of interest rates
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and a matlab program for the calibration of the Nelson Siegel model in order to
obtain historical data for the Nelson Siegel model (the betas).

4.1 Stability test

We made the unit root test to look for stability and we took into account
short sample size because we noticed strange variations and behaviour for the
parameters estimated using the full sample size.

Integrating over time we get the graphics as shown in �g. 5 that give us the
gross behaviour of the Nelson Siegel parameters.

Figure 5: Beta estimated using short sample size.

Using the unit root stationarity test we �nd that β0 and τ are stationary,
but β1 and β2 are not. Therefore we have to modelize the �rst di�erence of β1

and β2 (see �g. 6), while we-ll use the original series for β0 and τ .
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Figure 6: First di�erence of β1 and β2.

4.2 Normality test

Proceding with the normality test we noticed that all the series of betas show a
behaviour typical for normal distributions. We have few doubts only for the β0

parameter. Therefore we can apply the ARIMA model methodology to estimate
which are the stochastic processes which generate the betas, in this case we
do not make any a priori assumptions about the behaviour of this stochastic
process.

4.3 Identi�cation of the stochastic processes that generate be-

tas and calibration

We use in this part statistical tools to �nd out which would be the stochastic
processes that generate the betas. We'll omit the technical details focusing our
attention on few graphs to discover which are the orders of the ARIMA models
which generate each parameter (see �g. 7) and giving the conclusions.

Here we can underline that the data for the betas don't show independence
(as shown in the second column of graphs). In the third column of �g. 7 we put
into evidence that the today-value of a parameter is strictly correlated with the
value at the previous time, but is weakly connected with the other ones. This
lead to the conclusion that the stochastic processes that generate the parameters
are

β0 ARIMA(1,0,0)
β1 ARIMA(0,1,1)
β2 ARIMA(0,1,1)
τ ARIMA(0,0,1)

The calibration of the previous models using the historical data for the betas
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Figure 7: In the �rst row is shown the behaviour of β0, Dβ1, Dβ2 and τ . In the
second column are shown the respective autocorrelation functions and in the
last one the partial autocorrelation functions

leads to the calibrated models:

(β0,t−0.045) =0.616(β0,t−1− 0.045) + ε0,t with ε0,t i.i.d. N(0, 0.0005)
(4.1)

(0.0014) (0.087) (0.0014) (4.2)

∆β1,t =3.25510−5 + ε1,t− 0.4028ε1,t−1 with εt i.i.d. N(0, 0.0006)
(4.3)

(4.06 10
−5

) (0.1117) (4.4)

∆β2,t =0.000108 + ε2,t− 0.416ε2,t−1 with εt i.i.d. N(0, 0.0028)
(4.5)

(0.000188) (0.122) (4.6)

τt =2.1004 + ε3,t+ 0.268ε3,t−1 with εt i.i.d. N(0, 0.604)
(4.7)

(0.0865) (0.096) (4.8)

where we put into brackets the standard deviations for the estimate of the
parameters of the model.

5 Conclusions

We identi�ed the statistical models underlying the evolution of the parameters of
the Nelson Siegel Model in time. We found that the parameters are not constant
and, in fact, we have estimated the stochastic processes which rule the evolution
of these parameters. Afterwards, we can �t the interest rate curve using the
estimated parameters and, also, to forecast the parameters out-of-sample and,
using them, make a prediction for the interest rate curve in the future. The
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Figure 8: Comparison between historical data with the �tted curve using the
Nelson Siegel model for the date 8th of May of 2008.

Figure 9: Forecast of the interest rate curve using the Nelson Siegel model. The
T -curve is real data from 8th of May of 2008 and the other curves are forecasts.

advantage of using the Nelson Siegel model with estimated parameters over the
Monte Carlo simulation is the absence of assumptions about the data a priori,
as we did not assume the data to �t any particular model. We also found the
Nelson Siegel curves for the interest rates are smoother than those generated by
Monte Carlo simulation.

Regarding the Monte Carlo simulator, we found that the lognormal model is
insu�cient for the purpose of the simulation and that a more complex model in
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the form of a di�erent distribution is required to obtain more accurate results.
In particular, we need a model that accounts for the outliers in the data that
do not �t a normal distribution.

Further Work

All of our work was centred on a single data set. Further work would involve
testing our results on di�erent interest rate data samples to con�rm their global
validity as well as developing more complex models that better �t the data for
the Monte Carlo simulations.
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Figure 10: Residuals for the ARIMA models calibrated to the parameters in the
Nelson Siegel model.
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