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Abstract
In this paper, we consider two particular devices used for protein folding. The first one is a microfluidic
mixer that perform a folding process by mixing a protein solution with a solvent. We are interested in
minimizing its mixing time by choosing suitable shape and flow conditions. The second one is related to
food processing and we focus on the modeling and simulation of the temperature evolution inside a high
pressure food treatment device. Some of the effects of such treatments is to unfold, and thus inactivate,
certain enzymes inside the food sample. The behavior and stability of the proposed model is checked by
numerical examples. Furthermore, a simplified version of this model is presented and compared in terms
of accuracy and computational time.
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1 Introduction

Proteins are organic compounds made of amino acids that catalyze chemical reactions. Protein folding is
a process that consist of a change in the protein structure from a folded state (the protein can perform
chemical reaction) to an unfolded state (the protein becomes inactive). Its range of industrial application
is wide: DNA sequencing, drug molecules creation, food treatment, etc.

Protein folding can be performed, for instance, by using photochemical initiation, changes in temper-
ature and/or pressure [20], changes in chemical potential (as in salt or chemical denaturant concentration
changes) [7]. All these techniques provide perturbations of a protein conformational equilibrium, neces-
sary to initiate folding.

In this paper we center on two different devices that perform protein folding by using, respectively,
concentration and temperature/pressure changes. In the first case, we study a microfluidic mixer used to
mix, as fast as possible, a protein solution with a solvent. In particular, we are interested in optimizing
the mixer to improve its mixing properties. To do so, we introduce a 2-D model, define the considered
parameters and solve the associated optimization problem.

In the second case, we focus on a particular High-Pressure-Temperature treatment device. Its objective
is to unfold enzymes (a variety of proteins) inside a food sample in order to prolong its shelf life. In
particular, we study a heat-transfer model that predicts the temperature evolution inside the device
when the pressure profile is given. As this model is computationally expansive, we also propose and
analyze a simplified version.

2 Microfluidic Mixer device

2.1 Device description

Folding experiments based on changes in chemical potential are applicable to a wide range of proteins
since most of them unfold reversibly in the presence of chemical denaturants such as urea and guanidine
hydrochloride [1].
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Figure 1: From Left to Right: (a) Typical fast-micro-mixer geometry. qs (respectively, qc) is the side
(respectively, center) injection velocity. c is the denaturant concentration. (b) Half-Shape parameteriza-
tion considered for optimization process. The mixers are symmetric respecting to the vertical centerline,
so only one symmetric half is used by the model.

In this Section, we discuss specific shape and inlet velocities optimization for a microfluidic mixer
based on the continuous flow principle originally proposed by Knight et al. [14] and improved and
demonstrated by Hertzog et al. [7] (see Figure 1-(a)). We use an optimization approach following Ivorra
et al. [6, 12]. The shape of the mixing region was fixed to an intersection at 90 degrees channels, with
only variations in the shape intersection.

We are now interested in extending those previous works by solving a more complex optimization
problem that involves more geometrical variables (in particular, varying the angle of the intersection
channel) and including the inlet velocities.

2.2 Mixer parameterization

The mixer shape considered is the typical three-inlet/single-outlet channel architecture proposed by
Knight [14]. Since our model is symmetric (in order to avoid perturbation in the exiting region [12]),
we only study half of the mixer [7] (see Figure 1-(a)). Our model is a 2D approximation of the physical
system [2] (In practice, the depth of the channels is 10 µm to optimize the fluorescence signal with a
confocal system). Experiments show only a 5% deviation from a 3D modeling, which is satisfactory when
a 2D model is used as a low-complexity model in optimization [7].

We parameterize the mixer shape by using cubic splines (see Figure 1-(b)). The total number of
parameters is 15: 2 for the inlet velocities denoted by us (side velocity) and uc (center velocity) (from
0.001 m/s to 1 m/s); 3 for the channel lengths denoted by le, lc and ls; 1 for the intersection channel
angle, denoted by Θ (from 0 degree to 90 degrees); and 9 for the corner intersection between each channel
denoted by (cx1, cy1), l1, h1, (cx2, cy2), l2, h2 and px.

