Modelling of Geothermal Reservoirs

J. C. Armenteros, J. Hernández, B. Hernández, I. Kakouris, J. Rico

Complutense University of Madrid in colaboration with Dr. Alessandro Speranza (Università degli Studi di Firenze, Italy)

30th June 2009, Modelling Week III, Madrid

Introduction Physical Model

A (2) > (

臣

Outline

Introduction Physical Model

Geothermal Modelling

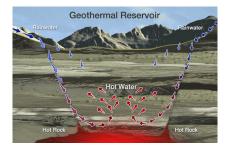
Isolated gas model Isolated liquid model Source term and resulting model Free boundary model

Conclusions

Introduction Physical Model

Geothermal energy

- Geothermal energy is due to the heat deep under the ground.
- Reservoirs are just a deposit at high temperature and pressure of:
 - Vapour.
 - Water.
 - Both.
- They are useful sources of energy because of their renewability.



Introduction Physical Model

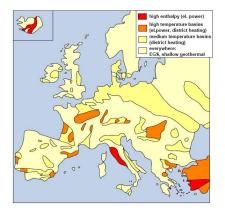
How can energy be obtained?

- Depending on the depth and temperature:
- 1. Low ΔT or low $x \Rightarrow$ Low henthalpy \rightarrow heating purposes
- 2. High ΔT or high $x \Rightarrow$ High henthalpy \rightarrow production wells power

Introduction Physical Model

Why are we interested in modelling geothermal reservoirs behaviour?

- Efficient energy extraction.
- Estimate recharging time of reservoir.
- Alternative location of existing reservoirs.



イロト イヨト イヨト イヨト

Physical Model

Main equations

Isobaric surfaces around the well, so we can simplify to a 1D model:

MASS CONSERVATION
$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho v) = \Psi_{in}$$
 (1)
DARCY'S LAW $v = -\frac{\kappa}{\phi\mu}(\frac{\partial P}{\partial x} + \rho g)$ (2)
IDEAL GASES' LAW $\rho_g = \frac{P_g}{rT}$, $r = \frac{\mathcal{R}}{M}$ (3)

where:

 $\triangleright \rho$: density ► g: gravity ► v: velocity P: pressure L., $P(x = L_e) = P_e$ \blacktriangleright Ψ_{in} : source term T: temperature vapore M: molecular mass \triangleright κ : permeability s(t) liquido ► R: Rydberg constant $\blacktriangleright \phi$: porosity $V(x = L_i) = 0$ L,

J.C. Armenteros, J. Hernández, B. Hernández, I. Kakouris, J. Rico

Modelling of Geothermal Reservoirs

orizzonte le

Isolated gas model Isolated liquid model Source term and resulting model Free boundary model

Isolated gas model

LINEAR DEPENDENCE
$$T = T(x) = T_i - \frac{T_i - T_s}{L_i - L_s}(x - L_i)$$

So, as we consider steady state ($v_g = 0$):

$$\frac{\partial \rho_g}{\partial t} + \frac{\partial}{\partial x} (\rho_g v_g) = 0$$
$$v_g = -\frac{\kappa}{\phi \mu} (\frac{\partial P_g}{\partial x} + \rho_g g) = 0 \Rightarrow \frac{\partial P_g}{\partial x} = -\rho_g g$$
$$P_g = \rho_g r T$$

we obtain:

$$\frac{\partial P_g}{\partial x} = -\frac{P_g}{rT}g \tag{4}$$

Outline Geothermal Modelling Conclusions	Isolated gas model Isolated liquid model Source term and resulting model Free boundary model
	Free boundary model

▶ Let consider that $L_s = -1300$ m, $L_i = -3000$ m, $T_s = 610$ K, $T_i = 520$ K; so:

$$P(x) = P_s \left(\frac{T(x)}{T_s}\right)^{-\alpha}$$
, $\alpha = \frac{g}{r} \frac{L_s - L_i}{T_i - T_s} \approx 0.52$

that is, usually under the saturated experimental pressure:

$$P^*(T) = 961.7 e^{17.35 \frac{T - 273.15}{T}}$$

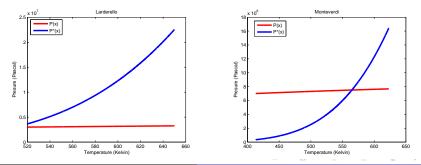
• Posible crossings \Rightarrow phase transition \rightarrow Monteverdi

Isolated gas model Isolated liquid model Source term and resulting model Free boundary model

Isolated liquid model

- Almost constant density ($\rho_l \approx \text{const.}$):
- Increase in presure is lineal:

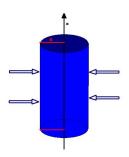
$$\frac{\partial P_l}{\partial x} = -\rho_l g \Rightarrow P_l(x) = P_s - \rho g(x - L_s)$$
(5)



Isolated gas model Isolated liquid model Source term and resulting model Free boundary model

Source term

- Flux is due to all water crossing the boundary R in radial direction (not in x-direction).
- *P* is the average pressure of the sourroundings. Let consider that
 P ≈ *P**→ surrounded by water
- ► Proportional to the radial pressure gradient: $\Psi_{in} \propto \frac{\bar{P} P_g}{R}$.
- Relationship constant is: C κ/φμ, where R is a characteristic distance and C is adjusted in order to obtain a characteristic time of recharge of 1 year.



