Vacuum deposition chamber

Andrea L. Jose Antonio Z. Natalia C. Juan Luis G. Maria Pilar V. Laura H.

June 24, 2008

< A

< ∃ >

Andrea L., Jose Antonio Z., Natalia C., Juan Luis G., Maria Pilar V., Laura H. Vacuum deposition chamber

Outline

2 The model

3 Mathematical model and simulations

4 Modifications of the problem

5 Conclusions

Overview of the problem

Problem statement

- In industry vacuum deposition is used for the generation of coating.
- Example: reflecting part of projectors for cars
- The deposition occurs in a chamber with two electrodes creating a gradient of potential.
- This modifies the repartition of the ions and electrons present in the chamber.
- The ions act as catalyser for the polymere reaction involved in the coating.

Main objective: Obtain in the chamber a large region with a high concentration of ions.

Our work : model and simulations

- Develop and study a model describing the process in the chamber
- 1D model (cartesian and cylindric)
- 2D model
- Influence of parameters (gas pressure, temperature, electrical voltage)

The simulations are all made with the software COMSOL.

Outline

Description of the problem

2 The model

3 Mathematical model and simulations

4 Modifications of the problem

5 Conclusions

The model: Hypothesis

- Electrostatic field
- Atmosphere of plasma (polymere) might contain all kind of positive and negative particules. We assume that the only positive particules are ions and the only negative particules are electrons.
- The chamber is cylindrical.
- The cathode is the small cylinder in the center of the chamber, which is used as the anode.

The equations 1-D model 1-D cylindrical model 2-D case

イロト イヨト イヨト イヨト

Outline

Conclusions

Andrea L., Jose Antonio Z., Natalia C., Juan Luis G., Maria Pilar V., Laura H. Vacuum deposition chamber

The equations 1-D model 1-D cylindrical model 2-D case

Equations

- 3 variables : potential V, density of ions n_i and of electrons n_e
- Poisson equation: -△V = ^e/_ε(n_i n_e), where △ is the Laplacian, e is the elementary charge and ε is the dielectric constant of the atmosphere in the chamber.
- Continuity equations of the form: ^{∂ρ}/_{∂t} + divJ = source(x, t). In our stationary case:
 - $\nabla J_i = \mu_i n_e S(V)$
 - $\nabla J_e = \mu_e n_e S(V)$, where J_i and J_e represent the current densities of ions and electrons. μ_i and μ_e are the mobility of the ions and electrons. S(V) is the frequency of ionisation given by Townsend formula.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

• The current densities are described by a model called "drift-diffusion" : $J_i = -\mu_i n_i \nabla V - D_i \nabla n_i$ and $J_e = -\mu_e n_e \nabla V - D_e \nabla n_e$

The equations 1-D model 1-D cylindrical model 2-D case

イロト イポト イヨト イヨト

Dimensionless equations

We denote :

- $V = V_0$
- $n_i = n_0 n'_i$
- $n_e = n_0 n'_e$

and get the dimensionless equations:

•
$$-\triangle u = n_i - n_e$$
,
• $\nabla (-\pi \nabla u = \nabla \pi) - \mu_e$

•
$$\nabla (-n_i \nabla u - \nabla n_i) = \frac{\mu_e}{\mu_i} n_e S(u)$$

•
$$\nabla .(n_e \nabla u - \nabla n_e) = n_e S(u)$$

The equations 1-D model 1-D cylindrical model 2-D case

イロト イポト イヨト イヨト

Boundary conditions

For the electrical potential, electron and ion densities:

- At the anode:
 - The potential is $u = u_0$
 - Electrons are attracted and effectively absorbed, $J_e.\underline{n} = -n_e \nabla V.\underline{n}$
 - No emission of ions, $J_i \cdot \underline{n} = 0$
- At the cathode:
 - The potential is $u = -u_0$
 - Ions are attracted and effectively absorbed, $J_i \cdot \underline{n} = -n_i \nabla V \cdot \underline{n}$
 - No emission of electrons, $J_e.\underline{n} = 0$

The equations **1-D model** 1-D cylindrical model 2-D case

Model test

In the cartesian coordinates the equations become:

•
$$-u_{xx} = n_i - n_e$$

•
$$(-n_iu_x-n_{ix})_x=\alpha n_eS(u),$$

•
$$(n_e u_x - n_{ex})_x$$
,

with the boundary conditions

at the anode (x=1)

•
$$u = V_0 > 0$$

•
$$n_i u_x + n_{ix} = 0$$

• at the cathode (x=0)

•
$$u = -V_0$$

•
$$n_{ix} = 0$$

•
$$n_e u_x - n_{ex} = 0$$
,

The equations **1-D model** 1-D cylindrical model 2-D case

Results in 1-D

 $V_0 = 2500 \text{ V}$

Andrea L., Jose Antonio Z., Natalia C., Juan Luis G., Maria Pilar V., Laura H. Vacuum deposition chamber

The equations 1-D model 1-D cylindrical model 2-D case

イロト イポト イヨト イヨト

æ

1D case

We consider a chamber with L >> R.

Then we have the cylindrical symmetry, i.e. 1D case.

• Gradient:
$$\nabla = \frac{\partial}{\partial r}$$

• The divergence:
$$\nabla = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial u}{\partial r})$$

The equations 1-D model 1-D cylindrical model 2-D case

Results

Similar to the 1D cartesian case but much more sensitive to perturbations and need a higher external voltage to get to the same voltage profile.

< A

The equations 1-D model 1-D cylindrical model 2-D case

2D model : Boundary domain and symmetries

The boundary shape is more complex than in the 1-D case.

The equations 1-D model 1-D cylindrical model 2-D case

イロト イポト イヨト イヨト

臣

Results in 2D

Andrea L., Jose Antonio Z., Natalia C., Juan Luis G., Maria Pilar V., Laura H. Vacuum deposition chamber

The equations 1-D model 1-D cylindrical model 2-D case

Results in 2D

Potential

Density of ions

Density of electrons

臣

Outline

2 The model

3 Mathematical model and simulations

4 Modifications of the problem

5) Conclusions

Andrea L., Jose Antonio Z., Natalia C., Juan Luis G., Maria Pilar V., Laura H. Vacuum deposition chamber

Modifications of the problem

We varied temperature and pressure: for an increase of 100°C we observed only slight changes.

For a small increase of P the density of ions increase considerably but stay localized in the same region.

Outline

2 The model

3 Mathematical model and simulations

Modifications of the problem

5 Conclusions

Andrea L., Jose Antonio Z., Natalia C., Juan Luis G., Maria Pilar V., Laura H. Vacuum deposition chamber

Conclusions

- The external voltage influences the distribution of ions
- With a potential large enough we obtain a localized distribution of ions
- A change in pressure changes the concentration and spread of ions
- Temperature doesn't have a notable influence

Next step: model with two electrodes.