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1. INTRODUCTION
The thin coating is the most widespread technique among the so-called advanced surface treatments for the protection of metal tools. At the present the chemical vacuum deposition (CVD) and physical vacuum deposition (PVD) dominate the market. These techniques are capable of depositing a thin layer (1 to 10 nm) of a dielectric, highly resistant and highly adherent, over the metal surface.
For years, the main trend in coating was focused on obtaining a strongly resistant film protecting the mechanical components of, e.g. engines working in increasingly extreme conditions. In this work we focus on the mathematical description and modelling of PVD.
1.1. Description of industrial process

The physical vacuum deposition process involves extraction of atoms on the surface of an electrode by an exchange of momentum with ions that bombard the atoms on the surface.

With this definition it is clear that the physical vacuum deposition is basically a process of attack, frequently used for cleaning surface and the delineation of tracks. It is also used for deposition of films like in our case.
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Figure 1: The industrial setup used for PVD.
1.2. Mathematical Model
In order to define a mathematical model we make some hypothesis and approximations over the complete physical setup (Fig.1).

The most important aspects to be considered are:

· Static electric field (the external voltage frequency is low).
· The only existing particles insides de the chamber are ions and electrons.

· Cylindrical symmetry of the chamber.

Then the suggested mathematical model is a system of differential equations including three variables:
· Electric Potential, V.
· Numeric ions density, Ni.
· Numeric electrons density, Ne.
The model equations are:

· Poisson equation for the electric potential.

· Continuity equations for the ions and electrons densities.
Aims for the modelling week

· Understand and define the complete physical/mathematical model.

· Make simplifications in order to find approximate solutions.

· Numerical investigation of the system under different assumptions:

· 1D in Cartesian coordinates.

· 1D in Cylindrical coordinates.

· 2D in Cylindrical coordinates.

2. MODEL TEST IN 1D CARTESIAN COORDINATES
Let us first define the 1D case in cartesian coordinates as a first simplification of our problem. This then will be used to test our model equation and numerical scheme. For this approximation we can consider the following domain:  a line of longitude 1 with a cathode at the left limit extreme and an anode at the right one (Fig. 2).
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Figure 2: The problem geometry
Then the equations describing the model are given by:
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Where 
· u = electric potential

· 
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 (Townsend formula)

The following steps are:

· Test our system equations for this simple case 

· Play with some problem parameters (voltage, pressure, temperature) to analyze their possible effect on the solutions

For numerical simulations we used the commercial package COMSOL Multiphysics. It allows finite element integration of partial differential equations.

Figure 3 shows the resulting potential and densities these are the first graphs that we obtained:

	Potential
	Electrons density
	Ions density
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	[image: image11.emf]
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	V =400,P=10,T=300


Figure 3: Results of numerical simulation for 1D cartesian case.
Now, we play with the values of the applied external potential in order to obtain a region with a plateau for u.

	Potential
	Electrons density
	Ions density
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	V =1000,P=10,T=300
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	V =1500,P=10,T=300


Figure 4
After this test, we conclude that our system of equations provides valid results, and we continue the analysis using more realistic cases.
3. CHAMBER WITH CYLINDRICAL SYMMETRY

Let us now consider the case of cylindrical symmetry, i.e, a cylindrical cathode is located in the centre of the cylindrical chamber of the radius R=1 (in dimensionless coordinates). We also assume that the chamber height L is much bigger than R (L>>R). Then the problem can be reduced to considering a 1d case, i.e., we have axial and angular symmetry and the spatial dynamics occurs along r axis.

For such problem statement the cylindrical coordinates system allows us to capture the symmetry of an infinitely high chamber with an infinitely high cathode at its axis.

