
CMNE/CILAMCE 2007
Porto, 13 a 15 de Junho, 2007

c©APMTAC, Portugal 2007

MATHEMATICAL MODELS IN DYNAMICS OF
NON-NEWTONIAN FLUIDS AND IN GLACIOLOGY

S.N. Antontsev1, J.I. Díaz2 and H.B de Oliveira3∗

1: Centro de Matemática
Universidade da Beira Interior

Rua Marquês d’Ávila e Bolama, 6201-001, Covilhã, Portugal
e-mail: antontsevsn@mail.ru

2: Departamento de Matemática Aplicada
Universidad Complutense de Madrid

Plaza de las Ciencias 3, 28040 Madrid, España
e-mail: diaz.racefyn@insde.es

2: FCT - Departamento de Matemática
Universidade do Algarve

Campus de Gambelas, 8005-114 Faro, Portugal
e-mail: holivei@ualg.pt

Keywords: non-Newtonian fluids, glaciology, extinction in a finite time, finite speed of
propagation, waiting time.

Abstract. This paper deals with the study of some qualitative properties of solutions of
mathematical models in non-Newtonian isothermal fluid flows and in theoretical glaciology.
In the first type of models, we consider the extinction in a finite time of the solutions
by using a global energy method. We prove that this property holds for pseudo-plastic
fluids or for the general class of Newtonian and dilatant fluids, assumed the presence of a
dissipation term (which may have an anisotropic nature and can vanish in, at most, one
spatial direction). In the case of the ice sheet model in Glaciology (with a formulation
involving a quasi-linear degenerate equation similar to the ones arising in non-Newtonian
flows), we analyze the behavior of the free boundary (given by the support of the height
h of the ice sheet) for different cases and according to the values of the ablation function
and the initial hight. We use here some other energy methods of a local nature and so
completely different to the method used in the first part of the paper.
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Part I

Localization effects in a general fluid
dynamics model
1 Introduction

From the basic principles of Fluid Mechanics, it is well known that, in isothermal
motions of incompressible fluids with no inner mass sources, the velocity field and pressure
are determined from:

• the incompressibility condition
divu = 0; (1.1)

• the conservation of mass
∂ ρ

∂ t
+ div(ρu) = 0; (1.2)

• the conservation of momentum

ρ

(
∂ u

∂ t
+ (u · ∇)u

)
= ρ f + divS. (1.3)

In this part, we consider the mathematical problem posed by (1.1)-(1.3) in a cylinder

QT := Ω× (0, T ) ⊂ RN × R+ ,

where Ω is a bounded domain whose boundary ∂Ω is assumed to be smooth enough. The
boundary of QT is defined by

ΓT := (0, T )× ∂Ω .

The dimensions of physical interest are N = 2 and N = 3, but the results to be presented
here extend to any dimension N ≥ 2. We consider a general class of non-Newtonian fluid
problems for which the stress tensor S is given by

S = −pI + F(D), D =
1

2

(
∇u +∇uT

)
, (1.4)

where F is a symmetric tensor and which is assumed to satisfy, for all u ∈ RN ,

δ |D(u)|q ≤ D(u) : F(u) ≡
N∑

i,j=1

FijDij, 0 < δ = δ(ρ) < ∞, 1 ≤ q < ∞ . (1.5)

Fluids satisfying (1.4)-(1.5) are called viscous-plastic if 1 ≤ q < 2 and dilatant if q > 2.
Other names found in the literature are pseudo-plastic for 1 < q < 2 and Bingham fluids
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when q = 1. If q = 2, the fluid is Newtonian and we fall in the classical Navier-Stokes
equations. In this case, for incompressible homogeneous viscous fluids the stress tensor S
has the form

S = −pI + 2µD ,

where µ is the dynamical viscosity. The notation used in (1.1)-(1.4) is well known: u is
the velocity field, p is the pressure, ρ is the density, f is the forcing term, D is the tensor
of rate of deformations and I is the unit tensor. System (1.1)-(1.4) is endowed with the
initial and boundary conditions:

u = u0, ρ = ρ0 in Ω when t = 0; (1.6)

u = 0 on ΓT . (1.7)

In this work, we consider a forces field f in (1.3) such that

f(x, t,u) = h(x, t,u) + g(x, t), (1.8)

where g is a given function and h depends nonlinearly on the velocity field u. We consider
two different possibilities for the function h: the case of isotropic dissipation

−h(x, t,u) · u ≥ c|u|σ ∀ u ∈ RN , σ ∈ (1, 2) , (1.9)

for some positive constant c; and the case of anisotropic dissipation

−h(x, t,u) · u ≥
N∑

i=1

ci |ui|σi ∀ u ∈ RN , σi ∈ (1, 2), (1.10)

for some non-negative constants ci, with i = 1, . . . , N . In both cases the function g,
considered in (1.8), satisfies to

