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Mathematical modelling of wound healing processes

Abstract

The aim of this analysis is to understand which factors take part in natural wound
healing process. To do so, several mathematical models which reproduce this process
have been adjusted. Through computer simulations, it is possible to know how the
healing time of wounds varies as a function of model parameters. The knowledge of
sensitivity to the different factors can help in the search for new treatments which
reduce the time of wound healing process.

We have analyzed three reaction-diffusion models adjusted to simulate this process:
Sherratt and Murray’s model for wound closure, Sherratt, Murray and Maggelakis’s
model for coupled wound closure and angiogenesis and Olsen’s model for wound
contraction. Uniformity of wound closure evolution allows us to consider wounds as if
they were planar wounds and simplify the problem to one-dimensional case. However,
we present some bi-dimensional results too, which illustrates the influence of wound

morphology and size in healing time.



Biological introduction

We can distinguish mainly 3 phases in wound healing process: Inflammation,
Proliferation and Remodeling. As it is showed in the next figure this phases overlap in

time.

INFLAMMATION

PROLIFERATION
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Basically, in inflammation phase, bacteria and debris are phagocytosed and removed.
During proliferation phase, the most important events in wound healing process take
place and these are the processes we have simulated through mathematical models.

So, the first process we have analyzed is granulation tissue formation and
re-ephitelialization of the epidermis. We have seen how epithelial cells proliferate in
order to provide cover for the new tissue. Simulations have been developed through
Sherrat and Murray’s model for wound closure.

The second process is named angiogenesis, and is related with new blood vessels
formation from vascular endothelial cells. In this case, simulations have been developed
using other model proposed by Sherratt, Murray and Maggelakis.

Finally, in the process known as contraction, the wound is made smaller (‘contracted’)
by the action of two types of cells: fibroblasts and myofibroblasts. The model used to do

simulations associated to this process is due to Olsen.



Sherratt and Murray model for wound closure

The model

To start with, it must be observed that there are growth factors in the body which can
stimulate or inhibit cell function during wound healing process. So, the first model,
analyzes the closure of epidermal wound for both types of chemical influence
separately. The model consists of two conservation equations.

Talking in informal terms, we can see the first equation as a relation established
between the rate of increase of cell density on one hand, and cell migration, mitotic

generation and natural loss on the other hand.

Rate of increase of cell density = Cell migration+ Mitotic generation — Natural loss

According to chemical concentration, we can see the second equation as a quantification
of the relation existing between the rate of increase of chemical concentration on one
hand, and diffusion chemical substances, production generated by cells and decay of

active chemical on the other hand.

Rate increase chemical concentration =
Diffusion + Production by cells - Decay of active chemical.

In mathematical terms, the reaction-diffusion model is composed of:

- One equation for the cell density per unit area (variable “n”)
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- One equation for the concentration of the mitosis regulating chemical (c)
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In the wounded zone, initial conditions are given by: n(0) =¢(0) =0
In the wounded zone, we assume a non-zero cell density (n’) and a non-zero chemical

concentration (c").



Relative to boundary conditions, they are given by:
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We give now a brief description of the terms involved in these equations:

Derivatives of n with respect to time reflect the increasing rate of “n” and “c”
along the time.

Diffusion coefficients, givens by D, and D., quantify speed cells and chemical
concentration expansion from the unwounded to the wounded zone.

In the simulations we have done, we have considered two possibilities. In the
first of them, chemical substances activates mitosis process, while in the second
case, it inhibits cells proliferation. Although activator and inhibitor substances
work together, it’s easier to consider both effects separately and the final result
can be considered like a good approximation to the phenomenon we have
studied.

These behaviors are controlled by “S” and “f” functions. Sherratt and Murray
proposed different expressions for these functions, according to the effect
(activator/inhibitor) which is going to be simulated.

S(c) is responsible for reflecting the chemical control of mitosis while f(n)
function reflects the rate of chemical production by epidermal cells. As we will
see later, it is important to remark the fact that S function depends on K and f
function depends on A.

It is important as well to observe the fact that in the equation associated to cells
density variable (“n”) there is a function (“s”) depending on ‘“c” variable, and
that in the equation associated to chemical concentration (“c”) there is a function
(“f’) depending on “n” variable. It causes a feedback loop between cells and
chemical factors.

Cells and chemical life time coefficients, given by the inverse of K and A terms
respectively, allow quantifying how cells and chemical concentration disappear

along the time.



Results

One-dimensional case

The results we present now have been obtained using a matlab code which solves the
system conformed by the reaction-diffusion equations mentioned for different time
values. Domain associated to the system has been approximated by a segment of length
1, whose left middle represents the wounded zone (planar wound).

Originally there are no cells in the wounded area (in the segment [0,0.5]). Graphs below
show the evolution of the normalized cell density per unit area (n/n”) and the normalized

concentration (c/c’) of the mitosis-regulating chemical in the activator case.
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We can appreciate how the chemical concentration increases with time, stimulating cells
proliferation (mitosis process) in the wounded area until it is completely covered.

