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1 Credit Scoring

1.1 Introduction

Our problem is concerned with how and who a bank should loan its money to. When

a client applies for a loan the bank would like to be sure that the client will pay back

the full amount of the loan. In the past the decision was made solely on the bank’s

experience in lending money. This method is highly subjective and the banks would

like a more systematic approach.

One way of doing this, which we present here, is to fit a Generalized Linear Model

to past data and use this to produce a probability that the borrower will repay the

loan. This probability, along with the lenders experience is then used to decide if the

bank should lend to a particular client. This method can also be used for the problem

of issuing general insurance, for example car insurance.

This problem is a routine one that is already in use by many banks and insurance

firms. Many tools exist in MATLAB and SAS which make the implementation of each

step trivial.

1.2 Methodology and Data

There are five clear steps which we took to complete this problem. These are

• Univariate Analysis,

• Multivariate Analysis,

• Model Creation,

• Model Validation,

• Model Calibration.

Our data was provided by Accenture and include details of completed loan agree-

ments. The variables included are age, income, wealth, marital status, length as a

client, amount of loan and length of loan.
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1.3 Solution

1.3.1 Univariate Analysis

This involves calculating statistics for each variable like mean, median, standard

deviation, skewness etc... The purpose of this task is to provide a general feeling for

the data. This information can be used as a first check before applying the model to

a particular client. For example, if the average age in the data is 65 and the client is

18, it is likely that the model will not be relevant.

1.3.2 Multivariate Analysis

We need to decide which variables from the data to include within our model. Firstly

we compute the correlation matrix. With this information, if any two variables are

highly correlated we may discard one of them as it does not provide any new in-

formation. The second test is the χ2-test. This tests the dependance between each

variable and the response variable, in our case whether the client defaulted. If there

is significant statistical evidence that a variable is independent of default, it does not

make sense to include it in the model. With our data the χ2-test indicated we should

drop the variables length of loan and amount of loan.

1.3.3 Model Creation

We are looking to compute the default probability using the regression model:

Default = f(x1, . . . , xn) + ǫ,

where x1, . . . , xn are the explainatory variables (age, income, ), ǫ is the residual, and f

is our function for regression. As our response variable is binomial we use the logistic

(logit) model where

P (default : X) =
1

1 + exp(−Xβ)

where β is a vector of parameters to be determined from the data.

β can be easily calculated using the MATLAB function glmfit or using the SAS

procedure proc logistic.
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Calculated βi.
β1 Intercept -1.85136
β2 Age -0.02678
β3 Income 0.10025
β4 Wealth -0.01761
β5 Marital Status 0.79651
β6 Maturity 0.00892

1.3.4 Model Validation

We have used Powerstat method, as it is implicit in the proc logistic at SAS.

We have been able to obtain a wrong rate of 23.6%. We establish an estimation

like default if it is greater than the frontier: 0.31

Obtained Results:
Defaults Estimated: 137
Wrong Estimations: 173
Observed Defaults: 138

1.3.5 Model Calibration

The expected loss is defined as:

EL = PD × EAD × LGD,

where PD is the is the percentage of defaults, EAD is the exposition to default and

LGD are losses given default.

PD is defined as default probability calibrated for a year

Scoring probabilities allows us to sort people against default. However, when we

try to understand these probabilities we must realize that these probabilities do not

take into account when default happens.

This is the reason for calibrate the Scoring results, and obtain the yerly average

probability.

To obtain the calibration, we have to get a sample of people who have been

observed in periods of years. The model is applied to each person to obtain the

scoring and then grouped by score.
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We count how many people are in default, obtaining a default observed rate. The

aim of the calibration is to model with a formula that default rate:

A(C + score)B.

A, B, C must be estimated by minimizing the least squares error. We compute

this in MATLAB using the function fminsearch. The values obtained are:

A = 0.0004, B = 3.7410, C = 2.7870.

2 Capital Allocation

2.1 The problem

In this problem a lender has a fixed amount of money to lend, EAD, between n blocks

of similiar customers. The lender would like to know, for a given level of risk, how he

should distribute his money between the blocks to maximise his profit.

Each block has associated with it an interest rate ρi, an a priori probabilty of

default PDi, the loss given default LGDi and the number of customers Ni.

If each customer in each block is independent of the rest then we can easily

compute the probability of k defaults using the binomial distribution. However the

customers are correlated via the economy. Using Gaussian-Copula we can introduce

a loss distrbution for each customer

Zi =

m
∑

j=1

ai
jYj + riwi.

The Yj are indices for different parts of the economy, maybe unemployment rate,

stock market index etc... We assume that the state of the economy is fixed. The

ai
j represent the weighting given to each part of the economy for the customers in

block i. wi is a standard normal variable for the systemic risk associated with each

customer and ri the standard deviation. We now have that

Φ(Zi) < PDi ⇐⇒ Default.

We can use the above to show that the probability of default given a particular

state of the economy is

pi = Φ

(

Φ−1(PDi) −
∑m

j=1
ai

jYj

ri

)

.
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When presented this problem starting point was to simulate the wi for each cus-

tomer in every block and repeat thousands of times to produce a simulated loss dis-

tribution. This approach take a long time to compute and it is not clear how to then

optimise given the simulated loss distribution. We would like to seek an analytical

expression for the loss distribution.

The probability pi represents the independent probabilty of default for each cus-

tomer in block i. We are now able to use the binomial distribution.

P (k defaults) =

(

Ni

k

)

pk
i (1 − pi)

Ni−k.

As the Ni are in the order of 103 we can use the Central Limit Theorem to approximate

the binomial distribution with a normal random variable, Di, with mean Nipi and

variance Nipi(1 − pi).

Di ∼ N(Nipi, Nipi(1 − pi)).

We use α1 . . . αn to denote the fraction of EAD allocated to each of the n blocks.

We assume that each person in a block borrows an equal fraction of the moeny, namely

αiEAD
Ni

. The loss distribution can now be constructed as

L =
n
∑

i=1

αiEAD

Ni

(LGDiDi − (Ni − Di)ρi).

As the Di are normal random variables we see the L is also a normal random

variable.

L ∼ N(µL, σ2

L)

where

µL =

n
∑

i=1

αiEAD(LGDi pi − (1 − pi)ρi)

σ2

L =
n
∑

i=1

α2

i EAD2(LGDi + ρi)
2

Ni

pi(1 − pi).

The problem is to minimise expected loss, µL, such that the αi’s sum to one and

the level of risk is fixed. To measure risk we use Value at Risk (VaR) with a 99%

confidence level. Formally:
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Minimise
f(α) = µL

subject to the constraints

n
∑

i=1

αi = 1

−2.3262 × σL + µL = V aR99,

where V aR99 is the fixed level of risk the lender is willing to take.

2.2 Implementation

We used MATLAB to implement the above optimisation problem.

To start with we took 3 blocks of customers with 3 economic indices. Initially we

ran through a large number of possible α = (α1 . . . α3). For each α we were able to

compute the V aR99 and µL. This was then plotted to produce an efficient border.

This did not take long to compute for 3 blocks, however for larger number of blocks

this process is computationally expensive.

We then used the MATLAB optimisation function fmincon to find the optimal α for

a given V aR99. Figure 1 shows the two methods compared. The block parameters

suck as ρi, Ni, ... were chosen at random.

We can see that the optimisation has worked well in choosing the α which gives the

lowest loss for a given level of risk. As a check we also implemented the simulation

of wi for a given α to compare with our analytic distribution. We got very good

agreement between the two, on the order of 10−4.

The next step was to increase the number of blocks to 5. The brute force approach

worked but took considerably longer than with 3 blocks. The optimisation however

did not perform. The reason for this is not known for sure. It could be down to

unrealistic parameters, a bad starting point or a bad choice of solver. Figure 2 shows

the brute force approach applied to five blocks.

2.3 Conclusions

We found that the analytical method outperformed the simulation of wi as expected.

To optimise for more than 3 blocks the choice of optimiser needs to be investigated
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Figure 1: Brute Force vs. Optimisation for 3 blocks
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Figure 2: Brute Force for 5 blocks
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furhter. Another interesting question is to look at the relationship between the ef-

ficient border and the interest rates charged for each block. We can also make the

ecomony indices random variables and see how that changes the problem.
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