Polishing Lead Crystal Glass

Università degli Studi di Firenze University of Oxford Universidad Complutense de Madrid

June 24, 2008

Ξ

Polishing Lead Crystal Glass

The Team

Agnese Bondi Francisco López Luca Meacci Cristina Pérez Luis Felipe Rivero Elena Romero

Ξ

2 Model 1: constant normal velocity

- The model
- Numerical results

- The model
- Numerical simulations and analysis
- Model 3: exponential velocity

E

<ロト < 回 > < 三 > < 三 >

Model 1: constant normal velocity Model 2: linear velocity Model 3: exponential velocity Conclusions

- Irish manifacturer produces lead crystal glasses.
- They become opaque and rough after the cutting process.
- Polishing with immersion in acid.

E

Model 1: constant normal velocity Model 2: linear velocity Model 3: exponential velocity Conclusions

Polishing process

Acid immersion \rightarrow Rinsing process \rightarrow Settle down

The glasses are introduced in inserts like the one we can see in the picture.

Polishing Lead Crystal Glass

Model 1: constant normal velocity Model 2: linear velocity Model 3: exponential velocity Conclusions

Polishing process

Acid immersion \rightarrow Rinsing process \rightarrow Settle down

The glasses are introduced in inserts like the one we can see in the picture.

Polishing Lead Crystal Glass

Model 1: constant normal velocity Model 2: linear velocity Model 3: exponential velocity Conclusions

Polishing process

The glasses are introduced in inserts like the one we can see in the picture.

Polishing Lead Crystal Glass

Model 1: constant normal velocity Model 2: linear velocity Model 3: exponential velocity Conclusions

Polishing process

 $\mbox{Acid immersion} \ \ \rightarrow \mbox{Rinsing process} \ \ \rightarrow \mbox{Settle down}$

The glasses are introduced in inserts like the one we can see in the picture.

Polishing Lead Crystal Glass

Model 1: constant normal velocity Model 2: linear velocity Model 3: exponential velocity Conclusions

Reactions.

 $\begin{array}{rcl} SiO_2 + 4HF & \longrightarrow & SiF_4 + 2H_2O \\ PbO + H_2SO_4 & \longrightarrow & PbSO_4 + H_2O \\ K_2O + 2HF & \longrightarrow & 2KF + H_2O \\ SiF_4 + 2HF & \longrightarrow & H_2SiF_6 \end{array}$

- Oxid + Acid = Salts.
- Soluble salts disappear in the water.
- Insoluble salts precipitate.

Ξ

・ロト ・回ト ・ヨト ・ヨト

Model 1: constant normal velocity Model 2: linear velocity Model 3: exponential velocity Conclusions

What is the problem?

- How does the process work?
- How long should the glass be immersed?
- Optimising the problem?

E

< D > < B > < E > < E >

Model 1: constant normal velocity Model 2: linear velocity Model 3: exponential velocity Conclusions

General assumptions

- One dimensional problem
- Initial form as the roughness: sinus .
- Homogeneous Neumann conditions.

Ξ

Model 1: constant normal velocity Model 2: linear velocity Model 3: exponential velocity

The model Numerical results

Model 1: constant normal velocity

・ロト ・日 ・ ・ ヨ ・ ・

Polishing Lead Crystal Glass

 $\exists \rightarrow$ E

The model Numerical results

Model 1: constant normal velocity

First Model Equation

$$s_t = -v\sqrt{1+s_x^2}$$

・ロト ・日下・ ・ ヨト・

E

The model Numerical results

Charpit Method

Non-dimensionalisated equation

$$s_t = -\sqrt{1+s_x^2}$$

$$F(x, t, s, p, q) = q + \sqrt{1 + p^2} = 0, \quad p = s_x, \quad q = s_t$$

Problem

$$\begin{cases} \dot{x} = F_p \\ \dot{t} = F_q \\ \dot{s} = pF_p + qF_q \\ \dot{p} = -F_x - pF_s \\ \dot{q} = -F_t - qF_s \end{cases}$$

90

Polishing Lead Crystal Glass

The model Numerical results

Problem and Solution

$$\begin{cases} \dot{x} = \frac{p}{\sqrt{1+p^2}} \\ \dot{t} = 1 \\ \dot{s} = -\frac{1}{\sqrt{1+p^2}} \\ \dot{p} = 0 \\ \dot{q} = 0 \end{cases} \qquad \begin{cases} x = \xi \\ t = 0 \\ s = S_0(\xi) = A\sin(\xi) \\ p = S'_0(\xi) \\ q = -\sqrt{(1+S'_0(\xi)^2)} \end{cases}$$

$$S(X(\xi,t),t) = S_0(\xi) - rac{1}{\sqrt{1+S_0'^2}}t$$

$$X(\xi, t) = \xi + rac{S'_0}{\sqrt{1+S'_0^2}}t.$$

E

The model Numerical results

Plotting with Matlab

 $t \in [0, 3]$ $x \in [-15, 15]$

The model Numerical results

Plotting with Matlab

 $t \in [0,3], x \in [0,2\pi]$

time step= 1, space step = 1

Ξ

・ロト ・回ト ・ヨト ・ヨト

The model Numerical results

Plotting with COMSOL Multiphysics

Ξ

Polishing Lead Crystal Glass

The model Numerical simulations and analysis

Model 2: linear velocity

• Linear relationship between velocity and surface curvature k.