(Note: We have considered that the wound is healed when there is at least an eighty
percent of the normal level of cells in the wounded area)

This typical sequence has been reproduced for different values of the model parameters.
Our interest focused on quantifying the reduction of the healing time when we modify
the value of these parameters. So, the following graphs show healing time on the
vertical axis versus diffusion and decay coefficients, comparing results obtained in the
activator and inhibitor case.

Relative to diffusion parameters, we can appreciate that in both the activator and

inhibitor case, the greater the cells diffusion parameter the shorter the healing time. It



seems an expected behavior: when cells proliferation speed increases (responsible for

closure the wound), so do the healing time process.

In the case of chemical diffusion parameters is the other way around, the greater the

diffusion parameter the longer the healing time.
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Relative to decay parameters, we can note that in both the activator and inhibitor case,
the greater the decay parameter the shorter the healing time. This fact seems to be rare,
because it could appear that when time life decreases, so do wound healing time.
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However, it can be justified taking into account that and “f” functions depends on
decay parameters with opposite sign. So the contribution of these functions to reaction-

diffusion system is more relevant that the weight of decay blocks in it.
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Bi-dimensional case

In the bi-dimensional case, we have considered three different geometries associated to
wound domain: a circle, a square and an ellipse. Our purpose is to analyze the influence
of wound morphology and size in time to healing.

In first place, we have measured the healing time for each of them for different areas
(but keeping a common value for the three figures).

The conclusion we can extract (see graph on the left) is that elliptical domains seem to
close faster. It is justified attending to its curvature: “closer wounds close faster”.

In the graph on the right, we have represented the healing time versus the squared root
of the area, which is a magnitude proportional to the radius of the circle, to the side of
the square or to the product of length axis in the ellipse case. In this last one, we have
kept the ratio between length axis (a / b = 4). The conclusion derived from this graph is

that time healing is linearly proportional to this magnitudes.

HEALING TIME HEALING TIME
300 3800
3000 EE
2500 2500
2000 2000
100 1500
1000 1000
500 500
U~||1r|‘\\|1I||||‘|K\I|IIIKI\\\11IIII|||IFI D_|||\\|..\.||||\|||\||||\|||||\||||\||r\.|
00 01 02 03 04 05 06 07 08 01 02 03 04 05 O 07 08 09
WOUND AREA SQRT (WOUND AREA)
8- CIRCLE @~ SQUARE -@- ELLIPSE -9-CRCLE -@ SOUARE -@- ELUPSE
(a/b = cte) (a/b = cte)

Finally we have measured the healing time for an elliptical and a rectangular wound,
keeping now the area but changing “a over b (a/b) ratio”. According to the next graphs
we can confirm a result observed in the comparison of elliptical domains respect to
circle and rectangular domains: “closer wounds close faster”. In fact, the bigger the

difference between lengths “a” and “b” (“closer wounds”), the shorter the healing time.
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Sherratt, Murray and Maggelakis’s model for coupled wound closure

and angiogenesis

The model

During the angiogenesis we have the formation of new blood vessel to provide the
wound area with oxygen and nutrients. This process is controlled by a negative
feedback mechanism in which the low concentration of oxygen invokes the
macrophages at the wound area and these ones issue some factors called macrophages-
derived growth factors (MDGF) that cause the proliferation of new capillaries and the
deposition of collagen. These new vessels increase the concentration of oxygen and
bring it to the cells that are involved in the healing process in the wound area.

We can see that, in order to obtain a successful healing, the concentration of oxygen in
the centre of the wound has to be low.

Our model is based on five coupled equations involving the oxygen concentration, the
concentration of MGDF, the capillary density, the cell density and the chemical

concentration. Each of these equations is a diffusion equation of this form:

Rate of increase = Diffusion term+ Generation term — Natural loss term

(except the equation for the capillaries that has not the natural loss term).

d
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We give now a brief description of the terms involved in these equations:

Derivatives on the left hand reflect the increasing rate of oxygen, MDGTF,
capillary density, cells density and chemical concentration along the time,
respectively
- D, D,, D, B D,and D, are the diffusion terms
- A, 1s the rate of oxygen supplied by capillaries
- 4, is the natural decay of oxygen
- The second term on the right hand in the second equation is the MDGF produced
when oxygen is low (under the threshold ¢ )
A 18 the natural decay of MDGF
The last term on the right hand in the third equation is the logistic proliferation
of capillaries in presence of MDGF
S and f are the same functions explained in. Sherratt and Murray model for
wound closure
- Kand A are again the inverse of cells and chemical life time coefficients
al -.ie {p,q} and indicates that the wound

i is given by ¢ (x)=—
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healing occurs only when oxygen is present, where p and ¢ measure the

sensitivity of cell function and chemical production to oxygen.

