Polishing Lead Crystal Glass

Università degli Studi di Firenze
University of Oxford
Universidad Complutense de Madrid

June 24, 2008
Introduction
Model 1: constant normal velocity
Model 2: linear velocity
Model 3: exponential velocity
Conclusions

The Team

Agnese Bondi
Francisco López
Luca Meacci
Cristina Pérez
Luis Felipe Rivero
Elena Romero
Summary

1. Introduction

2. Model 1: constant normal velocity
 - The model
 - Numerical results

3. Model 2: linear velocity
 - The model
 - Numerical simulations and analysis

4. Model 3: exponential velocity

5. Conclusions
Introduction

Irish manufacturer produces lead crystal glasses.

They become opaque and rough after the cutting process.

Polishing with immersion in acid.
Polishing process

Acid immersion → Rinsing process → Settle down

The glasses are introduced in inserts like the one we can see in the picture.

Those inserts belong to a basket which is immersed in the acid solution.
Polishing process

Acid immersion → Rinsing process → Settle down

The glasses are introduced in inserts like the one we can see in the picture.

Those inserts belong to a basket which is immersed in the acid solution.
Polishing process

Acid immersion \rightarrow Rinsing process \rightarrow Settle down

The glasses are introduced in inserts like the one we can see in the picture.

Those inserts belong to a basket which is immersed in the acid solution.
Polishing process

Acid immersion → Rinsing process → Settle down

The glasses are introduced in inserts like the one we can see in the picture.

Those inserts belong to a basket which is immersed in the acid solution.
Polishing process

- Reactions.

\[
\begin{align*}
SiO_2 + 4HF & \rightarrow SiF_4 + 2H_2O \\
PbO + H_2SO_4 & \rightarrow PbSO_4 + H_2O \\
K_2O + 2HF & \rightarrow 2KF + H_2O \\
SiF_4 + 2HF & \rightarrow H_2SiF_6
\end{align*}
\]

- Oxid + Acid = Salts.
- Soluble salts disappear in the water.
- Insoluble salts precipitate.
What is the problem?

- How does the process work?
- How long should the glass be immersed?
- Optimising the problem?
General assumptions

- One dimensional problem
- Initial form as the roughness: sinus.
- Homogeneous Neumann conditions.
Model 1: constant normal velocity

- \(s(x, t) \) surface.
- \(F(x, z, t) = z - s(x, t) = 0 \).
- \(n = \frac{\nabla F}{||\nabla F||} = \frac{(-s_x, 1)}{\sqrt{1+s_x^2}} \).
- Material Derivative
 \[\frac{\partial F}{\partial t} + v_n ||\nabla F|| = 0 \]
 \(v_n \) rate removal surface

\[s_t = -v \sqrt{1 + s_x^2} \]
Model 1: constant normal velocity

- $s(x, t)$ surface.
- $F(x, z, t) = z - s(x, t) = 0$.
- $n = \frac{\nabla F}{||\nabla F||} = \frac{(-s_x, 1)}{\sqrt{1+s_x^2}}$.
- Material Derivative
 \[\frac{\partial F}{\partial t} + v_n ||\nabla F|| = 0 \]
 v_n rate removal surface

First Model Equation

\[s_t = -v \sqrt{1 + s_x^2} \]
Introducione
Model 1: constant normal velocity
Model 2: linear velocity
Model 3: exponential velocity
Conclusions

Charpit Method

Non-dimensionalised equation

\[s_t = -\sqrt{1 + s_x^2} \]

\[F(x, t, s, p, q) = q + \sqrt{1 + p^2} = 0, \quad p = s_x, \quad q = s_t \]

Problem

\[
\begin{aligned}
\dot{x} &= F_p \\
\dot{t} &= F_q \\
\dot{s} &= pF_p + qF_q \\
\dot{p} &= -F_x - pF_s \\
\dot{q} &= -F_t - qF_s
\end{aligned}
\]
Problem and Solution

\[
\begin{align*}
\dot{x} &= \frac{p}{\sqrt{1+p^2}} \\
\dot{t} &= 1 \\
\dot{s} &= -\frac{1}{\sqrt{1+p^2}} \\
\dot{p} &= 0 \\
\dot{q} &= 0
\end{align*}
\]

\[
S(X(\xi, t), t) = S_0(\xi) - \frac{1}{\sqrt{1+S_0'^2}} t
\]

\[
X(\xi, t) = \xi + \frac{S_0'}{\sqrt{1+S_0'^2}} t.
\]
Plotting with Matlab

\[t \in [0, 3] \]
\[x \in [-15, 15] \]
Plotting with Matlab

\[t \in [0, 3], \, x \in [0, 2\pi] \]