Isolated gas model Isolated liquid model Source term and resulting model Free boundary model

Undimensionalization and aditional conditions

 Adimensional transformations to correct weights properly with scaling factors:

$$\tilde{x} = rac{x - L_s}{L_s - L_i}, \quad \tilde{t} = rac{t}{t_c}, \quad \tilde{P} = rac{P}{P_0}, \quad \tilde{T} = rac{T}{T_0}$$

Resulting model:

$$\frac{1}{\tilde{T}}\frac{\partial\tilde{P}}{\partial\tilde{t}} - \frac{\partial}{\partial\tilde{x}}\left(\frac{\tilde{P}}{\tilde{T}}\left[\frac{\partial\tilde{P}}{\partial\tilde{x}} + \frac{\tilde{P}}{\tilde{T}}\right]\right) = (\tilde{P}^* - \tilde{P})$$
(6)

with:

BOUNDARY CONDITIONS

$$\begin{cases} P(x = L_s) = P_s \\ P(x = L_i) = P_i \end{cases}$$
(7)

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

(8)

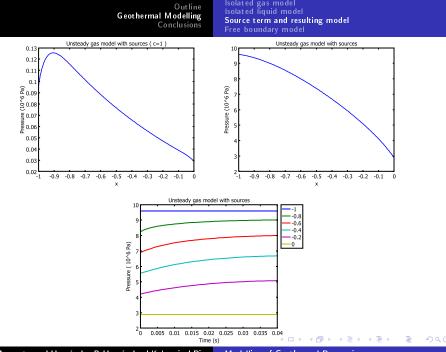
 $P(t = 0) = P^{0}(x)$

INITIAL CONDITION

Isolated gas model Isolated liquid model Source term and resulting model Free boundary model

Unsteady state

- ▶ $P^0(\tilde{x}) = P_i (P_i P_s)(1 + \tilde{x})$ is linear between the two boundary limits.
- In the equilibrium state, there can't be a maximum in the P ↔ x plot, because that means there is a point in the well where we have opposite gas velocity directions and is inconsistent with the linear assumption of the temperature.



J.C.Armenteros, J.Hernández, B.Hernández, I.Kakouris, J.Rico Modelling of Geothermal Reservoirs

Outline Geothermal Modelling Conclusions	lsolated gas model Isolated liquid model Source term and resulting model Free boundary model
	Thee boundary model

◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○

Isolated gas model Isolated liquid model Source term and resulting model Free boundary model

Free boundary model

- ► We model gas setting the saturation point at x̃ = -0.8, where the gas phase changes into liquid and viceversa.
- At this point we'll take free boundary condition using a moving surface S(t), so that there is a mass and momentum conservation across it.

MASS' CONSERVATION MOMENTUM'S CONSERVATION

 $-\phi_{\sigma} = -\rho_I \dot{S}$

$$\overbrace{\rho_g(v_g - \dot{S})}^{\phi_g} = \overbrace{\rho_l(v_l - \dot{S})}^{\phi_l}$$
$$\overbrace{\phi_g v_g + P_g}^{\phi_l} = \phi_l v_l + P_l$$

and we get to (using that at the bottom $v_l = 0$):

$$P_l - P_s = \phi_g v_g \tag{9}$$

met as the Rankine-Hugoniot equations

Outline Geothermal Modelling Conclusions Free boundary model

PHASE TRANSITION SURFACE

$$\dot{S} = \frac{\kappa}{\phi \mu_{g}} \left[\frac{\rho_{g}}{\rho_{I}} \left(\frac{\partial P_{g}}{\partial x} + \rho_{g} g \right) - \frac{\mu_{g}}{\mu_{I}} \left(\frac{\partial P_{I}}{\partial x} + \rho_{I} g \right) \right]$$

GAS

I

$$\frac{\partial P_g}{\partial t} - \frac{\kappa T}{\phi \mu_g} \frac{\partial}{\partial x} \left[\frac{P_g}{T} \left(\frac{\partial P_g}{\partial x} + \frac{P_g g}{rT} \right) \right] = C \frac{\kappa r T}{\phi \mu_g R} (\bar{P}_g - P_g)$$
LIQUID
$$-\rho_I \frac{\partial^2 P_I}{\partial x^2} = \frac{C}{R} (\bar{P}_I - P_I)$$

イロト イヨト イヨト イヨト

æ

Outline Geothermal Modelling Conclusions Free boundary model

BOUNDARY CONDITIONS

$$P_g(x = L_s) = P_s$$

$$P_l(x = S(t)) = \overline{P}^* + (\rho_g(v_g - v_l)^2)|_{x=S(t)}$$

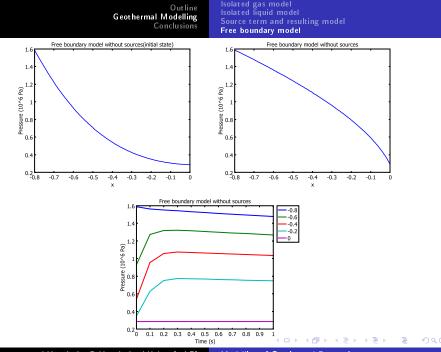
$$v_l(x = L_s) = 0$$

$$P_g(x = S(t)) = \overline{P}^*$$

INITIAL CONDITION

$$P_{g}(t = 0) = P_{g}^{0}(x)$$
$$P_{l}(t = 0) = P_{l}^{0}(x)$$
$$S(t = 0) = S^{0}$$

イロン イヨン イヨン イヨン



J.C.Armenteros, J.Hernández, B.Hernández, I.Kakouris, J.Rico Modelling of Geothermal Reservoirs

Outline Geothermal Modelling Conclusions	lsolated gas model Isolated liquid model Source term and resulting model Free boundary model
	Free boundary model

◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○

Conclusions

- Adding the source term to the free boundary equations, it becomes more complicated to solve.
- The solution of the full problem is part of the ongoing research regarding the Geothermal reservoirs.

ヘロト 人間ト くほト くほん

Simple 1D can help to understand how things go.

Thanks for paying attention!

イロン イヨン イヨン イヨン

æ