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Abstract. Propagation of fluids from a decomposing cadaver produces a

characteristic stain on the landscape known as a cadaver decomposition is-

land. This model predicts how this fluid propagates through the soil, and
assesses the feasibility of its use as a predictor for the time of death of the

cadaver from measurement of the island.

1. Introduction

In modern forensic science, soil is no longer regarded simply as a medium that
is transferred to and from a crime scene, but has become a potential key in the
investigation of decomposed remains.

If a cadaver is not immediately consumed, then it is subject to decomposition by
insects and microbes. During the process, the body releases chemical components
into the soil which arise by autolysis (self-digestion of the cells) and by putrefaction
(the anaerobic decomposition of animal proteins). The decompositional products
in this fluid can remain trapped within the soil matrix for extended periods of
time. The entry of these materials into the soil provides a very local source of
nutrients resulting in what is known as a cadaver decomposition island (CDI). This
island is associated with increased soil microbial biomass and microbial activity. In
particular, the degradation of proteins, lipids and carbohydrates will yield carbon-
based, nitrogen-based, and phosphorous-based products which may be retained in
the surrounding soil. Visually, the release of cadaveric fluids results in the formation
of a CDI that is visible as dead plant material. Approximately 80 days after death
the CDI is surrounded by an area of increased plant growth which might be used
as a marker for the onset of the ‘Dry’ stage of decomposition. [2].

The total amount of fluid transmitted to the soil and the rate at which it is
applied throughout the decomposition cycle is determined by the size of the carcass,
and the environment in which decomposition is taking place.

1.1. Soil Fundamentals. Soil is a porous medium (Section 2.1) consisting of a
solid matrix and a void space which is also referred to as the pore space. This void
space is filled with one or more miscible fluids which will be referred to as water
and air. A soil is said to be unsaturated if voids are present. Saturated zones can
occur when all of the pores within them are filled and in this case, the interfaces
between the saturated and unsaturated regions become free boundaries. In this
case the water motion is referred to as saturated-unsaturated flow.
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Collect 3 or 4 soil 

samples (a handful 

each) from under 

the corpse. Label 

each. Refrigerate, 

DO NOT freeze.

Record temperature of: 1) 

air above corpse; 2) temp. 

inside each maggot mass; 

3) temp. between corpse 

and ground

EQUIPMENT

1) Hand Net

2) Forceps and Trowel

3) Thermometer

4) Vials, Jars, Plastic Bags

SUPPORTING DATA NEEDED

1) Previous local weather data 

(past 7 days) 

2) On-site weather data (next 5-7 

days)

3) Photos/Videos of crime scene

4) Record time/date of collection

SOIL/FAUNA SAMPLE

Maggots concentrate in head or open 

wounds first – Also at corpse/ground 

interface

Kill and preserve adult 

flies in 70% ethyl 

alcohol. 

Collect flying insects 

over corpse with hand 

net.

Preserve most maggots (a range of sizes & 

types) in 70% ethyl alcohol. Keep maggots 

from different maggot masses separate. 

Record the body location of each sample.

LABEL AS PER 

SPECIMEN JAR 

LABEL

Fly pupae are seed-like, 

about ½ cm long and red to 

dark brown in color

FLY PUPA

Maggots crawl away to 

pupate. Look under 

objects 3-10 m from 

corpse for pupa.

SPECIMEN JAR 

LABEL

Collect ~ 24 large maggots & pupa (some from each 

mass). Keep pupa and maggots separate. Keep hairy & 

smooth maggots separate. Place in a cooler or fridge. DO 

NOT FREEZE.

Use a standard 

insect net

Make a small hand net 

from stiff wire and cut-off 

panty hose

OR
HAND NET

Sample at least 

10cm deep

Secure 

ventilated tin

Label as per 

specimen jar 

label

LOCATION:

DATE/HR:

CASE #

SAMPLE #

DETAILS:

COLLECTOR:

Collect beetles 

on and 

underneath the 

corpse

Look for insect 

specimens 

(particularly 

maggots) in folds 

of clothes.