In addition, we account for the following constraints:

• The lithography step in fabrication limits the shape curvature to a minimum of 1 µm, which implies
constraints on the geometrical parameters Θ, (cx1, cy1), l1, h1, (cx2, cy2), l2, h2 and px.

• The width of the side channel nozzles is set to 3 µm and the width of the center channel nozzles to
2 µm to mitigate clogging issues.

• The maximum mixer length is 20µm and its maximum height is 23µm, which implies constraints
on the parameters le, lc and ls.

• The physical properties of buffers and guanidine hydrochloride denaturant used here for protein
folding studies have known parameters such as density, viscosity, and diffusivity [6].
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• Finally, the maximum side and central flow rate, us and uc, is 1 m s−1. Hence, a typical flow
Reynolds number based on micromixer thickness and flow inlet is Re ∼ 150.

Thus, the corresponding search space of the optimization problem is Ω =
∏15

i=1[x
min
i , xmax

i ] where
xmin

i (resp. xmax
i ), the minimum (resp. maximum) value of the ith parameter, are fixed by the previous

constraints.

2.3 Modeling

The mixer flow was analyzed using numerical solutions of the full Navier-Stokes fluid flow equations and a
Convective Diffusion equation describing concentration fields c of the guanidine hydrochloride denaturant.
Only steady configurations have been considered, since we are not interested in the behavior of the device
during its transient set up.

These flow simulations were used to explore the guanidine hydrochloride performance on a variety
of mixer designs with systematically varied flow and geometric parameters. The model is applied to
mixer shape designs described in Figure 1-(b). We approximate the flow at the vertical midplane with
two-dimensional flow simulations:







−∇ · (η(∇u + (∇u)⊤)) + ρ(u · ∇)u + ∇p = 0 in Ω,

∇ · u = 0 in Ω,

∇ · (−D∇c + cu) = 0 in Ω,

(1)

where Ω is the domain defined by the mixer shape (see Figure 1-(b)), u is the flow velocity vector (m
s−1), p is the pressure field (Pa), c is the concentration distribution, ρ = 1, 013 kg m−3 is the density,
η = 110−3kg m−1 s−1 is the dynamic viscosity and D = 2−9 m2 s−1 is the diffusion coefficient.

Finally, the following boundary conditions are assumed: u = 0 on shape border, u = us.para1 on side
inlets and u = uc.para2 on the center inlet, where para1 and para2 are parabolic functions equals to 0 in
the inlet border and 1 in the inlet center; u · t = 0 on the exit; u · n = 0 on the center symmetry line;
(t, n) is the local orthonormal reference frame along the boundary; c is prescribed at inlet and normal
zero gradient is assumed for all other boundaries; c = 0 at side inlet and c = 1 at center inlet.

In order to compute a numerical solution, the incompressible Navier-Stokes equation is solved itera-
tively. We consider Lagrange P2-P1 elements to stabilize the pressure and to satisfy the Ladyzhenskaya,
Babouska and Brezzi (LBB) stability condition. More precisely, 2nd-order Lagrange elements model the
velocity components while linear elements model the pressure. The convective diffusion equation is solved
using a streamline-upwind/Petrov-Galerkin (SUPG) method in order to stabilize the advection. Both of
these stabilization techniques prevent numerical oscillations and other instabilities when solving prob-
lems with advection-dominated flows, and when using equal-order interpolation functions for velocity and
pressure. A Direct Damped Newton method is then used to solve the corresponding linear systems [12].

2.4 Cost Function

The cost function to minimize is the mixing time of the considered Lagrangian fluid particle traveling
along the centerline into our fast-micro-mixer with parameters associated to xparam ∈ Ω and is denoted
by J(xparam). In this paper, we define mixing time as the time required to change the concentration of
a typical protein particle from 90% to 30% of the initial value c0. Thus, the cost function is given by:

J(xparam) =

∫ c
xparam

30

c
xparam

90

dy

uxparam(y) · t
, (2)

where c
xparam

90 and c
xparam

30 denote the points along the symmetry line where the concentration is at 90%
and 30% of c0, respectively.