The gradient of electric potential in cylindrical coordinates is given by:
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and the divergence by:
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Besides, now we have 
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The system of equations that we obtain is:
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Where 
· u = electric potential

· 
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 (Townsend formula)

Since the divergence operator does nor appear in the boundary conditions, they do not suffer any change.
Once the equations have been obtained, we can study the effect on the model produced by the following three parameters:

· External voltage (i.e. the voltage applied to the cathode)
· Gas pressure in the chamber
· Gas temperature 

3.1. Influence of the external voltage on the ion concentration

Starting with a small enough external potential we progressively increase its value in order to obtain in the chamber an extended region with a high density of ions. Figure 5 shows snapshots of the profiles of the electric potential, electron and ion densities. The progressive increasing of the external voltage ensures stability of the integration scheme.
We vary the values of this parameter in order to obtain a stable region of the chamber with a high density of ions. This aim is reached increasing the value of the potential as we can see in the plots. At voltages higher than 2000V we obtain the region with high ion concentration extending from 0.8 to 1.0 of the chamber radius.
	Potential
	Electrons density
	Ions density
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	Applied voltage 1000 volts
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	Applied voltage 1300 volts
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	Applied voltage 2000
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	Applied voltage 2500


Figure 5: Results of numerical simulation for 1D case with the cylindrical symmetry.
This is a similar to the behaviour obtained in the cartesian case. Just note that to obtain the same profile of the potential, u, we need a higher value of the applied external voltage for the cylindrical case than for the previous one.

3.2. Effect of the pressure
Once we have reached an acceptable flat potential in a localized region of the chamber (see Fig. 5, bottom insets) we can study the effect of the gas pressure. We found that the model and the integration scheme are very sensitive to this parameter. Frequently, such instability led to a divergence of the numerical scheme. Any small variation of the pressure strongly affects the final solution (ion concentration). An increment of the pressure allows us to obtain a more spread region for the cloud of ions. As well as the spread of the region, the increasing of the pressure leads to a strong increment of the concentration of the ions.
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	V = 2200, P =10, T=300
	V=2200, P=10.6, T=300


Figure 6: Effect on the ion concentration of the gas pressure.
3.3. Effect of the temperature
This is the less influent parameter.  The results do not change significantly even for really big changes of the values of the temperature. We can see this behaviour in the following plots.
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	V = 2200, P =10, T=300
	V=2200, P=10.6, T=400


Figure 7: Effect on the ion concentration of the temperature
4. 2D CYLINDRICAL CASE
We finally consider a more realistic case in two dimensions. These are our new considerations:

· single electrode(the cathode) centrally placed in the chamber

· the chamber acts as a metal anode and is placed on the ground

The problem with an electrode is described as follows:
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Figure 8: The problem symmetry in 2D case.
The cylindrical symmetry of the problem makes it possible to reduce the domain to a two-dimensional section shown in Fig. 9.
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Figure 9: The domain of the problem in 2D case.
The system of equations is the same as in the 1D cylindrical case.

The boundary conditions for the 2D case are shown in Fig. 10.
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Figure 10: The boundary conditions for the 2D case.
The obtained results are in the same direction as for the 1D case:

· An increase of the external potential leads to formation of a flat region of the potential inside the chamber.

· Higher pressure produces higher ions density.
· The temperature is not an important parameter for this problem.
	Potential
	Electrons density
	Ions density
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	V= 1500v
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	V = 3000v


Figure 11: Results of numerical simulation for 2D cylindrical case.
We can easily see in these graphs how the increasing of the applied potential allows us to obtain a good region for deposition in the centre of the chamber. 
5. CONCLUSIONS
We have considered the problem of formation of a region in a cylindrical chamber with high concentration of ions in different geometries: 1D Cartesian, 1D cylindrical, and 2D cylindrical. We have found that:
· An increase of the external voltage applied to the chamber leads to formation of a localized region with the spatially flat value of the potential.
· The concentration of ions within such region strongly depends on the pressure.
In the working parameter region an increase of the pressure leads to higher density of the ions.
· Variation of the temperature does not affect significantly the conditions inside the chamber.
The model is very sensitive to the variation of the parameters. A possible solution is to change them progressively using the previously found solution (potential and concentrations) as an initial guess for the next iteration.

We studied here the case where the cathode is a cylinder inside the chamber and the chamber represents the anode. The next step will be to study the more complicated but more realistic case of two electrodes in the chamber.
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