•
$$v = v_0 + v_1 \kappa$$
.

•
$$\kappa = -\frac{s_{XX}}{(1+s_X^2)^{3/2}}$$
.

Second Model Equation

$$s_t = -v_0 \sqrt{1+s_x^2} + v_1 rac{s_{xx}}{1+s_x^2}$$

Ξ

Polishing Lead Crystal Glass

The model Numerical simulations and analysis

Model 2: linear velocity

• Linear relationship between velocity and surface curvature k.

•
$$v = v_0 + v_1 \kappa$$
.

•
$$\kappa = -\frac{s_{XX}}{(1+s_X^2)^{3/2}}$$
.

Second Model Equation

$$s_t = -v_0 \sqrt{1 + s_x^2} + v_1 rac{s_{xx}}{1 + s_x^2}$$

Ξ

The model Numerical simulations and analysis

Numerical simulations

1. Non-dimensionalization

$$egin{aligned} s_t &= -\left(1+s_x^2
ight)^{rac{1}{2}}+\epsilonrac{s_{ ext{xx}}}{1+s_x^2}\ \epsilon &=rac{ extsf{v_1}}{ extsf{v_0}} \end{aligned}$$

2. Finite elements method (COMSOL).

・ロト ・回ト ・ヨト ・ヨト

Ξ

The model Numerical simulations and analysis

Critical ϵ value

ϵ values	Results
0	Previous model.
$\epsilon > 0.141$	The surface goes up at the beginning.
$0 < \epsilon \le 0.141$	The surface always goes down.

Polishing Lead Crystal Glass

The model Numerical simulations and analysis

Finite Difference Method (Matlab)

Numerical discretisation:

$$S_{t} = \frac{S_{n+1} - S_{n}}{\tau}$$

$$S_{x} = \frac{S_{n}(x+h) - S_{n}(x-h)}{2h}$$

$$S_{xx} = \frac{S_{n+1}(x-h) - 2S_{n+1}(x) + S_{n+1}(x+h)}{h^{2}}$$

<ロト < 回 > < 回 > < 三 > < 三 >

Ξ

The model Numerical simulations and analysis

Solutions

Critical ϵ value.

E

The model Numerical simulations and analysis

About initial conditions

$$A = \frac{a}{l}$$

1

where a = height and l = length.

Ξ

Model 3: exponential velocity

Exponential relationship between normal velocity and surface curvature.

$$\bigvee_{v = v_0 + v_1 k = v_0 \left(1 + \frac{v_1}{v_0} k\right) \cong v_0 \exp\left(\frac{-v_1 s_{xx}}{v_0 (1 + s_x^2)^{\frac{3}{2}}}\right)$$

Ξ

Conclusions

1. Model 1, v as a constant. Hammilton-Jacobi non-linear equation:

$$s_t = -v\sqrt{1+s_x^2}$$

- **2.** $t^* = \frac{1}{v}t^*_c(A)$
- **3.** Model 2, v linearly dependent on k ($v = v_0 + v_1 k$). Diffusion equation:

$$s_t = -\left(1 + s_x^2\right)^{\frac{1}{2}} + \epsilon rac{s_{xx}}{1 + s_x^2}$$

- **4.** $\epsilon = \frac{v_1}{l v_0}$ critical value, if it is too large it becomes unphysical.
- 5. Next step: Exponential problem.
- 6. Not as easy finding a proper velocity rate when several acids appear. New research?

Bibliography

P. Ferster, S.C. Muller, B. Hesso, Critical size and curvature of wave formation in an excitable chemical medium, Proc. Nail. Acad. Sci. USA vol 86 p 6831-6834, September 1989

Web of knowledge→Web of Science http://www.accesowok.fecyt.es/

Google http://www.google.es/

Wikipedia http://en.wikipedia.org/wiki/Main_Page

MACSI (Mathematics applications Consortium for Science and Industry) http://www.macsi.ie

Infante, Juan Antonio, Numerical Methods Notes

Ξ

Polishing Lead Crystal Glass

...questions?

E

Polishing Lead Crystal Glass

< □ > < □ > < □ > < □ > < □ > < □ >