This modeling has been validated by a posteriori prototyping [7].

2.5 Results

In order to solve the optimization problem presented in Section 2.4, we use the Global Optimization

Platform (GOP) software (available at http://www.mat.ucm.es/momat/software.html) with a genetic
algorithm as the core algorithm and where the initial population is generated using the secant method. A
complete description and validation of this algorithm can be found in [10, 11, 12, 13]. Other optimization
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Figure 2: From Left to Right: (a) Predicted normalized concentration versus time of the optimized
mixer. The initial time (i.e. 0 second), represented by a vertical dashed line, corresponds to the moment
when the typical protein particle reaches a concentration of 90%. The final mixing time, represented
by a continuous vertical line, corresponds to the moment when the typical protein particle reaches a
concentration of 30%. (b) Concentration field and shape of the optimized mixer.

approaches could have been considered, such as the Universal Evolutionary Global Optimizer (UEGO)
algorithm which is based on the construction of a greedy solution combined with a local search phase
which starts at the constructed solution [21, 22, 23].

The optimization algorithm starts from an initial shape made with smoothed 90 degrees corners
parameterized with splines to keep the admissible regularity. The mixing time has been decreased from
8µs to 0.5µs (see Figure 2-a). Optimized shape is presented in Figure 2-b. The number of evaluations is
1000. Each evaluation requires about 40s on a 3.6Ghz Pentium 4 PC computer with 2GB of RAM. Thus
the optimization process takes about 11 hours. This optimized mixer is better than the one encountered
in previous optimization approaches [12] (without angle and inlet velocities parameters) whose mixing
time were 1µs.

3 High-Pressure device

3.1 Device description

Actually, the demand of safe and minimally processed food, prepared for immediate consumption has
increased significantly, in order to give service to the needs of restaurants, collective dining rooms as
well as to domestic consumption. One of the technologies that can be used for the preparation of these
products is High Pressure (HP) Processing, which has become out to be very effective to prolong the
shelf life of some foods (cooked ham, juices, guacamole, oysters, etc.) being already a reality at industrial
level. These treatments have the great advantage of not being based on the incorporation of additives,
which consumers prefer to elude. Furthermore, they allow to avoid treatments with high temperatures
(as Pasteurization), which have adverse effects on some nutritional properties of the food, such as its
flavor, etc. (see, e.g., [8]).

Some of the effects of the combination of high pressure with thermal treatments on a food sample is
to inactivate some undesired enzyme (by unfolding them), prolonging the shelf life of the food. Here we
focus on the modeling and simulation of the Pressure-Temperature evolution inside a food sample when
such a treatment is applied. Due to the high computational complexity needed for solving this model
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(which includes heat and mass transfer and nonconstant thermophysical properties), we also consider
and study a simplified version of it. These models could be very important to design suitable industrial
equipments and to optimize the processes.

3.2 Modeling

When HP is applied in Food Technology, it is necessary to consider the thermal effects produced by
variations of temperature due to the work of compression/expansion in both the food and the pressurizing
fluid.

After compression, heat exchange appears between the pressure chamber, the pressure medium and the
food sample, giving a time–dependent distribution of temperatures. In the fluid media (the pressurizing
fluid and also the food when it is in liquid state), changes in temperatures imply changes in fluid density,
leading to free convection during the high pressure process. Therefore, conduction and convection have
been considered in the models, taking into account heat and mass transfer (see [3]).

Often, HP experiments are carried out in a cylindrical pressure vessel (typically a hollow steel cylinder)
previously filled with the food and the pressure medium. The sample is located in the inner chamber at
a temperature that can be either the same or different to the one in the pressure medium and/or the
solid domain surrounding it, which may cool or warm the food depending on the user’s criteria.