MAGGOT

BEETLES

COLLECTING INSECTS FOR FORENSIC INVESTIGATIONS

Figure 1. Schematic illustration of a forensic study

Water is essentially incompressible so it’s density, ρw, can be taken as constant.
There are three fundamental properties of soil depending upon the proportion of
water and voids within a given sample of soil. These include the porosity, φ, the
volumetric water content or soil moisture, θ and the water saturation, Sw, defined
as

φ =
Vv
Vr
, θ =

Vw
Vr
, Sw =

Vw
Vv

where Vr, Vv, Vw are the reference volume, volume of voids and volume of water
respectively. From these definitions it is apparent that θ = Swφ and furthermore,
that 0 ≤ φ ≤ 1 where φ = 0 corresponds to an impermeable medium and φ = 1 is
essentially a fluid medium. With respect to the soil moisture, capillary forces hold
the water in the pores against gravity essentially through water molecules being
attracted to each other (cohesion) and attraction of water molecules to the walls of
the pores (adhesion). These forces ensure that some residual moisture θ0 remains
in the water after gravitational forces have ceased. At the other extreme, if all the
pores are filled then the corresponding moisture is called the saturation moisture
θs. This gives the following natural hierarchy

0 < θ0 ≤ θ ≤ θs = φ.

1.2. Assumptions.
• Soil is assumed to be an isotropic medium, notwithstanding that it is, in

reality, highly heterogeneous.
• Pressure is assumed to be due solely to the overburden of homogeneous

soil, and to capillary action, which is determined by the soil structure.
• Decomposition fluid is assumed to be incompressible, to have slow flow,

and to have a low Reynolds number and therefore Darcy’s Law to be used.
• Fluid mass is assumed to be constant.
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2. Mathematical description of the problem

2.1. Porous Medium. Soil, fissured rock, cemented sandstone, limestone, sand,
foam rubber, bread, concrete, bricks, paper towels, lungs and kidneys are just a few
examples of the large variety of porous materials experienced in practice. All of
these materials have common properties that lead us to classify them into a single
class: porous media.

By porous medium we mean a material medium made of heterogeneous or mul-
tiphase matter. At least one of the considered phases is solid. The solid phase is
usually called the solid matrix. The space within the porous medium domain that
is not part of the solid matrix is named void space or pore space. The flow of one
or more fluids occurs in the interconnected pores/voids through the material. In
single phase flow the pores/voids are filled by a single fluid. In a complex situation
(two phase flow) the pores/voids are occupied by gas and liquid phases.

2.1.1. Porosity φ. The presence of void space distributed within the solid matrix is
characterized by the porosity of the porous medium. As explained in Section 1.1 the
porosity φ is defined as the total void volume divided by the total volume occupied
by the solid matrix and void volumes. Mathematically

φ =
Vv
Vm

,

where Vv and Vm are the volume of void space and the total volume of the material
respectively. Pores may be connected to other pores in which case they are said to
be interconnected. On the other hand some pores may appear in isolation, so that
they are not connected to other pores. It is clear that flow will occur through the
interconnected pores. We therefore define the effective porosity as

φeff =
Vv,c
Vm

,

where Vv,c ≤ Vv is the volume of the connected pores only.

