### Efficient interpolation of LiDAR Altimeter datasets in the obtention of Digital Surface Models (DSM)

III Modelling Week UCM Problem proposed by StereoCarto, S.L.



Participants:

-Francisco Aguilera Orihuel (Universidad Complutense de Madrid) -Silvia Castellani (Università degli Studi di Firenze) -Diego Gómez Sanz (Universidad Complutense de Madrid) -Juan Carlos Luengo López (Universidad Complutense de Madrid) -Xavier Santallusia (Universitat Autònoma de Barcelona) -Ana Valeiras Jurado (Universidad Complutense de Madrid) -Coordinators:

-Dra. Pilar Romero y Dr. Roberto Antolín.

#### **INDEX**

- EXPOSITION OF THE PROBLEM
- METHODOLOGY
- SOFTWARE DEVELOPMENT
  - DATA REDUCTION ALGORITHM
  - INTERPOLATION METHODS
- RESULTS
- CONCLUSIONS



# LIDAR TECHNOLOGY

The Airborne Laser Scanning (ALS) technology is based on the ground survey from an airborne laser telemeter which measures the distance between the instrument and the echoing surface. However, the ground point coordinates are actually wanted. The measure of these coordinates implies the knowledge of the airplane position and attitude at each instant. For this purpose, an integrated sensor GPS/INS is provided.



# EXPOSITION OF THE PROBLEM



The principal aim is to develop a Digital Elevation Model (DEM) by filtering points that represent terrain objects by interpolation. This leads to two main problems:

- 1. The first is how to generate a regular grid to reduce such volumes of data in order to get a more effective model.
- 2. The second is try to reduce the density of measured data which implies a more efficient flight in terms of height and time of survey, and therefore a less expensive project.

## **SCOPE OF THE WORK**



- Is there a way to reduce the density of the data so that data loss is not relevant?
- Consequently, is it possible to get the same Digital Elevation Model by a flight with higher altitude to capture a smaller number of points, and thus reducing the cost?

## **METHODOLOGY**



• The LIDAR data has been randomly split into a prediction data set and a validation data set

 A serie of DEMs has been generated using linear and nearest neighbour interpolation at spatial resolutions of 1 m and 1.5 m

 Prediction data sets has been randomly reduced to generate a serie of DEMs

• To eliminate initial data we use the test based on the tolerance given for the problem.

•We have developed a software tool using MATLAB to solve the points above mentioned.

## **WORKING OUT OUR DATA**





# DATA REDUCTION ALGORITHM



- In order to test how we can reduce the density of points, it's necessary to make interpolations with different number of points. That's why we have designed a program that extracts a given number of points at random.
- The data are included in a matrix of 3 columns (coordinates *x*, *y*, *z*) and as many rows as observations are taken.
- To select a subset of observations we use a serie of uniformly distributed random numbers for the resulting data which are still scattered in the same manner as the original.
- Since the simulated random values may be repeated, it must be checked at every step of generating the random value has not been previously selected.

# DATA REDUCTION ALGORITHM



```
% fix the number of points to extract
n = 100000;
ind selec = [];
% generate n indexes
for i=1:n
    enc = false;
    % repeat the process while the random indes is already included
    while enc == false
        aleat = fix(unifrnd(1,size(datos iniciales,1),1,1));
        aux = sum(ind selec==aleat); %aux=1 => included
        if aux==0
            enc = true;
            ind_selec = [ind_selec;aleat]; %#ok<AGROW,AGROW>
        end
    end
end
```

# DATA REDUCTION ALGORITHM



• These random numbers are the indexes of the points we will select from the data file.

% extract the data with the previous indexes datos\_reduccion = datos\_iniciales(ind\_selec,1:3); % save the data in a txt file save -ascii 'datos\_reduccion1.txt' datos\_reduccion;

 This program may be used repeatedly for different reductions necessary to achieve the minimum density of points that does not exceed the tolerance given.

# An example with 2000, 1000 and 500 points





# **Our problem**



#### Data provided: 210418 points





#### **INTERPOLATION METHOD**



 Search interpolation method to construct the digital model, based on a regular mesh. To do this we use the subroutine of MATLAB griddata:

ZI = GRIDDATA(X,Y,Z,XI,YI,METHOD)

where METHOD is one of:

- 'linear' - Triangle-based linear interpolation (default)

-'nearest' - Nearest neighbor interpolation defines the type of surface fit to the data.

### **HOW DOES GRIDDATA WORK?**



Those methods are based on a **Delaunay** triangulation of the data.

- **TRIANGULATION**: A triangulation is a subdivision of an area in triangles.
- **DELAUNAY TRIANGULATION**: triangulation that best approximates a terrain is the one that forms the "more regular triangles", because it will give us a more accurate picture. In this way we arrive at the Delaunay Triangulation.



• The best one should be the triangulation with equilateral triangles; when this choice isn't possible Delaunay triangulation maximizes the minimum angle of all the angles of the triangles in the triangulation.



#### PROPERTY 1:





#### PROPERTY 2:





CHARACTERIZATION OF DELAUNAY TRIANGULATION



Let P be a set of points in the plane and T a triangulation of P, then T is:

a Delaunay triangulation of P, if and only if a circle circumscribing any triangle of T does not contain any other input points inside.