The axial symmetry of the model allows us to consider cylindrical coordinates and the domain given
by half a cross section (intersection of the cylinder with a plane containing the axis). Let us consider four
bidimensional sub–domains (see Figure 3-(a)):

• ΩF: domain where the sample of food is located.

• ΩC: cap of the sample holder (typically a rubber cap).

• ΩP: domain occupied by the pressurizing medium.

• ΩS: domain of the steel surrounding the above domains.

Our domain in the (r, z)–coordinates is the rectangle Ω = [0, L] × [0,H] defined by Ω = ΩF ∪ ΩC

∪ΩP ∪ ΩS, where {0} × (0,H) generates the axis of symmetry. In the boundary of Ω, which is denoted
by Γ, we distinguish:

• Γr ⊂ {L} × (0,H), where the temperature will be known.

• Γup = [0, L] × {H}, where heat transfer with the room where the equipment is located could take
place.

• Γ\ {Γr ∪ Γup}, with zero heat flux, either by axial symmetry or by isolation of the equipment.

We denote by Ω∗, Ω∗

F, Ω∗

C, Ω∗

P, Ω∗

S, Γ∗, Γ∗
r and Γ∗

up the domains generated when rotating Ω, ΩF, ΩC,
ΩP, ΩS, Γ\ ({0} × (0,H)), Γr and Γup along the axis of symmetry (in the 3D space), respectively.

For the mathematical model we will consider a liquid type food. We propose a model considering
convection both in the pressurizing medium and the region ΩF . We distinguish two separated velocity
fields uF and uP for the food and the pressurizing fluid, respectively. We point out that the pressure
medium and the food are separated by the sample holder and do not mix.

The governing equations are



































































ρCp

∂T

∂t
−∇ · (k∇T ) + ρCpu · ∇T = α

dP

dt
T in Ω∗ × (0, tf),

ρ
∂uF

∂t
−∇ · η(∇uF + ∇ut

F
) + ρ(uF · ∇)uF = −∇p −∇ ·

(

2η

3
(∇ · uF)I

)

− ρg in Ω∗

F × (0, tf),

ρ
∂uP

∂t
−∇ · η(∇uP + ∇ut

P
) + ρ(uP · ∇)uP = −∇p −∇ ·

(

2η

3
(∇ · uP)I

)

− ρg in Ω∗

P × (0, tf),

∂ρ

∂t
+ ∇ · (ρuF) = 0 in Ω∗

F × (0, tf),

∂ρ

∂t
+ ∇ · (ρuP) = 0 in Ω∗

P × (0, tf),

(3)
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Figure 3: From Left to Right: (a) Computational domain. (b) Temperature distribution (oC) in the whole
domain at t = 15 after the considered process. (c) Example of temperature average error distribution
(oC) between the full and the perturbed models.

where P is the pressure (Pa) applied by the equipment, u = uF + uP is the total fluid velocity field
(ms−1), p is the pressure (Pa) generated by the mass transfer inside the fluid, T is the temperature (K), ρ

is the density (kg m−3), Cp is the heat capacity (J kg−1 K−1), k is the thermal conductivity (W m−1K−1),
tf (s) is the final time, η is the dynamic viscosity (Pa s), g is the gravity vector (m s−2) and α is the
thermal expansion coefficient (K−1) of the food in Ω∗

F, of the pressure fluid in Ω∗

P and 0 elsewhere.
Right hand term of first equation in (3) results from the following law:

∆T

∆P
=

αTV

MCp

=
αT

ρCp

,

where ∆T is the change of temperature due to a change of pressure ∆P , V (m3) is the volume and M

