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@ Irish manifacturer produces lead crystal glasses.

@ They become opaque and rough after the cutting process.

@ Polishing with immersion in acid.
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Acid immersion

— Rinsing process
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Acid immersion

— Rinsing process

— Settle down
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@ Reactions.

Si0, + 4HF
PbO + H»S504
K20 + 2HF
SiFs + 2HF

@ Oxid + Acid = Salts.

@ Soluble salts disappear in the water.

@ Insoluble salts precipitate.

SiF4 +2H>,0
PbSO4 + H>O
2KF + H>,O
H>SiFg




@ How does the process work?

@ How long should the glass be immersed?

@ Optimising the problem?




@ One dimensional problem

@ Initial form as the roughness: sinus .

@ Homogeneous Neumann conditions.
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s(x, t) surface.
F(x,z,t)=
z—s(x,t)=0.

o n=YE (=s01)

VI = Jirs?’
Material Derivative
% + wn[[VF] = 0
v, rate removal surface
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@ s(x,t) surface.
® F(x,z,t) =
z—s(x,t)=0.
_ VF _ (=s01)
D= VAT s
@ Material Derivative

9+ v, I[VF| =0
v, rate removal surface




st =—/1+s2

F(thasapaq):q+vl+p =0, p=s, g=st

Problem
x=F,
= F,

s = pF, +qFy
b= _Fx_st
q=—Fi—Fs
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non-dim. A=1,1=0123 non-dim. A=1,1=0,1.23

t €10,3],x € [0,27]

time step= 1, space step =1
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@ V=\y+ V1K.
0 K=

J— Sxx
s

@ Linear relationship between velocity and surface curvature k.




@ Linear relationship between velocity and surface curvature k.
@ V=\y+ V1K.
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1. Non-dimensionalization

5t:—(1+53)
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2. Finite elements method (COMSOL).
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| evalues | Results |
0 Previous model.
e > 0.141 The surface goes up at the beginning.
0 <e<0.141 The surface always goes down.

(video)
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Numerical discretisation:

St _ 5n+1 - Sn
T
. _ So(x + h) — Su(x — h)
- 2h
5. — Snt+1(x = h) = 25p11(x) + Spy1(x + h)
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A=2
where a = height and | = length.
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The bigger A is, the slower velocity goes.
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curvature.

Exponential relationship between normal velocity and surface
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o

. Model 1, v as a constant. Hammilton-Jacobi non-linear

equation:

st =—vy/1+4s2
t* = Ltz(A)

Model 2, v linearly dependent on k (v = vy + v k). Diffusion
equation:
Sk

14 s2
€= ,—"v% critical value, if it is too large it becomes unphysical.
Next step: Exponential problem.

Not as easy finding a proper velocity rate when several acids
appear. New research?
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