# Delaunay Triangulation with some of our data









| SF         |
|------------|
| <b>ESU</b> |
|            |
| SICA       |
| ME         |
| Z          |

| Validation test with 32 points                                                          |                                                                                                                                                         |                                                                                                                                          |  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| DEM<br>1 Points/m <sup>2</sup>                                                          | Error in the<br>linear interpolation                                                                                                                    | Error in the<br>nearest<br>interpolation                                                                                                 |  |
| Original data<br>210418 Data<br>2,35 Points/m <sup>2</sup><br>800 m Height Flight       | Max         0,295           Min         1,13 · 10 <sup>-13</sup> Aver.         0,0869           Median         0,0655           Std. Dev.         0,076 | Max         0,32           Min         0           Aver.         0,072           Median         0,0655           Std. Dev.         0,081 |  |
| 1st Data reduction<br>100000 Data<br>1,11 Points/m <sup>2</sup><br>1300 m Height Flight | Max         0,327           Min         0,00055           Aver.         0,0922           Median         0,0654           Std. Dev.         0,089        | Max         5'44           Min         0           Aver.         0,259           Median         0,045           Std. Dev.         0,951  |  |
| 2nd Data reduction<br>75000 Data<br>0,84 Points/m <sup>2</sup><br>2200 m Height Flight  | Max         0,287           Min         0,002           Aver.         0,081           Median         0,049           Std. Dev.         0,079            | Max         0,47           Min         0           Aver.         0,095           Median         0,035           Std. Dev.         0,108  |  |
| 3th Data reduction<br>70000 Data<br>0,78 Points/m <sup>2</sup><br>2250 m Height Flight  | Max         0,226           Min         0,002           Aver.         0,072           Median         0,045           Std. Dev.         0,064            | Max         0,3           Min         0           Aver.         0,084           Median         0,035           Std. Dev.         0,084   |  |
| 4th Data reduction<br>60000 Data<br>0,66 Points/m <sup>2</sup><br>2500 m Height Flight  | Max         0,664           Min         0,001           Aver.         0,112           Median         0,073           Std. Dev.         0,131            | Max         0,3           Min         0           Aver.         0,092           Median         0,03           Std. Dev.         0,091    |  |
| 5th Data reduction<br>50000 Data<br>0,55 Points/m <sup>2</sup><br>2700 m Height Flight  |                                                                                                                                                         | Max         0,26           Min         0           Aver.         0,078           Median         0,03           Std. Dev.         0,079   |  |
| 6th Data reduction<br>40000 Data<br>0,44 Points/m <sup>2</sup><br>3000 m Height Flight  |                                                                                                                                                         | Max         0,484           Min         0           Aver.         0,246           Median         0,03           Std. Dev.         0,846  |  |





| Validation test with 32 points                                                          |                                                                                                                                                                          |                                                                                                                                                                      |  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DEM<br>1.5 Points/m <sup>2</sup>                                                        | Error in the linear interpolation                                                                                                                                        | Error in the<br>nearest<br>interpolation                                                                                                                             |  |
| Original data<br>210418 Data<br>2,35 Points/m <sup>2</sup><br>800 m Height Flight       | Max         0.455           Min         0           Aver.         0.100           Median         0.062           Std. Dev.         0.111           MSE.         0.3831   | Max         0.45           Min         0           Aver.         0.99           Median         0.075           Std. Dev.         0.097           MSE.         0.29   |  |
| 1st Data reduction<br>100000 Data<br>1,11 Points/m <sup>2</sup><br>1300 m Height Flight | Max0.465Min0.007Aver.0.118Median0.087Std. Dev.0.109MSE.0.373                                                                                                             | Max         0.78           Min         0           Aver.         0.135           Median         0.085           Std. Dev.         0.166           MSE.         0.856 |  |
| 2nd Data reduction<br>75000 Data<br>0,84 Points/m <sup>2</sup><br>2200 m Height Flight  | Max0.424Min0.001Aver.0.107Median0.085Std. Dev.0.097MSE.0.296                                                                                                             | Max         0.47           Min         0           Aver.         0.108           Median         0.07           Std. Dev.         0.117           MSE.         0.421  |  |
| 3th Data reduction<br>70000 Data<br>0,78 Points/m <sup>2</sup><br>2250 m Height Flight  | Max         0.423           Min         0.006           Aver.         0.09           Median         0.076           Std. Dev.         0.094           MSE.         0.278 | Max         20.5           Min         0           Aver.         0.735           Median         0.07           Std. Dev.         3.608           MSE.         403.53 |  |
| 4th Data reduction<br>50000 Data<br>0,55 Points/m <sup>2</sup><br>2700 m Height Flight  | Max2.575Min0.002Aver.0.191Median0.089Std. Dev.0.448MSE.6.226                                                                                                             |                                                                                                                                                                      |  |



## CONCLUSIONS



#### IT IS POSSIBLE TO GET THE SAME DEM REDUCING THE COST IN TERMS OF HEIGHT AND TIME OF SURVEY TO CAPTURE A SMALLER NUMBER OF POINTS

#### **NEAREST INTERPOLATION**

D.E.M resolution 1m x 1m

0.55 points/m2

2700m

LINEAR INTERPOLATION D.E.M resolution 1.5m x 1.5m

0.78 points/m<sup>2</sup>

2250m