(kg) is the mass.
We also consider the following point, boundary and initial conditions:































k
∂T

∂n
= 0 on Γ∗\(Γ∗

r ∪ Γ∗
up) × (0, tf), k

∂T

∂n
= h(Tamb − T ) on Γ∗

up × (0, tf),

T = Tref on Γ∗
r × (0, tf), T = T0 in Ω∗,

uF = 0 on Γ∗

F × (0, tf), uP = 0 on Γ∗

P × (0, tf),

p = 105 in A1 × (0, tf) ∪ A2 × (0, tf),

(4)

where Γ∗

F denotes the boundary of Ω∗

F, Γ∗

P is the boundary of Ω∗

P, A1, A2 are corner points of Γ∗

P and
Γ∗

F, respectively (see Figure 3-(a)), n is the outward normal vector on the boundary of the domain, T0

us the initial temperature, Tref is the temperature that is kept constant in Γ∗
r (cooling or warming the

food sample), Tamb is the (constant) temperature at the external environment and h (Wm−2K−1) is the
heat transfer coefficient.

3.3 Model sensitivity

In practice, the coefficients used in Equations (3)–(4) are usually approximated using experimental data
with a standard deviation inferior to ±5% of the value (see [25]). Furthermore, due to equipment
limitations, some experimental discrepancies could occur during the process (for instance, the pressure
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curve is not strictly respected). In order to study the impact of those errors on the temperature, we
perform a sensitivity study on the considered model.

More precisely, we generate N ∈ N perturbed models considering the original one, where ρ, Cp, k, α,
η, T0, Tref , P are perturbed uniformly by ±5%. Then, we compute the mean temperature error Terr as
follows:

Terr =
1

N

N
∑

i=1

||T − Ti||
2
L2(Ω×(0,tf )), (5)

where T is the temperature distribution obtained using the original model and {Ti}
N
i=1 are the solutions

corresponding to the N perturbed models.

3.4 Simplified model

Due to the high computational complexity needed to solve the “full” model (3)–(4), it may be interesting
to consider some simplified versions (called “simplified models”), that are less expansive to evaluate and
provide results close enough to the full model. Indeed, simplified models are useful when they are used,
for example, during optimization processes needing a lot of model evaluations (see [10, 12]). A description
of this methodology can be found in [16].

Thus, we carry out the study of the numerical characteristics of one simplified version of the liquid
food model (3)–(4) described previously.

More precisely, we consider a version with constant coefficients (except the density ρ which depends
on temperature and pressure in order to keep the effect of the heat transfer by convection in the liquid
domains) by setting Cp, k, α and η to their mean value in the range of temperature and pressure considered
in the process (other simplifications, as the Boussinesq approximation, could be also considered). This
model is denoted by T–CC.

In order to evaluate the efficiency of the simplified model, we compute the error made on the temper-
ature (ET) considering the simplified model instead of the full one. It is given by

ET(Tsim) = ||T − Tsim||2L2(Ω×(0,tf ), (6)

where Tsim and T are the solution given by the simplified and full models, respectively.

3.5 Numerical tests

For the numerical experiments we have used the dimensions of the pilot unit (ACB GEC Alsthom, Nantes,
France) that was used in [19]. Therefore, the 2D cylindrical domain has a radius of L = 0.09 m and a
height of H = 0.654 m (see Figure 3-(a)).

We consider a representative example of sample food: a liquid type food with a small filing ratio. The
dimensions and location of the sample is exactly the same as studied in [19] for solid type foods.

We present numerical tests computed in cylindrical coordinates using an iterative solver. We have
considered a finite element approach for solving the model. More precisely, velocity and pressure spatial
discretization is based on P2–P1 Lagrange Finite Elements satisfying the Ladyzhenskaya, Babuska and
Brezzi (LBB) stability condition. The convective diffusion equation is solved using a suitable direct
method (UMFPACK: Unsymmetric MultiFrontal method for sparse linear systems) combined with a
stabilization technique (GLS: Galerkin Least Squares, see [26]).

The physical parameters of the pressurizing medium are supposed to be equal to those of the water
and depending on temperature and pressure. For the liquid food sample, water physical parameters are
considered too. In this case, ρ,Cp and k parameters are computed through a shifting approach (see [18])
from atmospheric pressure, and using a suitable linear interpolation for other values of pressure. For the
parameter α we use the expression described in [17]. Finally, dynamic viscosity η is obtained also by
interpolation of data obtained using [15].