‖g(·, t)‖2,Ω ≤ C (1− t/tg)
ν
+ , (1.11)

for some positive constants C, ν, tg. Relation (1.11) means the forces field g vanishes
at the instant of time t = tg. From the Fluid Mechanics point of view, conditions (1.9)
and (1.10) mean the forces field f is a feedback term. This feedback is presented as an
isotropic condition in (1.9) and as anisotropic in (1.10). In (1.9) the dissipation of f does
not vary from one direction to another. But, in (1.10) the dissipation may be different
for distinct directions. Moreover, in the former case and from condition (1.10), we can
say the feedback forces field h, and thus f , is dissipative, in order to each component uk,
in all directions xk where ck > 0, for k = 1, . . . , N . In the simpler case of g ≡ 0, we have
the following examples of forces fields f satisfying (1.9) or (1.10):

f(x, t,u) = −c|u|σ−2u;
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f(x, t,u) = −(c1 |u1|σ1−2u1, . . . , cN |uN |σN−2uN) .

The motivation for the consideration of a forces field satisfying to (1.9), or (1.10), is purely
mathematical and goes back to the works of Benilan et al. [11], Díaz and Herrero [17],
and Bernis [12, 13]. These authors studied the importance of the absorption term |u|σ−2u
in order to prove qualitative properties related with compact supported solutions, or
solutions which exhibit finite speed of propagations, or which extinct in time, for different
initial-boundary value problems. Similar problems to (1.1)-(1.8) were considered by the
authors in a variety of problems in the scope of Fluid Mechanics in [1]-[8]. It should
be remarked that questions of time behavior of solutions to the homogeneous version of
(1.1)-(1.7) have been studied by many authors (see [1] and the references therein). All
these references are only concerned with exponential decays and the better we saw are
related with power spatial and temporal decays in different norms. In spite of many work
in this field, so far, and to the best of our knowledge, there are no results establishing the
extinction of solutions to these problems in a finite time.

2 Weak formulation

In this section we define the class of solutions we shall work with and give some remarks
in how to prove the existence and uniqueness results. We cannot omit all the mathematics
needed to handle these issues, but always we can we will avoid the technical parts, which
in turn are the most difficult to understand for someone out of this field. We are interested
in a class of solutions (ρ,u) to the problem (1.1)-(1.8) such that

E(t) +

∫
Ω

|∇u|q dx < ∞, where E(t) :=
1

2

∫
Ω

ρ(x, t) |u(x, t)|2 dx, (2.12)

1/M ≤ ρ ≤ M, M = const. > 0 . (2.13)

To define the notion of solutions we shall consider, we introduce the following function
spaces:

Jr(Ω) =

{
u ∈ Lr(Ω) :

∫
Ω

u · ∇φ dx = 0, ∇φ ∈ Lr′(Ω)

}
;

Wq,σ = {u ∈ L∞
(
0, T ;L2(Ω)

)
∩ L2(0, T ;W1,q

0 (Ω)) : σ ∈ (1, 2) , u ∈ Lσ(0, T ;Lσ(Ω))} ;

Wq,σ ={u ∈ L∞
(
0, T ;L2(Ω)

)
∩ L2(0, T ;W1,q

0 (Ω)) : σ = (σ1, ..., σN),

σi ∈ (1, 2) and ui ∈ Lσi(0, T ; Lσi(Ω)) ∀ i = 1, ..., N}.

For a detailed comprehension of these functions spaces, we address the reader to [8] and
the references therein to the monographs by Adams and Maz’ya.

Definition 2.1 A pair of functions (u, ρ) is a weak solution of problem (1.1)-(1.8), if:
1. u ∈ Wq,σ in case (1.9) is fulfilled, or u ∈ Wq,σ in case of (1.10), and for every
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Φ ∈ C1 ([0, T ];J1 (Ω)) such that Φ(x, T ) = 0

−
∫ T

0

∫
Ω

ρ [u ·Φt + u⊗ u : ∇Φ] dx dt +∫ T

0

∫
Ω

F(u) : ∇Φ dx dt =

∫ T

0

∫
Ω

ρ f ·Φ dx dt−
∫

Ω

ρ0 u0 ·Φ(0) dx ;

2. ρ satisfies (2.13) and for every ϕ ∈ C1 ([0, T ]; H1 (Ω)) such that ϕ(x, T ) = 0∫ T

0

∫
Ω

ρ [ϕt + (u · ∇)ϕ] dx dt +

∫
Ω

ρ0ϕ(0) dx = 0 .

According to [8, §4.7] and references therein, problem (1.1)-(1.8) has, at least, a weak
solution, if the mass force term does not depend on u, i.e if we consider f = f(x, t) in
a suitable function space. Moreover, at least formally, every weak solution of problem
(1.1)-(1.8) satisfies the energy relation

d

dt
E(t) +

∫
Ω

F(u) : D(u) dx =

∫
Ω

ρ f · u dx, (2.14)

where E(t) is given in (2.12). The formal derivation of (2.14) relies on (1.1)-(1.4), the
symmetry of the tensor F, integration-by-parts formulae and boundary condition (1.7).
By the existence theory of a weak solution to problem (1.1)-(1.7), is known that every weak
solution satisfies to the energy equality (2.14) only if N = 2. For N ≥ 3 this is no longer
valid. But, for our purposes in this paper, it is enough that (2.14) is verified with the
equality sign = replaced by the inequality one ≤. And this is satisfied for every such weak
solution and for every dimension N ≥ 2. In our further study we assume the existence
of, at least, a weak solution of problem (1.1)-(1.8) in the sense of Definition 2.1. We give
here only the ideas of the proof. We consider the four main cases: q = 1, 1 < q < 2,
q = 2 and q > 2. For each one of such cases, and for different constitutive laws, there are
known existence results for suitable forces given in appropriated function spaces. In [14]
is proved the existence of a weak solution for q = 1 and S = −pI + γD + gD

−1/2
II D. For

1 ≤ q < 2 and S = −pI+2µD+αD
(q−2)/2
II D, the existence of a weak solution is proved in

[18]. In [9] was proved the existence of a weak solution for S = −pI + 2µD (and q = 2).
Finally, for S = −pI + 2µD + αD

(q−2)/2
II D and q ≥ 2, the existence of a weak solution

was proved in [18]. In our problem (1.1)-(1.8), the idea is to use energy relation (2.14)
(see also (3.26) below), assumption (2.13), repeating the correspondingly arguments of
[9, 14, 18, 19] (see also [26]) and to use a fixed point argument. Simpler proofs can be
shown if, instead of (1.9), or (1.10), the forcing field (1.8) is given, respectively, by

f(x, t,u) = −c|u|σ−2u + g(x, t) , σ ∈ (1, 2) , c = const. > 0 , (2.15)
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or

f(x, t,u) = −(c1 |u1|σ1−2u1, . . . , cN |uN |σN−2uN) + g(x, t) ,

σi ∈ (1, 2) , ci = const. ≥ 0 (i = 1, . . . , N) ,
(2.16)

where g satisfies to (1.11). In these cases, assuming that g is given in a suitable function
space, we can adapt the correspondingly proofs written in [9, 14, 18, 19]. The only differ-
ence lies in the first term of (2.15), or (2.16). We only need to prove that the corresponding
Galerkin approximations converge. If N = 2, we can also adapt the correspondingly re-
sults of [9, 14, 18, 19] to prove the uniqueness of solutions. In this case, we only need
to apply properly the following result to show the monotonicity of the resulting integral
terms of (2.15) or (2.16).

Lemma 2.1 For all p ∈ (1,∞) and δ ≥ 0, there exist constants C1 and C2, depending
on p and N , such that for all ξ, η ∈ RN , N ≥ 1,∣∣|ξ|p−2ξ − |η|p−2η

∣∣ ≤ C1|ξ − η|1−δ (|ξ|+ |η|)p−2+δ (2.17)

and (
|ξ|p−2ξ − |η|p−2η

)
· (ξ − η) ≥ C2|ξ − η|2+δ (|ξ|+ |η|)p−2−δ (2.18)

See [10] for the proof and also the references cited therein for other forms of (2.17) and
(2.18).

3 Extinction in a finite time

In this section we shall study the time asymptotic behavior of solutions to (1.1)-(1.8),
when one considers a forces field satisfying to (1.9) or (1.10). The time property we are
going to establish is usually denominated as the extinction in a finite time and can be
defined as follows.

Definition 3.1 We say the weak solutions (u, ρ) of the problem (1.1)-(1.8) possesses the
extinction in a finite time property if there exists (a finite time) t∗ ∈ (0,∞) such that
u(x, t) = 0 a.e. in Ω and for all t ≥ t∗.

To establish this property, we shall make use of two important results quite used in
Continuum Mechanics or in its mathematical treatment.

Lemma 3.1 Let Ω be a domain of RN , N ≥ 2, with a locally Lipschitz compact boundary
∂Ω, and assume 1 ≤ q < ∞. If u ∈ W1,q

0 (Ω), then the following inequality holds

1

C
‖∇u‖q,Ω ≤ ‖D(u)‖q,Ω ≤ C‖∇u‖q,Ω, C = C(q, N) , (3.19)

where D is the rate of deformations tensor.
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This first result is the so-called second Korn’s inequality and it extends for suitable un-
bounded domains. For the proof, see [8] and the references cited therein to the works by
Oleinik and Yosifian.

Lemma 3.2 Let Ω be a domain of RN , N ≥ 1, with a compact boundary ∂Ω. Assume
that u ∈ W 1,p

0 (Ω). For every fixed number r ≥ 1, there exists a constant C depending only
on N , p and r such that

‖u‖q,Ω ≤ C‖∇u‖θ
Lp(Ω)‖u‖1−θ

Lr(Ω), (3.20)

where θ ∈ [0, 1], p, q ≥ 1, are linked by θ =
(

1
r
− 1

q

)(
1
N
− 1

p
+ 1

r

)−1

, and their admissible
range is:
(1) If N = 1, q ∈ [r,∞], θ ∈

[
0, p

p+r(p−1)

]
;

(2) If p < N , q ∈
[

Np
N−p

, r
]

if r ≥ Np
N−p

and q ∈
[
r, Np

N−p

]
if r ≤ Np

N−p
;

(3) If p ≥ N > 1, q ∈ [r,∞) and θ ∈
[
0, Np

Np+r(p−N)

]
.

This one is denoted by Sobolev interpolation embedding and extends also for suitable
unbounded domains. For the proof see [8] and the references cited therein to the works
by Gagliardo and Nirenberg.

3.1 Viscous-plastic fluids

We start by considering the case of viscous-plastic fluids, i.e. we assume 1 ≤ q < 2 in
(1.5). In this case, we will see that, to prove the extinction in a finite time property, there
will be no need of assumptions (1.9) or (1.10). We merely assume that h ≡ 0 in (1.8),
leading us back to the usual problem, with f depending only on (x, t).

Theorem 3.1 Let (u, ρ) be a weak solution of problem (1.1)-(1.8) in the sense of Defi-
nition 2.1. If, in (1.8), h ≡ 0 and:
1. g ≡ 0, then there exists t∗ > 0 such that E(t) = 0 for almost all t ≥ t∗ - in particular,
u ≡ 0 in Q ∩ {t ≥ t∗};
2. g 6≡ 0 satisfies

‖g(·, t)‖p,Ω ≤ γ

(
1− t

tg

) q
2−q

+

, (3.21)

then there exists a constant γ0 > 0 such that E(t) = 0 for almost all t ≥ tg, if γ ≥ γ0 > 0
- in particular, u ≡ 0 in Q ∩ {t ≥ tg}, if γ ≥ γ0 > 0.

PROOF. The proof follows as in [8, pp. 236-7] by using Korn’s inequality (3.19) in the
energy relation (2.14). If g ≡ 0, we get the homogeneous ordinary differential inequality

d

dt
E(t) + C (E(t))

q
2 ≤ 0 , (3.22)
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where C = C(q, N, δ) is a positive constant. Then, integrating (3.22) we prove the first
assertion.

If g satisfies to (3.21), we use Hölder’s and Young’s with ε > 0 inequalities to obtain
the non-homogeneous ordinary differential inequality

d

dt
E(t) + C1 (E(t))

q
2 ≤ C2

(
1− t

tg

) q
2−q

+

, (3.23)

where C1 = C1(q, M, N, δ, ε) and C2 = C2(q, γ, ε) are positive constants. The analysis of
(3.23), which have been considered in [8, p. 232], proves the second assertion.�

Remark 3.1 From the physical point of view, Theorem 3.1 asserts that, for viscous-
plastic fluids, the extinction in a finite time property is determined, only, by the structure
of the stress tensor. And this is true wether the fluid is generated by the initial data or is
stirred by the forces term (3.21).

3.2 Newtonian and dilatant fluids

In this section, we consider the case of Newtonian and dilatant fluids, i.e. we assume

q ≥ 2 in (1.5). (3.24)

First of all let us derive an estimate which will be useful wether we assume that (1.8)
satisfies (1.9) or (1.10). Using assumption (3.24), Hölder’s inequality, the vectorial version
of Sobolev interpolation embedding (3.20) with θ = 1 and r = 1, and Young’s inequality
with a suitable ε > 0, we get∣∣∣∣∫

Ω

u · g dx

∣∣∣∣ ≤ ‖g‖p,Ω ||u||p′,Ω ≤ C‖g‖p,Ω‖∇u‖q,Ω ≤ ε‖∇u‖q,Ω + C(ε)‖g‖
q

q−1

p,Ω , (3.25)

where p = Nq/[N(q − 1) + q] and C = C(q, N) is a positive constant.

3.2.1 The case of isotropic dissipation

Now let us consider the case of isotropic dissipation, i.e. we assume that (1.8) and (1.9)
hold. First of all, we can prove that, from the energy relation (2.14), using assumption
(2.13), Korn’s inequality (3.19) and the estimate (3.25), the following estimate hods

sup
0≤t≤T

E(t) +

∫ T

0

∫
Ω

(|∇u|q + |u|σ) dx dt ≤

C

(
E(0) +

∫ T

0

(∫
Ω

|g(x, t)|p dx

) q
p(q−1)

dt

)
,

(3.26)
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where C = C(q, N,M, δ) is a positive constant. In consequence, every weak solution to
problem (1.1)-(1.9) satisfies to

Eq,σ(t) :=

∫
Ω

(|∇u|q + |u|σ) dx ∈ L1[0, T ]. (3.27)

Theorem 3.2 Let (u, ρ) be a weak solution of problem (1.1)-(1.8) in the sense of Defi-
nition 2.1. Assume that conditions (1.9), (2.13) and (3.24) are satisfied.
1. If g ≡ 0, then there exists t∗ > 0 such that E(t) = 0 for almost all t ≥ t∗ - in particular,
u ≡ 0 in Q ∩ {t ≥ t∗}.
2. Let g 6≡ 0 satisfies

‖g(·, t)‖p,Ω ≤ γ

(
1− t

tg

) q−1
q(µ−1)

+

, p =
Nq

N(q − 1) + q
, µ > 1,

where µ depends on p, q, N and σ. Then there exists a constant γ0 > 0 such that E(t) = 0
for almost all t ≥ tg, if γ ≥ γ0 > 0 - in particular, u ≡ 0 in Q ∩ {t ≥ tg} if γ ≥ γ0 > 0.

PROOF. The proof uses the same ideas developed in [8, p. 238].
Step 1. In the energy relation (2.14), we use assumptions (2.13) and (3.24), and Korn’s
inequality (3.19), to obtain

d

dt
E(t) + CEq,σ(t) ≤ M

∫
Ω

u · g dx , (3.28)

where Eq,σ(t) is given in (3.27) and C = C(q, M, N, δ) is a positive constant.
Step 2. We use the vectorial version of the Sobolev interpolation embedding (3.20) with
q = 2, p = q, r = σ, and Young’s inequality, to obtain

E(t) ≤ M

2
‖u‖2

2,Ω ≤ C

(∫
Ω

(|∇u|q + |u|σ) dx

)µ

, µ = 1 +
q(2− σ)

q(N + σ)−Nσ
, (3.29)

where C = C(q, M, N, σ) is a positive constant. We notice the assumptions 1 < σ < 2
and q ≥ 2 > 2N

N+1
assure that µ > 1.

Step 3. If g ≡ 0, gathering (3.28) and (3.29), we come to the homogeneous ordinary
differential inequality

d

dt
E(t) + CE(t)1/µ ≤ 0 for all t ≥ 0 , (3.30)

where C = C(q, N, δ) is a positive constant. Then, integrating (3.30) we prove the first
assertion.
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If g 6≡ 0, we use the estimates (3.25) and (3.29), assumption (3.21) and the energy
relation (3.28), to achieve the nonhomogeneous ordinary differential inequality

d

dt
E(t) + C1E(t)1/µ ≤ C2

(
1− t

tg

) q−1
q(µ−1)

+

for all t ≥ 0 , (3.31)

where C1 = C1(q, M, N, δ, σ, ε) and C2 = C2(q, γ, σ, ε) are positive constants. The analysis
of (3.31), which have been considered in [8, p. 232], proves the second assertion.�

3.2.2 The case of anisotropic dissipation

Finally, we consider the case of anisotropic dissipation, i.e. and we assume that (1.8)
and (1.10) hold. We notice that the estimate (3.25) still holds in this case. Then, pro-
ceeding as for (3.26), we prove

sup
0≤t≤T

E(t) +

∫ T

0

∫
Ω

(
|∇u|q +

N∑
i=1

ci|ui|σi

)
dx dt ≤

C

(
E(0) +

∫ T

0

(∫
Ω

|g(x, t)|p dx

) q
p(q−1)

dt

)
,

where p = Nq/[N(q−1)+q] and C = C(q, N,M, δ) is a positive constant. In consequence,
every weak solution to the problem (1.1)-(1.8), (1.10) satisfies to

EN
q,σi

(t) :=

∫
Ω

(
|∇u|q +

N∑
i=1

ci|ui|σi

)
dx ∈ L1[0, T ].

Here, we let the constants ci show up in these relations, because from hypothesis (see
(1.10)) it may happen that one or more ci can be zero.

In this case, we shall prove the weak solutions of (1.1)-(1.8) are finite time localized, if
(3.24) holds and the forces field h, given in (1.8), satisfies to (1.10) and exhibits dissipation
effect except in exactly one direction, i.e. we assume that in (1.10) ci = 0 for only one
i ∈ {1, . . . , N}. For the sake of simplicity, we assume that is cN = 0, i.e.

(1.10) holds with cN = 0 and cj 6= 0 for all j 6= N . (3.32)

To establish the extinction in a finite time property, we need to make a restriction on the
shape of the domain Ω.

Hypothesis A. The domain Ω is convex, at least, in the xN direction.

From this assumption, we can say that each line parallel to the xN axis intersects the
boundary ∂Ω only on two points, say, x0

+ ≡ (x0
1, ..., x

0
N−1, x

+
N) and x0

− ≡ (x0
1, ..., x

0
N−1, x

−
N),

with x−N ≤ x+
N .
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Theorem 3.3 Let (u, ρ) be a weak solution of problem (1.1)-(1.8) in the sense of Defi-
nition 2.1. Assume that conditions (1.10), (2.13), (3.24) and (3.32), and Hypothesis A
are satisfied. Then the same two conclusions of Theorem 3.2 are obtained.

PROOF. We briefly describe the main ideas of the proof which follows closely the one
presented in [2].
Step 1. Proceeding as we did for (3.28), we obtain

d

dt
E(t) + CEN−1

q,σi
(t) ≤

∫
Ω

u · g dx , EN−1
q,σi

(t) :=

∫
Ω

(
|∇u|q +

N−1∑
i=1

|ui|σi

)
dx , (3.33)

where C = C1(q, M, N, c0) is a positive constant with c0 = mini=1,...,N−1 ci > 0.
Step 2. Proceeding as we did for (3.29), we use the Sobolev interpolation embedding (3.20)
with q = 2, p = q, r = σi, and Young’s inequality, to obtain for any scalar component ui,
with i = 1, . . . , N − 1, of u

‖ui‖2
2,Ω ≤ C

(∫
Ω

(|∇ui|q + |ui|σi) dx

)µi

, µi = 1 +
q(2− σi)

q(N + σi)−Nσi

, (3.34)

where C = C(q, N, σi). Moreover, we notice that the assumptions 1 < σi < 2 and
q ≥ 2 > 2N

N+1
assure that µi > 1 for any i = 1, . . . , N − 1. Assuming, without loss of

generality, that ‖u‖2
2,Ω ≤ 1, we can rewrite (3.34), and for all i = 1, . . . , N−1, in the form

‖ui‖2
2,Ω ≤ C

(
EN−1

q,σi
(t)
)µN−1 , µN−1 = min

1≤i≤N−1
µi , (3.35)

where EN−1
q,σi

(t) is given by (3.33).
Step 3. In this step, we need a little bit more regularity: we assume, with no lost of
generality, that u ∈ C([0, T ] : C2(Ω)) (a standard approximation argument allows to
consider the general case).
We formally multiply the continuity equation

div u = 0, u = (u1, . . . , uN) ∈ Jq(Ω),

by uN and integrate by parts over an hyperplane Ω(z) ⊆ RN−1. Then, after an integration
procedure and using Hypothesis A, boundary conditions (1.7), and Hölder’s inequality,
we achieve to the estimate

‖uN‖2
2,Ω ≤ C ‖∇uN‖q,Ω

N−1∑
i=1

‖ui‖q′,Ω ≤ C ‖∇uN‖q,Ω

N−1∑
i=1

‖ui‖2,Ω ,

where C = C(q, N, Ω). Now, applying (3.35) and (3.33), we came to the inequality

‖uN‖2
2,Ω ≤ C

(
ESN

q,σ (t)
)µN , µN =

1

q
+

µN−1

2
> 1, (3.36)
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where C = C(‖ui‖2,Ω , q, N, σi, Ω) is a positive constant, i = 1, . . . , N − 1. Finally, com-
bining (3.35) and (3.36), we obtain

E(t) ≤ C
(
EN−1

q,σi
(t)
)µ

, µ = min
1≤i≤N

µi , (3.37)

where C = C(‖ui‖2,Ω , q,M,N, σi, Ω) is a positive constant, i = 1, . . . , N − 1. We notice
that, from (3.34)-(3.36), we have in (3.37) µ > 1.
Step 4. The proof now follows as we did in the proof of Theorem 3.2.�

Remark 3.2 In this section we have shown that, for non-viscous-plastic fluids, the struc-
ture of the stress tensor alone is no longer responsible for the extinction in a finite time
property. For these fluids we only can obtain this property, if we introduce an absorption
term in the equations which govern such flows. And this absorption term may account for
some kind of sink inside these flows.

Remark 3.3 The results established in this part can be extended to unbounded domains
satisfying the correspondingly hypotheses. The proof is almost the same, we only need to
use the known Korn’s and Sobolev interpolation embedding inequalities for these domains.

Part II

Localization effects in a ice dynamics
model
4 Introduction

Ice sheets are vast and slow-moving edifices of solid ice, which are mainly concentrated
in Antarctic and much smaller in Greenland. They flow under their own weight by solid
state creep processes such as the creep of dislocation in the crystalline lattice structure
of the ice. In this resemble rivers, expect they move more slowly and are consequently
much thicker. Ice sheets have thickness of several kilometers and move at velocities of
10-100 meters per year. Despite their slow movement and apparent changelessness, ice
sheets exhibits various interesting dynamic phenomena. In polar climate regions the
snow accumulates on the uplands, is compressed into ice and flows out to cover the region
under the action of gravity. Ice flows as highly viscous solids from the central parts, where
the thickness is great, towards the margins. If the margins are near the coast, it can be
formed floating ice shelves. The ice sheet equilibrium can be maintained through a balance
between accumulation in the center and ablation at the margins. Accumulation occurs
mainly through solid precipitation and ablation can occur either through evaporation or
melting of the ice in the warmer climate at the margin, or through calving of icebergs. An

12



S.N. Antontsev, J.I. Díaz and H.B. de Oliveira

interesting phenomenon occurs in ice sheets, where one sees drainage of the ice toward the
coast occurring through a series of ice streams, which are highly crevassed rapid flows on
the order of 50 Km wide, bounded by regions of more stagnant ice. See [20] for a detailed
description of ice sheet dynamics and [25] for a variational approach to ice stream flow.

The common Fluid Mechanics model adopted for cold ice is a non-Newtonian, viscous,
heat-conducting, incompressible fluid. It should be pointed out that, strictly speaking, it
is not possible to assume ice to be incompressible and yet still presume density variations
under phase changes. It is, however, justified to ignore density variations since associated
changes in bulk density are very small. On the other hand, it is worth to know that ice
sheets are assumed to be isotropic materials, but they can develop an induced anisotropy
when stressed over sufficiently long time scales. The model adopted for ice sheet flows
result from the basic principles of Fluid Mechanics:

• the conservation of mass
divu = 0; (4.38)

• the conservation of momentum

0 = ρg + divS. (4.39)

Note that in (4.39) we have neglected the inertial terms by virtue we are in presence of very
slow flows. Moreover, we have not written the equation for temperature, which results
from the conservation of energy, because in the sequel we will consider only isothermal
motions. This brings some controversy to the model and therefore we postpone this
assumption for later on. The notation used in (4.38)-(4.39) is well known: u is the
velocity field, ρ is the constant density and g is the gravitational force. The stress tensor
S and the rate of deformations tensor D are related by a rheological flow law, denominated
as the Glen’s law:

S = −pI + F(D), F(D) = η A(θ)|D|n−1D , D =
1

2
(∇u +∇u)T . (4.40)

In (4.40), p is the pressure, η is the effective viscosity, A(θ)|D|n−1 is a cutoff function, |D|
is given by 2|D| = D : D. Note that |D| stands for the second stress invariant, DII , of D,
because D = DT and (4.38) implies D11 + D22 + D33 = 0. A is a temperature-depending
rate factor which causes A to vary ±3 ◦K (K=Kelvin) over a temperature range of 50 ◦K.
Experimental results showed that n varies from about 1, 9 to 4, 8 in secondary creep and
reaches values as high as 10 in tertiary creep. There is general agreement now to use n = 3,
although Glen concludes that n = 3, 5 would be more appropriate (see [22, Chapter 2]).

The major simplification of the model ensues by considering the shallow-ice approxi-
mation. This is justified, since we assume a physical process in which important length
scales in the longitudinal directions are much larger, compared to those in the transverse
directions. The shallow-ice approximation consists in the introduction of a stretching
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transformation in terms of a small parameter δ > 0 for instance δ = d/L, where d is the
mean thickness of the ice sheet and L a representative length of the ice sheet. Then the
variables and parameters of the governing equations are scaled in terms of δ, which of
course is � 1. A last, but controversy, simplification of our model, results by considering
only isothermal ice sheet motions. Although the isothermal models are not quantitatively
very realistic, they are mathematically nice. On the other hand, it is not our aim to
produce the most realistic model incorporating as much realism as possible. Therefore
the omission of the temperature equation is justified and, with no lost of generality, we
may assume that A = 1 in (4.40). In consequence of all these simplifications, our model
reduces to the following equation

∂h

∂t
= div

(
(h− l)n+2

n + 2
|∇h|n−1∇h + (h− l)ub

)
+ a , (4.41)

where h(x, y, t) and l(x, y) are, respectively, the top surface and base of the ice sheet. One
can readily see that (4.41) is a nonlinear diffusion equation for the function

w(x, y, t) = h(x, y, t)− l(x, y) , (4.42)

which expresses the local thickness of the ice sheet. The function a expresses the scaled
accumulation-ablation rate - the regions where a > 0 or a < 0 represent, respectively,
accumulation or ablation zones. The term ub results from assuming the ice sheet slides,
with velocity ub, over its base. This happens when basal ice reaches the melting point and
consequently basal melt water is produced. This water can lubricate the bed sufficiently
that the ice slides over the bed. But, once the base reaches the melting point, we assume
the ice above remains cold. When ub is a prescribed function, (4.41) is a nonlinear
diffusion-convection equation for w. It corresponds to slip boundary conditions along an
assumed temperate bed.

5 Statement of the problem

In this section we introduce the mathematical problem we shall work with. Arguing
as in [21, p. 312], we can justify that

ub ≈ −∇h .

Then assuming a ice sheet flow with zero scaled accumulation-ablation rate over a flat
base, and using (4.42), we derive from (4.41)

∂w

∂t
+∇w · ub = div

(
wn+2

n + 2
|∇w|n−1∇w

)
− 2|∇w|2 , (5.43)

Thus, we consider (5.43) in a cylinder

QT := Ω× (0, T ) ⊂ R2 × R+
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whose boundary is defined by ΓT := ∂Ω × (0, T ) and where Ω is assumed to be a large
enough bounded domain with a sufficiently smooth boundary ∂Ω. We supplement equa-
tion (5.43) with its natural initial and boundary conditions:

w = h0 − l in Ω when t = 0 ; (5.44)

w = 0 on ΓT . (5.45)

Note that, in (5.44), h0 ≡ h(x, y, 0), l is constant and taking the altitude zero reference
as the medium sea level, the model itself implies

h0 − l ≥ 0 .

It should be remarked that similar mathematical problems to (5.43)-(5.45) have been
studied by different authors, among many [3, 15]. In [3] was studied problem (5.43)-(5.45)
with a zero basal sliding velocity and were established the finite speed of propagations
and waiting time properties for the weak solutions to that problem. It is worth to notice
that although the correct mathematical formulation of the problem (5.43)-(5.45) must be
done in terms of a parabolic inequality (see [15]), the case in which a ≥ 0 in QT can
be treated correctly by replacing the variational inequality by the equation (5.43). We
justify this, since it solutions also satisfy the variational inequality formulation and due
to the uniqueness result for the variational inequality, they must coincide. We point out
that although the results of [15] are valid for the more general cases in which a can be
negative in some big region, their results were established for spatially one-dimensional
formulations, for l = 0 and without the term |∇w|2.

Our first new results for the the problem (5.43)-(5.45) concern the study of localization
properties of weak solutions such as the finite speed of propagations and the waiting time
properties, generalizing the results presented in [3]. We are interested in studying the
mathematical problem posed by (5.43)-(5.45) when the basal sliding velocity is given and
satisfies to

divub = 0 in QT , = Ω× (0, T ), (5.46)

ub ∈ C[0, T ;C1+α(Ω)], 0 < α < 1 . (5.47)

6 Localization properties

In this section we shall establish the localization properties of finite speed of propaga-
tions and waiting time properties of the weak solutions to the problem (5.43)-(5.45) and
if the basal sliding velocity ub satisfies (5.46)-(5.47).

Let us consider the non-negative weak solutions of the problem (5.43)-(5.45) which
satisfy to

sup
t∈[0,T ]

∫
Ω

|w(·, t)|2dx +

∫ T

0

∫
Ω

|w|n+2|∇w|n+1dxdt := E(QT ) < ∞ . (6.48)
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Notice that the last estimate follows from the energy relation

d

2dt

∫
Ω

|w(·, t)|2dx +

∫ T

0

∫
Ω

(
|w|n+2|∇w|n+1 + w|∇w|2

)
dxdt = 0 ,

because
∫

Ω
ub∇w dx = 0 and, according to the Maximum Principle w ≥ 0. We conjecture

that it is possible to prove the existence of such solutions, in a suitable function space,
by adapting the arguments used in [9] (see also the reference cited therein to the work of
Antontsev, Epikhov and Kashevarov).

In order to define the notions of the properties we want to establish in this part, let us
fix x0 in Ω and assume that

w0(x) = 0 for x ∈ Bρ0(x0) = {x ∈ Ω : |x− x0| < ρ0} ⊂ Ω , (6.49)

where ρ0 ∈ (0, dist(x0, ∂Ω)).

Definition 6.1 The weak solutions of problem (5.43)-(5.45) possesses the property of:
1. finite speed of propagation, if for some x0 ∈ Ω and t∗ ∈ (0, T )

w(x, t) = 0 a.e. in Bρ(t)(x0) ∀ t ∈ [0, t∗] ;

2. waiting time property, if for some x0 ∈ Ω and t∗ ∈ (0, T )

w(x, t) = 0 a.e. in Bρ0(x0) ∀ t ∈ [0, t∗] .

To proceed our study, we consider the Lagrange variables X defined as usual in Con-
tinuum Mechanics (see e.g. [24]):

dX(x, t)

dt
= ub(X, t), t ∈ (0, T ) ; (6.50)

X(x, 0) = x, x ∈ Ω. (6.51)

Under conditions (5.46)-(5.47), there exists a unique solution X(x, t) of problem (6.50)-
(6.51), which is a homeomorphism between Ω and Ωt = {y : y = X(x, t), x ∈ Ω} for any
t ