
THE MOTILITY OF THE TRYPANOSOME

Abstract. This document describes a simple model for the simulation of the
movement of a certain kind of parasite called trypanosome.
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3. Introduction

3.1. Geometry. A Trypanosome consists of an ellipsoidal cell body and a slender
cylindrical flagellum of length L and diameter d. We are only considering planar
beating patterns, which means all the movement of the flagellum is contained in a
flat plane. This means that we can describe the position of the centre line of the
flagellum at any time as X (s,t) = (X (s,t),Y (s,t)) where s is the arclength along the
centre line of the flagellum. Here, s = 0 corresponds to the connection point between
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2 THE MOTILITY OF THE TRYPANOSOME

Figure 1. Geometry of the problem.

the flagellum and the cell body, and s = L to the end of the flagellum. We denote
the normal and tangential vector on the centre line with n and t, respectively, and
they are equal to

(1) t =
∂X

∂s
= (cos(θ(s, t)), sin(θ(s, t))), n = (− sin(θ(s, t)), cos(θ(s, t)))

where θ(s, t) is the angle between the centre line of the flagellum and the x-axis.
From these expressions, we can then write X (s,t) in terms of θ(s, t) according to

(2) X(s, t) = X(0, t) +

∫ s

0

tds = X(0, t) +

∫ s

0

(cos(θ(s, t)), sin(θ(s, t, )))ds

The axoneme, which is responsible for the bending of the flagellum, is modelled
as two parallel fibres at distance b in the interior of the flagellum. The position of
these fibres is then equal to r± = X(s, t) ± n. The bending is caused by a sliding
force f working between these two fibres as in 1.

3.2. Full problem. The main assumption in the derivation of the problem is
that at any time t there is a force balance between the forces working on the
interior and the exterior of the flagellum and the cell body. On the exterior of the
flagellum, there is a drag force due to the viscosity of the surrounding fluid. On
the interior, we have bending forces due to the bending stiffness of the flagellum,
and sliding forces. The force balance then becomes

(3) fdrag + fsliding + fbending(s, t) = 0

To calculate the position of the centre line of the flagellum we use the principle of
minimal potential energy which means that we can find the position of the centre
line by calculating the minimum of a suitable enthalpy functional. This leads to
the follow differential equation for the position of the centre line of the flagellum

(4) fdrag = (Eθsss − fsb − Tθs)n + (θs(−Eθss + fb) − Ts)t

where T is the axial tension which is caused by the inextensibility of the flagellum.

3.2.1. Drag forces. Since d ≪ L, we can use the so called resistive force theory to
find an expression for the drag forces working on the exterior of the flagellum. This
theory says that the drag force on a section of the flagellum with width ds can be
approximated by

(5) fdrag = −ξ‖(Ẋ(s, t) · t)t − ξ⊥((̇X)(s, t) · n)n, (4)

where ξ‖ and ξ⊥ depend on the viscosity of the fluid and the diameter and the
length of the flagellum, ξ⊥ ≈ 2ξ‖ .

3.2.2. Boundary conditions. The boundary conditions for 4 are given as follows
•At s = 0:

(6) Fext = (Eθss − fb)n − Tt

(7) Mext = −Eθs − b

∫ L

0

f(s, t)ds

•At s = L:

(8) Fext = (−Eθss + fb)n − Tt
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(9) Mext = Eθs

where Fext and Mext are the external force and angular momentum, respectively,
working at the ends of the flagellum. At s = L we assume that Fext = 0 = Mext.
At s = 0, the cell body is exerting a force and momentum on the flagellum due to
drag forces working on the cell body. For a spherical cell body of radius a, velocity
U, and angular velocity Ω, the drag force and angular momentum working on the
cell body are equal to

(10) Fext = −6πµaU, Mext = −8πµa3Ω

Since the cell body is clamped to the flagellum, we have U = Ẋ(0, t), and Ω =

θ̇(0, t).