For general cases where the thermophysical properties of a particular food are not known, mathemat-
ical tools for inverse problems may be needed for their identification. For example, in [5] the authors
discuss how to identify the heat transfer coefficient for a particular prototype. Identification of coefficients
depending on temperature is considered, in a rigorous mathematical way in [4] for a general abstract case.

The environmental temperature, the reference temperature and the heat transfer coefficient used in
the test are Tamb = 19.3 oC, Tref = 40 oC and h = 28 W m−2 K−1, respectively. Initial temperature
in the sample is chosen equal to 22 oC. Thermophysical properties of the steel and the rubber cap of
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Figure 4: From Left to Right: (a) Evolution of the sample’s mean temperature (—), temperature in
the center point B1 (- -) and in the boundary point B2 (...) of the sample during the process. (b)
Time–averaged temperature distribution (oC) during 15 min in the food sample after the considered
process.

the sample holder were considered to be constant (ρ = 7833 kg m−3, Cp = 465 J kg−1 K−1 and k = 55
W m−1 K−1 for steel and ρ = 1110 kg m−3, Cp = 1884 J kg−1 K−1 and k = 0.173 W m−1 K−1 for
rubber).

We have performed several numerical experiments simulating the temperature evolution. For this
sake, we consider a high pressure process as follows: for initial temperature

T0 =

{

40 oC in ΩS,

22 oC in Ω\ΩS,

a constant pressure increase in the first 305 seconds until reaching 600 MPa is considered. Therefore, the
derivative of pressure in the internal heat generation is

dP

dt
=











600

305
106 Pa s−1, 0 < t ≤ 305,

0 Pa s−1, t > 305.

3.5.1 Full model analysis

Figure 3-(b) shows the temperature distribution under the considered high pressure process at time t = 15
min. It illustrates how the model captures the nonhomogeneous temperature distribution in the domain.

Figure 4-(a) plots the evolution of the temperature at two points: the first one, B1, is located at the
center of the sample (at the symmetry axis) and the second one, B2, at the surface of the sample, located
at the same height than B1 (see Figure 4-(b)). Evolution of sample mean temperature is also plotted.

Therefore, the model and the numerical approximation of its solution is consistent with what is
physically expected.

As already remarked in [19] for solid type foods, these results show that for liquid foods it can be
also interesting to use an initial temperature for the food smaller than Tref in order to anticipate the
temperature increase that results from compression, which allows to get a more uniform process avoiding
big temperature gradients inside the food and temperatures much higher than Tref (remember that one of
the goals of high–pressure technology is to process food without using high temperatures, which degrade
some of the foods main qualities).
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3.5.2 Model sensitivity analysis

According to Section 3.3, in order to evaluate the sensitivity of our model, we have generated N = 10
perturbed versions of the model. The mean temperature error defined in (5) satisfies Terr ≤ 2 C. This
represents ±8% of the range of temperature [21 oC, 47 oC] reached during the processes.

Furthermore, as we can observe in Figure 3-(c), which represents an example of the distribution of the
error in the whole equipment, the average error committed in the food sample, close to 1.2 oC (±5%), is
less important than the error committed in the other parts of the device.

3.5.3 Simplified model analysis

The T–CC model produces an error of ET (TT−CC)=0.15 oC (±0.6%). This simplified model gives a
good alternative to the full one for possible optimization procedures as its computational time is 7500s
against 35000s of the full model, when considering a 3.6Ghz Pentium 4 PC computer with 2GB of RAM.

4 Conclusions

The two mathematical models described in this paper provide a useful tool to evaluate and optimize
protein folding process devices based on either thermal and pressure change or concentration change.
Those model should be coupled to other kind of model in order to study their effect on the considered
protein. For instance, we can combine the model presented in Section 3 with a first order kinetic model
to evaluate the impact of HP-T treatment on the enzyme activity in a food sample. A full description of
this coupling can be found in [9].
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