\textit{time step} = 1, \textit{space step} = 1
Plotting with COMSOL Multiphysics
Model 2: linear velocity

- Linear relationship between velocity and surface curvature k.
- $v = v_0 + v_1 k$.
- $k = -\frac{s_{xx}}{(1+s_x^2)^{3/2}}$.

Second Model Equation

$$s_t = -v_0 \sqrt{1 + s_x^2} + v_1 \frac{s_{xx}}{1 + s_x^2}.$$
Model 2: linear velocity

- Linear relationship between velocity and surface curvature k.
 \[v = v_0 + v_1 \kappa. \]
- $\kappa = -\frac{s_{xx}}{(1+s_x^2)^{3/2}}$.

Second Model Equation

\[s_t = -v_0 \sqrt{1 + s_x^2} + v_1 \frac{s_{xx}}{1 + s_x^2}. \]
Numerical simulations

1. Non-dimensionalization

\[s_t = - \left(1 + s_x^2 \right)^{\frac{1}{2}} + \epsilon \frac{s_{xx}}{1 + s_x^2} \]

\[\epsilon = \frac{v_1}{l v_0} \]

2. Finite elements method (COMSOL).

(video)
Critical ϵ value

<table>
<thead>
<tr>
<th>ϵ values</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Previous model.</td>
</tr>
<tr>
<td>$\epsilon > 0.141$</td>
<td>The surface goes up at the beginning.</td>
</tr>
<tr>
<td>$0 < \epsilon \leq 0.141$</td>
<td>The surface always goes down.</td>
</tr>
</tbody>
</table>

(video)

Polishing Lead Crystal Glass

Numerical simulations and analysis

Conclusions

The model

Model 1: constant normal velocity
Model 2: linear velocity
Model 3: exponential velocity

Introduction
Finite Difference Method (Matlab)

Numerical discretisation:

\[
S_t = \frac{S_{n+1} - S_n}{\tau}
\]

\[
S_x = \frac{S_n(x + h) - S_n(x - h)}{2h}
\]

\[
S_{xx} = \frac{S_{n+1}(x - h) - 2S_{n+1}(x) + S_{n+1}(x + h)}{h^2}
\]
Solutions

Critical ϵ value.
About initial conditions

\[A = \frac{a}{l} \]

where \(a = \text{height} \) and \(l = \text{length} \).

The bigger \(A \) is, the slower velocity goes.

\[A = 0.5 \quad A = 1 \]

\textbf{Polishing Lead Crystal Glass}
Model 3: exponential velocity

Exponential relationship between normal velocity and surface curvature.

\[v = v_0 + v_1 k = v_0 \left(1 + \frac{v_1}{v_0} k\right) \approx v_0 \exp \left(\frac{-v_1 s_{xx}}{v_0 (1+s_x^2)^{3/2}}\right) \]
Conclusions

1. Model 1, ν as a constant. Hamilton-Jacobi non-linear equation:

 $$ s_t = -\nu \sqrt{1 + s_x^2} $$

2. $t^* = \frac{l}{\nu} t_c^*(A)$

3. Model 2, ν linearly dependent on k ($\nu = \nu_0 + \nu_1 k$). Diffusion equation:

 $$ s_t = - \left(1 + s_x^2 \right)^{\frac{1}{2}} + \epsilon \frac{s_{xx}}{1 + s_x^2} $$

4. $\epsilon = \frac{\nu_1}{l \nu_0}$ critical value, if it is too large it becomes unphysical.

6. Not as easy finding a proper velocity rate when several acids appear. New research?
Bibliography

Google http://www.google.es/

MACSI (Mathematics applications Consortium for Science and Industry) http://www.macsi.ie

Infante, Juan Antonio, *Numerical Methods Notes*
Introduction
Model 1: constant normal velocity
Model 2: linear velocity
Model 3: exponential velocity

Conclusions

...questions?