3.2.3. Full model. If we combine the various results from the previous sections,
we find the following model:
•Equation in the n -direction for 0 < s < L

(11) fdrag = −ξ⊥Ẋ(s, t) × n = −Eθsss + fsb + Tθs

with boundary conditions
–At s = 0:

(12) 6µπaẊ(0, t) · n = −Eθss + fb

(13) 8µπa3θ̇(0, t) = Eθs + b

∫ L

0

f(s, t)ds

–At s = L:

(14) − Eθss + fb = 0

(15) θs = 0

•Equation in the (t)-direction

(16) ξ‖Ẋ(s, t) · (t) = θs(Eθss − fb) + Ts

with boundary conditions
–At s = 0

(17) 6µπa(Ẋ · t) = T

–At s = L

(18) T = 0.

3.3. Scaling and linearization. Before we derive the linearized problem, we
will derive a non-dimensional set of equations by chosing a scaling as follows

(19) a,X, Y, s ∼ L, T, fb ∼
E

L2
, t ∼

L4ξ⊥

E

which gives us the following set of non-dimensional equations (* indicates the non-
dimensional parameters):
•Equation in the n-direction

(20) Ẋ∗(s∗, t∗) · (n) = −θ∗s∗s∗s∗ + f∗s∗ + T∗θ∗s∗

with boundary conditions
–At s = 0:

(21) F Ẋ∗(0, t∗) · (n) = −θs∗s∗ + f∗, (20)

(22) Mθ̇∗(0, t∗) = θ∗s∗ +

∫ 1

0

f∗(s∗, t∗)ds∗
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–At s = 1:

(23) − θ∗s∗s∗ + f = 0

(24) θ∗s∗ = 0

•Equation in the t-direction

(25) Ẋ∗(s∗, t∗) · (t) = γ(θ∗s∗(θ
∗
s∗s∗ − f) + T∗

s∗)

with boundary conditions –At s = 0:

(26) F Ẋ∗ · (t) = T∗

(27) F Ẋ∗ · (t) = T∗

–At s = 1:

(28) T ∗ = 0,

The non-dimensional constanst F , M and γ are equal to

(29) F =
6πµa

Lξ⊥
, M =

8πµa3

L3ξ⊥
, γ =

ξ⊥

ξ‖
≈ 2.

To linearize these equations, we are going to assume that |f∗| ≪ 1, and |θ∗| ≪ 1,
hence we rescale f∗ and θ∗ as f∗ = ǫf1, and θ∗ = ǫθ1, where 0 < ǫ ≪ 1. For the
tangential and normal vectors, we then find

(30) t = (cos(ǫθ1), sin(ǫθ1)) ≈ (1 −
1

2
ǫ2θ2

1, ǫθ1)

(31) n = (− sin(ǫθ1)), sin(ǫθ1)) ≈ (−ǫθ1, 1)

The leading order terms for X∗ = (X∗,Y∗) then become
(32)

X∗(s, t) = X∗(0, t)+

∫ s

0

tds′ = (s,0)+X∗(0, t)+

∫ s

0

(−
1

2
ǫ2θ2

1(s′, t), ǫθ1(s′, t))ds′

where

(33) X∗(0, t) = ǫ2X2(0, t), ǫY1(0, t))

hence

(34) X∗(s, t) = s + ǫ2X2(s, t),Y∗(s, t) = ǫY1(s, t))

with

(35) X2(s, t) = X2(0, t) −
1

2

∫ s

0

θ2
1(s

′, t)ds′

(36) Y1(s, t) = Y1(0, t) +

∫ s

0

θ1(s
′, t)ds′

The leading order approximation for T ∗ becomes T ∗ ≈ ǫ2T2.
If we substitute these approximations into the set of non-dimensional equations,

we find for the leading order terms (dropping the ∗′s)
•Equation in the n-direction for

(37) θ̇1(s, t) = −θ1ssss(s, t) + f1ss(s, t)

(38) Ẏ1(0, t) = −θ1ssss(0, t) + f1s(0, t)
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with boundary conditions
–At s = 0:

(39) FẎ1 = −θ1ss + f1

(40) Mθ̇1(0, t) = θ1s +

∫ 1

0

f1(s, t)ds

–At s = 1:

(41) − θ1ss + f = 0

(42) θ1s = 0

•Equation in the t-direction

(43) Ẋ2(s, t) + θ1(s, t)Ẏ1(s, t) = γ(θ1s(θ1ss − f1) + T2s)

with boundary conditions
–At s = 0

(44) FẊ2(0, t) + θ1(0, t)Ẏ1(0, t) = T2(0, t)

–At s = 1

(45) T2(1, t) = 0.