Results

Next graphs are pictures extracted of a matlab movie which represents the solution of
the previous equation along the time. It shows how the initial lack of oxygen (fig 3) at
the center of the wound invokes the presence of MDGF (fig 4) that raises the capillary
density (fig 5) in this zone, thus increasing the oxygen concentration at the center of the
wound (again fig 3), resulting in the increase of cell density and chemical factors that

regulate mitosis (fig 1 and 2).
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Another important result is the influence of the threshold parameter ¢, on the healing

time.

Effect of MDGF threshold on healing time

time to heal

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
threshold Cy

The graph reveals that increasing the threshold c, decreases the healing time, this
happens because MDGF is closely related to the ¢, Indeed, the production of MDGF
depends on Q, which has this form:

A

Q

Cs Co

Therefore, if ¢, is close to zero there is no production of MDGF and healing will not

succeed.



Olsen’s model for wound contraction

The model

During the wound healing process, beside the tissue formation models that we have
seen, wound contraction, a biomechanical phenomenon that draws the boundaries of the
wound inward and consequently makes the wound size smaller, takes place. The wound
contraction model according to Olsen’s consists of fibroblasts and myofibroblasts that
play important roles forming a network along with collagen fibers in the extracellular
matrix (ECM). The forces exerting on this network would cause the contraction. During
the angiogenesis, the growth factors chemotactically recruit fibroblasts into the wound
from adjacent dermis and stimulate these cells to proliferate and to produce growth
factors and ECM molecules. Some fibroblasts are also phenotypically converted into
myofibroblasts which are contractile cells. While fibroblasts move throughout the
wound tissue and exert traction forces on collagen fibers in the ECM, myofibroblasts
form the myofibroblast/ECM network whose tension could be transmitted throughout
the wound space.

In our model, fibroblasts density, myofibroblasts density, chemical concentration and

collagen concentration are modeled based on the fundamental conservation law.

d
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where O = Q(x,t) is a space-time dependent quantity, Jp is the flux of O, fp are the
kinetic terms. So we have the following equations (the full description for the
parameters other than n ,m, ¢, p could be found in L. Olsen et al. 1995, we will not

concentrate on those parameters):

Equation for fibroblasts density: n(x,?)
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Equation for myofibroblasts density: m(x,?)
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Equation for chemical concentration: c(x,?)
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Equation for collagen concentration: p(x,?)
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Then the mechanism of contraction is governed by the equation

V : (O-ecm + Gcell) = f;)xt

where o,., represents ECM viscoelastic behaviour, o, is the cell traction and f,,, are the

anchoring. Based on this equation, the displacement could be computed by
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Here we would investigate the influences of three parameters, which are the undamaged

skin Young's modulus E, the traction force per cell per unit of collagen density 7, and

the dermis tethering factor s.

Results

The following results show the influences of the three parameters as we mentioned.

1. The influence of undamaged skin Young’s modulus E:
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We can see that the stronger the Young’s modulus, the less contraction, since the
Young’s modulus of the undamaged skin affect the forces that resist the contraction.
We also observed that the relationship between the percentage of contraction and the

dimensionless E is faster than a linear decreasing.

2. The influence of the traction force per cell per unit of collagen density 7,,:
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Here the percentage of contraction is proportional to the dimensionless 7,, since the

more the traction force that the myofibroblasts could exert on the collagen, the more

efficiently the wound is contracted by the cells.

3. The influence of the dermis tethering factor s:

110 T T T T T 45
s"=10
s"=6 f

105

s"=1

100 |~

40

95+

b

o
a

851

Contraction %
o
=1

2o

wound area (%)

75

0+ 251

651

80

L ! I L L o0 L L ! L ! L ! ! I
o] 5] 10 15 20 25 a0 o] i} 2 3 4 5 6 7 8 <] 10
Dimensionless time Dimensionless s

The graphs show that the greater the s, the lower percentage of contraction. This is
reasonable since the dermis tethering factor affects the deformability of the wound
tissue: the more the tethering, the less deformability. The relationship between the

percentage of contraction and the dermis tethering factor is non-linear.



Conclusions

We’d like to underline the importance of wide applicability of these reaction-diffusion
models. Even though the simplest model (model 1) gives a good approximation to the
phenomenon which is being simulated, the consideration of additional factors in model
2 and 3 (oxygen concentration, blood vessels growth, differentiating of the types of cells
involved in healing wound process, etc) provides a more realistic description of the
process which is being simulated.

Particularly interesting are the simulations related to bi-dimensional wounds. It is
clearly noticed how the wound decreases its space along the time as the cells cover it
and multiply due to the mitosis controlled by chemical concentration. It is especially
remarkable to see the influence of the wound geometry along the healing time, giving
the expected result (closer wounds, with greater curvature take less time to close)

In our opinion, a natural extension of this analysis would be to consider the influence of
the wound thickness or depth and to what extent its three-dimensional structure could

have an effect on the healing wound process.