2.2. Pressure in the porous medium. The general problem of fluid draining
vertically into a porous medium is formulated in Bear [1] and is being analysed in
this project for the case of a fixed volume release of Cadaver fluid into a porous
soil structure around it. Consider the soil structure as shown in Figure 2. The
z−coordinate is into the soil as shown. The soil medium is of porosity φ and
permeability k and Cadaver fluid drains through this medium.

x

z

0  (atm pressure)P

 (overburden pressure)
S
P

(height) z g

Figure 2. A sketch of a soil structure

The overburden pressure, Ps, which is the pressure felt at any height z in the
porous medium by a fluid parcel, is

(1) Ps = P0 + ρsgz
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where ρs is the density of soil, g the acceleration due to gravity and P0 the atmo-
spheric pressure. Also, the net fluid pressure driving the fluid flow in the porous
medium is

(2) P = Ps − Pe(θ)
where Pe(θ) is the capillary pressure due to surface tension and adhesion that
prevents the fluid flowing downwards. Substituting (2) into (1), we obtain

(3) P = P0 + ρsgz − Pe(θ).
Typically the capillary pressure and the water pressure are rescaled by the factor

ρwg to give an effective height or head. The capillary head pressure is ψ = Pc/ρwg
and the water head pressure is h = Pw/ρwg. These concepts are combined under the
assumption that the moisture of the soil depends on the pressure so that θ = θ(Pw).
If we assume that the soil is not deformed as the moisture moves through it then the
porosity is not a function of the pressure. However this implies that Sw = Sw(Pw)
which is known as the retention curve of a given soil.

A heuristic form for the capillary pressure, Pe(θ), can be written as

(4) Pe(θ) = P0

(
θ0 − θ
θ0

)
,

where P0 is atmospheric pressure and θ0 is the residual soil moisture after gravity
forces have ceased.

In equation (4), we see that an increase in the moisture content of the soil, θ,
decreases the capillary pressure, Pe. This is as expected since the effect of gravity
on the fluid becomes significant and fluid drains easily because of the increased
weight of the fluid above fluid parcels trapped in pore spaces.

2.3. Darcy’s Law. Fluid flow in porous medium is described by Darcy’s law, which
was formulated by Henry Darcy in 1856 while investigating water flow through beds
of sand connected with the fountains of the city of Dijon, France.

We will derive Darcy’s law by taking a porous medium of cross sectional area A
and length L. Fluid will be made to flow through it at a rate ~Q. When a steady
state is achieved, the pressure gradient ∇P is related to ~Q by the formula

(5) ~Q = −A
µ
~K · ∇P ,

where µ is the dynamic viscosity of the fluid and ~K is a second order permeability
tensor which is independent of the fluid nature but depends on the geometry of the
medium. If we define ~v = ~Q/A as the Darcy velocity then we find that

(6) ~v =
− ~K · ∇P

µ
.

We deduced Darcy’s law (6) by assuming steady flow of a Newtonian fluid that
is only driven by a pressure gradient. In the case when the fluid is driven by other
forces than the pressure gradient, we can include them in our analysis by replacing
∇P with the sum of all driven forces F per unit volume. The most common case
encountered is a fluid driving by gravity ~g and pressure gradient for which Darcy’s
law may be written as

(7) ~v = − 1
µ
~K · [∇P − ρ~g] .
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If the porous medium is isotropic, then permeability reduces to a scalar K and
(6) simplifies to

(8) ~v =
−K
µ
∇P.

In the case of a one dimensional flow ~v = u, (8) reduces to

u = −K
µ

∂P

∂x
,

where ∂P/∂x is the pressure gradient in the flow direction.

2.4. Mass Balance Equation. Let us consider a control volume V located in a
fluid flow field as shown in Figure 3, with boundary Ω. The law of conservation of
mass for a homogeneous fluid with respect to the control volume is stated as

(9) (Rate of mass accumulation) = (Rate of mass in)− (Rate of mass out)

The terms in the above equation can be expressed as follows. The rate of accu-
mulation of mass in any volume dV is ∂ρf

∂t dV , where ρf is the density of the fluid.
The total rate of mass accumulation in the control volume V can be obtained by
integrating ∂ρf

∂t over V ,

(10)
∂

∂t

∫
V

ρf dV.