4. Geometry

A trypanosome consists of an ellipsoidal cell body and a slender cylindrical flag-
ellum of length L and diameter d. We are only considering planar beating patterns,
which means all the movement of the flagellum is contained in a flat plane. This
means that we can describe the position of teh centre line of the flagellum at any
time as X(s, t) = (X(s, t),Y(s, t)) where s is the arclength along the centre line
of the flagellum. Here, s = 0 corresponds to the connection point between the
flagellum and the cell body, ands = L to the end of the flagellum. We denote the
normal and tangential vector on the centre line with n and t, respectively, and they
are equal to:

f1(s, t) = Re (exp(ikx + iωt)) ,

θ1(s, t) = Re
(

θ̂(s) exp(iωt)
)

,

Y1(s, t) = Re
(

Ŷ (s) exp(iωt)
)

,

5. Analysis and results

5.1. Traveling waves.
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5.1.1. Traveling wave solution. The problem’s nature suggests we look for travel-
ing wave solutions of the form:

(46) f1(s, t) = Re (exp(ikx + iωt))

(47) θ1(s, t) = Re
(

θ̂(s) exp(iωt)
)

(48) Y1(s, t) = Re
(

Ŷ (s) exp(iωt)
)

where θ̂(s) and Ŷ (s) are complex-valued functions that can be obtained by substi-
tution into the linearized equation for the normal direction:

θ̂′′′′ + iωθ̂ = −k2eiks,

Ŷ (s) = Ŷ (0) +

∫ s

0

θ̂(s′, t)ds′,

where Ŷ (0) satisfies:

iωŶ (0) = −θ̂′′′(0) + ik.

5.1.2. Boundary conditions. Under these assumptions, the boundary conditions
of the linearized system become:

At s = 0:

iωF Ŷ (0) = −θ̂′′(0) + 1,

iωMθ̂(0) = θ̂′(0) +
1

ik

(

eik − 1
)

.

At s = 1:

−θ̂′′(1) + eik = 0,

θ̂′(1) = 0.

5.1.3. Equations for θ̂(s). The equation for θ̂(s) is a linear ordinary differential
equation with constant coefficients. Consequently, we can write its solution as:

θ̂ = θ̂P + θ̂H where the homogeneous (θ̂H) and particular (θ̂P ) solutions satisfy:

θ̂′′′′H + iωθ̂H = 0,

θ̂′′′′P + iωθ̂P = −k2.

The general solution is given by:

θ̂H(s) = α1e
λs + α2e

iλs + α3e
−λs + α3e

−iλs,

θ̂P (s) = Deiks,

where D = − k2

k4+iω and α1, α2, α3, α4 are the solutions of a linear system stemming

from the boundary conditions (See Listing 1).

5.2. Vertical position. At this point it is possible to compute the vertical po-
sition Y1(s, t). This can be calculated from θ1(s, t):

Y1(s, t) = Y1(0, t) +

∫ s

0

θ1(s
′, t)ds′ = Y1(0, t) + Re

(

eiωt

∫ s

0

θ̂(s′)ds′
)

.

Recalling from 5.1.3 that θ̂(s) is a linear combination of exponential functions, then
the integral on the right hand side of the previous equation is equal to

α1

λ

(

eλs − 1
)

− i
α2

λ

(

eiλs − 1
)

−
α3

λ

(

e−λs − 1
)

+ i
α4

λ

(

e−iλs − 1
)

− i
D

k

(

eiks − 1
)

.
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5.2.1. Position at the boundary s = 0. Combining

Ẏ1(0, t) = −θ1sss(0, t) + f1s(0, t) = −Re
(

θ̂′′′(0)eiωt
)

+ Re
(

ikeiωt
)

,

with our assumption that Y1(s, t) = Re
(

Ŷ (s)eiωt
)

, we arrive at

Ẏ1(0, t) = Re
(

iωŶ (0)eiωt
)

= Re
((

ik − θ̂′′′(0)
)

eiωt
)

.

Thus,

Y1(0, t) = Re

(

1

iω

(

ik − θ̂′′′(0)
)

eiωt

)

.

Figures 2 and 3 display some scenarios for the vertical position at the instants
t = 0, 10−3, 20−3, 40−3.
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Figure 2. Snapshots of Y1(0, t) for ω = (2π)4, k = 2π,F = M =
0, γ = 2.
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Figure 3. Snapshots of Y1(0, t) for ω = (2π)4, k = 2π,F =
6,M = 2, γ = 2.

5.3. Horizontal position. In a manner analogous to the one we used for ob-
taining the vertical position, we arrive at the following expression for the horizontal
position:

X2(s, t) = X2(0, t) −
1

2

∫ s

0

θ2
1(s

′, t)ds′.

By taking partial derivatives in s on both sides of the equation, we can turn it into
an ODE that can be numerically solved (e.g.: using MATLAB’s ode45 function) once
X2(0, t) is known.

5.4. Horizontal velocity. Using the equations in the tangential direction, we
arrive at:

Ẋ2(0, t) =
1

1 + γF

∫ 1

0

(

1

2

∫ s

0

(

θ2
1(s

′, t)
)

t
ds′ + (γ − 1)θ1(s, t)Ẏ1(s, t)

)

ds.

Integration by parts allows us reduce the double integral to a single integral

Ẋ2(0, t) =
1

1 + γF

∫ 1

0

(

1

2
(1 − s)

(

θ2
1(s, t)

)

t
+ (γ − 1)θ1(s, t)Ẏ1(s, t)

)

ds,

and this greatly improves the computational cost of calculating these quadratures.
Figure 5.4 shows the dependency of the horizontal velocity on time for different

periods and forces.
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Figure 4. Graph of Ẋ2(0, t)

Finally, integrating Ẋ2 over the period of the traveling wave, we can calculate
the average horizontal velocity Ū as follows:

Ū =
ω

2π

∫ 2π

ω

0

Ẋ2(0, t) dt =
ω

2π

γ − 1

1 + γF

∫ 2π/ω

0

∫ 1

0

Y1s(s, t)Ẏ1(s, t) ds dt.

In Figure 5 we can see how the average horizontal velocity varies with regard
to ω, k, F , and M. The most interesting factor is the dependency on the force
exerted on the flagellum (the higher the force, the slower the parasite).
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Figure 5. Average horizontal velocity in terms of different variables

5.5. Optimization. It is reasonable to assume that evolution has favored par-
asites that swim optimally in a given medium and, consequently, we want to find
the parameters that maximize Ū in the hope that they would accurately reflect the
true behavior of the parasite.

Consider the graph of Ū(ω, k) for fixed F ,M (two of these surfaces are displayed
in figures 5.5 and 5.5), we would expect the real parasites to be modelled by the
parameters where the graph of Ū achieves the highest peaks. In order to find those
values we:

1. Picked a subset of values of F ∈ [1, 10] and M ∈ [1, 5] and ran uncon-
strained deterministic searches using MATLAB’s fminsearch, and
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2. Ran a Genetic Algorithm to try to find global optima for Ū(ω, k,F ,M)
first in terms of F , then in terms of M, and finally for both F and M).
The results were, respectively:

{ω = 2.9287, k = 0.8714,F = 1.0000 for M = 0} ,

{ω = 2.6806, k = 0.4687,M = 2.3348 for F = 1} , and

{ω = 2.7355, k = 0.4798,F = 1.0009,M = 4.3114} .
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Figure 6. Ū(ω, k) for F = 0,M = 0
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6. Conclusions and future work

We have numerically solved the linearized model of the motility of the try-
panosome. Some of the highlights of what we have done are:

Studied the dependency of the trypanosome’s mobility on the shape of its
flagellum.
Studied the dependency of the parasite’s swimming ability on the forces
exerted on it.
Located possible values for modelling real life trypanosomes according to
an optimization procedure.

However, there are some points we would have liked to investigate further had we
been given more time such as:

Solve the non-linear problem.
Incorporating the fluid into our model.
Redimensionalize the results.
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Appendix A. Source code

Listing 1. Computation of the coefficients for the general solution
of the ODE associated to the travelling wave

function v = compute coeffs(l, w, k, F, M, gamma)

Maux1 = −lˆ3 * F* [1 −i −1 i; 0 0 0 0; 0 0 0 0; 0 0 0 0];

Maux2 = −i * w* l * M* [0 0 0 0; 1 i −1 −i; 0 0 0 0; 0 0 0 0];

A = [lˆ2, −lˆ2, lˆ2, −lˆ2;

l, i * l, −l, −i * l;

lˆ2 * exp(l), −lˆ2 * exp(i * l), lˆ2 * exp( −l), −lˆ2 * exp( −i * l);

l * exp(l), i * l * exp(i * l), −l * exp( −l), −i * l * exp( −i * l)] + ...

Maux1 + Maux2;

b = [i * w* (1 − i * k* F)/(kˆ4 + i * w),

i * exp(i * k)/k + w * (1 − i * M* kˆ3)/(k * (kˆ4 + i * w)),

i * w* exp(i * k)/(kˆ4 + i * w),

i * kˆ3 * exp(i * k)/(kˆ4 + i * w)];

v = A\b;

Listing 2. Computation of the horizontal velocity
function Xdot20 = compute Xdot20(w, k, F, M, gamma)

l = ( −i * w)ˆ(1/4);

a = compute coeffs(l, w, k, F, M, gamma);

D = −k.ˆ2/(k.ˆ4 + i. * w);

thetahat = @(s, t) ...

(a(1). * exp(l. * s) ...

+ a(2). * exp(i. * l. * s) ...

+ a(3). * exp( −l. * s) ...

+ a(4). * exp( −i. * l. * s)) ...

+ (D. * exp(i. * k. * s));

theta1 = @(s, t) ...

real(thetahat(s, t). * exp(i. * w. * t));

theta1 sss = @(s, t) ...

real((exp(i. * t. * w). * (l.ˆ3. * (a(1). * exp(s. * l) ...

−i. * a(2). * exp(i. * s. * l) ...

− a(3). * exp( −(s. * l))) ...

+ i. * a(4). * exp( −(i. * s. * l)) ...

+ i. * k.ˆ5. * exp(i. * k. * s)/(i. * w+k.ˆ4))));

theta1 squared t = @(s, t) ...

real((2. * i. * w. * exp(2. * i. * t. * w) . * ...

(a(1). * exp(s. * l) ...

+ a(2). * exp(i. * s. * l) ...

+ a(3). * exp( −(s. * l)) ...

+ a(4). * exp( −(i. * s. * l)) ...

− k.ˆ2. * exp(i. * k. * s)/(i. * w+k.ˆ4)) .ˆ2));
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f1 s = @(s, t) ...

real(i. * k. * exp(i. * (k. * s + w. * t)));

Ydot1 = @(s, t) −theta1 sss(s, t) + f1 s(s, t);

Xdot20tmp = @(t) 1/(1 + gamma * F) * ...

(quad(@(s) −1/2 * (s −1). * theta1 squared t(s, t), 0, 1) ...

+ real(quad(@(s) ((gamma − 1). * theta1(s, t). * Ydot1(s, t)), 0, 1)));

Xdot20 = @(t) arrayfun(Xdot20tmp, t);

Listing 3. Computation of the average horizontal velocity
function [val Xdot20] = Ubar(w, k, F, M, gamma)

Xdot20 = compute Xdot20(w, k, F, M, gamma);

val = w/(2 * pi) * quad(Xdot20, 0, 2 * pi/w);
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