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The aim of this article is to outline the equations that govern the process of
energy production in a geothermal well and to point out the important ad-
vantages of this renewable and up-and-coming energy. In this paper, all data
used was obtained from the geothermal reservoirs of Monteverdi, Landarello
and Amiata, located in Toscany,the region in Europe with most geothermal
potential.

In �rst place, we will assume some di¤erent simpli�cations to solve analyt-
ically the basic equations. The problem of solving isolated systems in static
phase will be our �rst approach to more realistic and complex equations. A
source term will be added later, making our one-phase geothermal well dy-
namic. We could obtain then an approximate velocity of extraction for not
depleting the well. This �gure will give an idea of the pro�tability of the
extraction well before spending a large sum of money building it.

Our �nal approach to the real problem will be solving a system in which two
phases of water coexist in the well and interact

1. Geothermal energy

Geothermal energy is a renewable energy derived from the natural heat
of the earth�s core, that continuously �ows outward. When the rising hot
water and steam is trapped in permeable and porous rocks under a layer of



impermeable rock, it can form a geothermal reservoir. In typical continental
crust, the temperature gradient in depth usually increase on average by
� 0:03 C/m.

According to the pressure and temperature, we can distinguish between
three di¤erent kinds of reservoirs: vapor dominated (with a fairly low pres-
sure), liquid dominated (with a very high pressure) and in a mixture of liquid
and gas phases.

In addition, the exploitation of Geothermal energy is highly bene�cial
for the following reasons:

� Provides clean and safe energy using little land

� Is renewable and sustainable

� Generates continuos, reliable �baseload�power

� Conserves fossil fuels and contributes to diversity in energy sources

The aim of all this stu¤ is then improve the knowledge of the existing
reservoirs and their recharging time for not to reach the edge of exploit.
This topic is even more interesting in high geothermal gradient places such
as Toscany, one of the most powerful in Europe.

2. Main equations

A case in point is �ow to a well, which in su¢ cient proximity to the
pipe may approximate radial symmetry, meaning that at any given time,
parameters such as pressure and temperature depend only on distance R
from the well, and possibly also on depth x however it may even be possible
to neglect x-dependence and approximate the �ow system as 1D radial only.



The symbols that are going to be used in the article are:
� : density M : molecular mass � : permeability
v : velocity P : pressure � : porosity
	in : source term T : temperature g : gravity

The main equations necessary for modelling the g.r. are:

1. Mass conservation law:
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For the mass contained in a volume, the net balance owing to the
�ux in�ow (	in) through the surrounding surface could be put into a
di¤erential form using the Gauss�theorem.

2. The Darcy�s law
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relates the �uids motion in a porous medium. The minus sign
precedent in the second term is due to the �ow is from higher pressure
to lower ones, analogous to the Fourier heat transfer, but including the
gravity force.

Here we have � is the absolute permeability, that is, a measure of the
ease with which �uid can migrate through a porous medium; � is the
viscosity, which is a measure of the internal friction of the �owing �uid;
and the porosity � as the pore velocity with which the �uid parcels are
actually �owing.

3. The Clausius-Clapeyron�s equation of ideal gases complete the basic
system of equations that we are going to take into account. Maybe
more commonly write as pV = nRT , where n is the number of moles
of the gas; after some manipulations gets into the equation:

�g =
Pg
rT

(3)

, that is more suitable for our purposes however this equation is
just an assumption of our gas behavior.



Our well starts at x = 0 point an decrease in height until x = Ls, where
we �nd the beginning of the reservoir at x = Ls, whose �rst phase is gas
because the pressure Ps is lower than below due to the weight over. More
deeply, we �nd the phase transition location at x = S(t) and the edge at
x = Li, where we will assume the liquid is static if there is no convective
considerations (that could enlarge the heat �ow to the top).

3. Isolated gas model

Firstly, we will treat an isolated vapor reservoir in stationary state, so
we will assume that the gas velocity is null in the Tracy�s law as well that
there is no sources in the equation ( 1 ) of the mass conservation. Another
supposition we are going to do is the linear relationship of the temperature
in depth according to the expression:

T = T (x) = Ti �
Ti � Ts
Li � Ls

(x� Li)

So as we consider the steady state, vg = 0
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Using the equation (3) Pg = �grT , we obtain
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This di¤erential equation can be easily solved with separated variables.

Let consider that Ls = �1300 m, Li = �3000 m, Ts = 610 K, Ti = 520
K; so:

P (x) = Ps

�
T (x)

Ts
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Ls � Li
Ti � Ts

� 0:52

that is, usually under the saturated experimental pressure:

P �(T ) = 961:7e17:35
T�273:15

T

According to the typical values we could consider, the non-linear rela-
tionship we reach is usually under the vapor-saturated pressure. There could
be a crossing between the plots and in that case, a phase transition occurs
if we are below the critical point.

4. Isolated liquid model

Under static conditions (no �ow), we can assume that the liquid is non-
compressible, so the density �l doesn�t vary in depth.

Solving the problem in the steady state, that is vl = 0; we get to
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As the �uid pressure is given by the weight of the �uid over according to
the linear equation above, we will have a plot upper the saturation pressure
so that the reservoir is liquid dominated only (there is no crossing in the
temperature interval considered).

� Larderello : We consider the parameters given in the Larderello
geothermal reservoir where Li = �3500, Ls = �1300, Ti = 650,
Ts = 520, Ps = 3e6, r = 4:6e2, under the assumption that we only
have gas phase. As we can see the line of P (x) is lying below P �(x)
line and this denotes that the reservoir is in a gas state and this is
consistent with our initial assumptions.

� Monteverdi : We consider the parameters given in the Monteverdi
geothermal reservoir whereLi = �5000; Ls = �750; T i = 623; T s =
413; Ps = 7e6; r = 4:6e2, under the assumption that we only have
gas phase. As we can see the line of P (x) is crossing the line of P �(x)
which is an indication that in this reservoir we do not only have gas
phase and the two phases, liquid and gas, coexist.



5. Gas model with source term

The source term in the mass conservation given by the equation (1),
is due to the radial water movement from a characteristic distance R but
not in x�direction cause there is one opposite sense direction of the caps
unitaries that cancel the �ux there. So the �ux comes from every direction
equal and we can collapse all water source into the x axis.

We will de�ne �P as the average pressure of the surroundings at this
distance R, so that we can consider that it is the saturated pressure and
water further from R is in liquid phase. That is, at distance R, the water is
in phase transition.

In the same way that we obtain the Darcy�s law, we can similarly make
that the source term is proportional to the pressure gradient given in this
isobaric curve of radius R:

 in�(P � Pg)

Relationship constant is: C k
�R

One over this relationship constant is the recharging time, the time
needed for the reservoir to get to the equilibrium state. An adequate constant



C should be added also in order to set up the characteristic recharge time
to 1 year. This e¤ectiveness constant has its own physical sense that could
be shown when we consider in ours model that there is no �ux so that
@Pg
@t = �( �Pg � Pg) ) �Pg(t) = Pg(t) + ( �Pg(0)� Pg(0))e

�alphat ) �Pg ! Pg in
the equilibrium (tc = 1

�).

The �rst step after construct the main equations we are going to use,
is to �nd the suitable scaling factors in order to correct the weights of each
term in the equation obtained. These are the unidimensional magnitudes we
are going to manipulate to try to obtain a simpler model, thanks to equals
every coe¢ cient to one; and evaluate the characteristic values of the depth,
time, pressure and temperature.
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Resulting model:
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with:

BOUNDARY CONDITIONS

(
P (x = Ls) = Ps

P (x = Li) = Pi

INITIAL CONDITION P (t = 0) = P 0(x)

The initial condition will certainly be a linear relationship between the
two edges of the reservoir phases or boundary limits cause we need the
pressure in all points de�ned

P 0(~x) = Pi � (Pi � Ps)(1 + ~x)

In the equilibrium state, there can�t be a maximum in the P � x plot,
because that means there is a point in the well where we have opposite
gas velocity directions and is inconsistent with the linear assumption of the
temperature. So we need to adjust the value of c to not have a maximum in
the plot of equilibrium state(c=0.01).



In the previous plot are drawn the evolution of some points along the
time. We can see that in the very �rst phase of the simulation the system
evolves quickly, and it gets to the equilibrium state slower as time passes.



6. Free boundary model

We�ll take free boundary condition using a moving surface S(t) initially
set at ~x = 0:8(is the saturation point,where the gas phase changes into liquid
and viceversa.).

S(t) evolves according to: � = x � S, with � the vertical distance to
the near particles moving across the phase change surface. So, as the �ux
is de�ned as � � � _�, we can evaluate the mass conservation as well as the
momentum conservation with pressure as the only stress.

MASS0CONSERVATION

�gz }| {
�g(vg � _S) =

�lz }| {
�l(vl � _S)

MOMENTUM0SCONSERVATION �gvg + Pg = �lvl + Pl

If we consider that the liquid velocity is null at the bottom (vl = 0), we
reach the Rankine-Hugoniot equations:

��g = ��l _S Pl � Ps = �gvg (4)

On the other hand, we have to point that it is not possible to have
that Pgjx=S(t) = Pljx=S(t) = P �(x = S(t)) cause it implies no movement or
no density variation, that is thermodynamically false because there should
be a pressure gradient. So, we obtain the equivalent boundary condition
Pljx=S(t) = Pgjx=S(t)+ (�gv2g)

��
x=S(t)

and when evaporating, the phase trans-

ition surface moves down. Additionally, we have that Pgjx=S(t) = P �(x =

S(t)) = �P � cause the density and velocity of the gas are pretty small on the
surface S(t), what complete the system of equations.

This system is very di¢ cult to solve with sources and without any as-
sumption over the velocity of the liquid at the bottom. The only results
obtained are referred to this simpli�cations, and is characterized by a rapid
transition to a stationary state that evolves after by increasing the gas phase(
the liquid water evaporates).

The plot on the left is the initial state of the system, and on the right
hand side is the stationary state. It can�t be seen here, but the blue line is
elongating to the left, which represents an increasing of the gas phase in the
well as liquid water evaporates.



In the following plot, we represent for a set of points in the line, its
evolution along the time. We point out the same as before, the system
evolves rapidly to the stationary state, and then it�s when it begin to increase
the gas phase.



The complex model is a problem of ongoing research, but this results
presented in this paper with simpler models could help to understand how
a geothermal well works and to determine an approximate a velocity of
extraction for not depleting the well. Also, with the equations presented
above, one could have a guess of what is going to reach before beginning
the very costly construction of a well, so that only when properties of the
reservoir were appropriate, the well is built.