The rate at which mass flows across an infinitesimal surface dΩ in the control
volume surface is equal to ρf~vdΩ cosϑ, where ϑ is the angle between the velocity
vector ~v and the outward unit normal vector ~n to dΩ. Mathematically mass efflux
is

ρf ~v dΩ cosϑ = ρf dΩ |~v| |~n| cosϑ

= ρf ~v · ~n dΩ.

The rate of mass flowing in through dΩ is −ρf ~v · ~n dΩ, where the negative sign
is because of the outward normal vector ~n. The total net rate of mass influx into
the control volume V can be obtained by integrating −ρf ~v · ~n dΩ over the control
volume surface Ω as

(11) −
∫

Ω

ρf ~v · ~n dΩ.

According to Gauss’s divergence theorem, the surface integral (11) will be trans-
formed into a volume integral as

(12) −
∫

Ω

ρf ~v · ~n dΩ = −
∫
V

∇ · (ρf~v) dV.

Substituting (10) and (12) into (9) gives∫
V

{
∂ρf
∂t

+∇ · (ρf~v)
}
dV = 0,

⇒ ∂ρf
∂t

+∇ · (ρf~v) = 0.(13)

This equation is called the continuity equation.
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control-volume surface 

d

 control volumeV

v



n

Figure 3. Control volume through which fluid flows

Now we will use equation (13) to derive the mass balance equation or continuity
equation for porous media. For this let us multiply equation (13) by the porosity
φ, which is assumed to be constant in space, so we have

(14) φ
∂ρf
∂t

+∇ · (ρfφ~v) = 0.

Average velocity in 

  the whole system

V

fluid velocity in the pores

v

Figure 4. Fluid flow in porous media

According to the Dupuit-Forchheimer relationship ~v = φ~V , where ~v is the Darcy
velocity (only in pores) and ~V is the average velocity of the fluid in the whole
system (solid matrix and voids), then equation (14) will take the form

(15) φ
∂ρf
∂t

+∇ · (ρf~v) = 0.

Note that φ is independent of time. The above equation is known as the continuity
equation for a porous medium.
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2.5. Permeability as a function of water content. The empirical formula for
the soil permeability, K(θ), is given as

(16) K(θ) = K0

(
θ

θ0

)m
where m > 0 is a parameter that depends on the nature of soil and θ0 is the water
quantity that remains after gravity forces have ceased. Fig 2.5 shows the linear
relationship that exist by plotting the log of permeability against log of porosity.

Figure 5. Porosity vs Permeability for different types of soil

2.6. The complete model. The resulting model we want to solve is
∂θ

∂t
+∇ · ~v = 0,(17)

~v = − 1
µ
K(θ)(∇P − ρlgêz),(18)

P = P0 + ρsgz − Pe(θ).(19)

Substituting equation (19) into (18) and the resulting into (17) we obtain

(20)
∂θ

∂t
− g

µ
(ρs − ρl)K ′(θ)

∂θ

∂z
+

1
µ
∇ · (K(θ)P ′e(θ)∇θ) = 0.

Also, we substitute the expression for Pe(θ) and K(θ) from equations (4) and (16)
into (20) to obtain

(21)
∂θ

∂t
− g

µ
(ρs − ρl)

m

θ
K0

(
θ

θ0

)m
∂θ

∂z
− K0

µ
∇ ·
((

θ

θ0

)m(
P0

θ0

)
∇θ
)

= 0,

where the parameter values are

K0 = 10−12m2, µ = 10−3 Pa s, ρs = 1800 kgm−3, ρl = 1000 kgm−3, P0 = 105 Pa, θ0 = 0.4

Now, we introduce dimensionless variables for space and time defined by

(22) x̂ =
x

L
and t̂ =

t

T
,
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where L and T are the characteristic length and time respectively. We choose the
length scale to be L = 1m, which is reasonable considering we are looking at a
cadaver, and we take T as

(23) T =
µL2φm+1

0

K0P0
≈ 104 s,

With such scales the dominant process is diffusion and, neglecting the hat, equation
(21) reduces to

(24)
∂θ

∂t
−∇ · (θm∇θ) = 0.

3. Solving the model – Similarity solutions

Rewriting equation (24) in cylindrical coordinates, assuming axial symmetry,
gives

(25)
∂θ

∂t
=

1
r

∂

∂r
(rθm

∂θ

∂r
) +

∂

∂z
(θm

∂θ

∂z
)

Equation (25) is in appearance very similar to the “stained rug” problem. Solving
first this easier version of the problem, assume glass of wine is spilt onto a rug.
Assuming that the wine is spilt all in one go and at the same spot (single point
source) the equation that describes the liquid content on the rug, as a function of
space (in radial coordinates, as it spreads in a circulare shape) and time, θ(r, t), is

(26)
∂θ

∂t
=

1
r

∂

∂r
(rθm

∂θ

∂r
)

The volume of fluid on the rug is always the same, which means

(27) 2π
∫ ∞

0

θ(r, t)r dr = I0

where I0 is a constant. As equation (26) is a diffusion equation in an unbounded
region, we look for a similarity solution of the form

(28) θ(r, t) = t−βf(η)

where η = t−αr. Substituting (28) into (26) and using (27) gives

α =
1

2 + 2m
, β =

1
m+ 1

and

f(η) =


(

m
4(m+1)

)1/m

(η2
0 − η2)1/m |η| < η0

0 |η| ≥ η0

where

η0 =

(
I0

(
2(m+ 1)

m

)(
4(m+ 1)

m

)1/m
)m/2(m+1)

.

Finally, we have a formula for θ(r, t)
(29)

θ(r, t) =

t−1/(m+1)
(

m
4(m+1)

)1/m

(η2
0 − t−1/(m+1)r2)1/m |t−1/(2m+2)r| < η0

0 |t−1/(2m+2)r| ≥ η0
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Plot of Volumetric Water Content against radius from Similarity Solution

t = 0.5
t = 1.6
t = 2.8
t = 3.9
t = 5.0

Figure 6. Evolution of the Volumetric Water Content with time

The position of the moving boundary (i.e. when η = η0) is the key feature
that gives this model predictive power. We can calculate the radius of the moving
boundary as a function of time:

r(t) = η0 t
1/(2m+2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
front radius, r

0

1

2

3

4

5

t

Movement of front for Stained Rug Problem

m = 4
m = 6
m = 8
m = 10
m = 12

Figure 7. Evolution of the liquid front radius as a function of time
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Clearly, the solution depends on m (i.e. on the nature of the soil). For different
values of m, the slopes are different (see Figure 7) which means the predictive power
is lower for longer times and for larger values of m.

Going back to the fluid propagation through soil problem, we would have wanted
to find a solution for θ(r, z, t), as the fluids from a decomposing cadaver propagate
through the soil also downwards and not only radially. However, we did not have
enough time to find a similarity solution for equation (25).

4. Other considerations

4.1. Initial and boundary conditions. We have chosen to solve the pde analyt-
ically for some simple boundary and initial conditions: neither are very realistic.
Typical initial conditions would be either specifying the initial moisture θ(·, 0) = θ0

or the pressure head h(·, 0) = h0. Appropriate boundary conditions are more com-
plicated.

We could assume a Dirichlet boundary condition, a Neumann boundary con-
dition or a flux, Robin-type, boundary condition. A Dirichlet condition would
suggest that the the fluid pools on the surface of the soil before entering the bulk,
or possibly, also, that there is some nearby open water such as a lake or stream.
A Neumann condition would be in the case where we knew how much of the fluid
went directly into the soil at a given time and place. Finally a flux condition would
probably be most realistic. A flux condition would take the form ~q · ν̂ = qn on some
part Γq of the boundary of our domain. For an impermeable boundary we would
have qn ≡ 0. A flux condition could also be used to model the effects of rain fall.

Any of these conditions could be applied to (24) and then solved numerically.

4.2. Modelling Body Decomposition. To specify the flux qn we need to inves-
tigate how the body decomposes. Full details can be found in [3]. We have assumed
that we have a point source which injects all the fluid at time zero, however in the
physical situation we have the fluid release is non-uniform in time and in space.

time --->

flu
id

 re
le

as
ed

 --
->

skin breakdown

Fluid released over time

Figure 8. Amount of
fluid released over time
at constant temperature
and ambient moisture

Decomposition of a cadaver begins
at four hours after death and can take
up to approximately 128 days for skele-
tonisation, although this figure depends
upon temperature and ambient mois-
ture content. Typically little fluid
is released at the early stages which
builds until the skin ruptures and then
the amount of fluid released decreases
again. Figure 8 shows an example de-
composition if the cadaver is kept at
a constant temperature and ambient
moisture.

In the application we are looking at
we would probably have diurnally peri-
odic variation in this rate due to day-
night temperature changes. Tempera-
ture and ambient moisture could vary
from day to day with the local weather conditions.
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Also the fluid does not leave all the body at all times so even a point source
is a poor approximation. Since initially the fluid must escape the body through
available orifices such as the eyes and mouth in the head and also though the anus.
This effect is also extenuated by the effect of maggots which can only enter the
body via the same orifices. This means initially fluid is released around the head
and hips. Then as the skin breaks down the fluid released is more uniform. Parts
of the body with high moisture content, for example the brain, and high enzyme
content, for example the liver, breakdown more rapidly also.

4.3. Soil Composition. We have assumed that the soil is homogeneous in struc-
ture, but evidence from a small amount of data collected suggests that this is a
poor choice. An experiment was performed in which a fixed amount of fluid was
placed in a container on the top surface of the soil and allowed to flow into the bulk.
The time it took for the fluid to enter the soil plus the size of the stain, depth and
width, was measured. This test was performed at six times and three different sites
within a field. Even when the test sites where chosen at almost the exact point,
the data gives a large variation in soil properties. Across the field there was almost
no correlation between the measurements.

The data suggests we should use a piecewise homogeneous model for the soil or
a perhaps a probabilistic model. This would mean we would assume that different
clumps of the soil would have a similar structure. Modelling the exact properties
of the soil would be a major difficulty in developing a more precise model of this
system.

5. Discussion

When set this problem we were asked several questions. We hope to answer
these here:

• Can this stain be used to predict the time of death of the cadaver?
• How does this fluid propagate through the soil?
• Can an expression be for the expected concentration profile be found?
• Does a long time distribution profile exist?

If we are allowed to assume that the body is found on ‘nice’ homogeneous soil
then our model could be developed into a way of predicting time of death. The
important curves come from figure 7. This shows that if a forensic scientist can
perform tests to calculate certain properties of the soil, K0 and m, then they would
have a curve in order to the time given the front radius. Measuring errors for this
radius would mean that our model would work best for short time scales but could
be used for longer time scales for working out the order of magnitude for the time
of death.

If we take into account inhomogeneities in the soil, it would be difficult to extend
our current model. The parameters we have chose to vary with the soil are difficult
to measure experimentally so, in effect, it is very difficult to choose which curve
one is using to match time of death to island radius. Also measuring the radius
in natural soil would be difficult since typical stains would not be symmetric and
often have a blurred edge due to other effects such as maggot infestations.

Our dimensional analysis has shown us that diffusion is the dominant effect since
the convection due to gravity is insignificant. Solutions typically have a front, which
we have used to create estimate curves for pmi. This analysis has only, however,
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been performed for the homogeneous soil and the inhomogeneities may well actually
mean other effects are more important.

This does not compare too well to current forensic techniques. Errors for mea-
suring post mortem interval using decompositional products can range from ±2
days for soft tissue decay to ±3 weeks using inorganics for skeletonized material.
New, sophisticated hand-help devices are being planned which can be used at a
crime scene to give an instant estimate of pmi also.
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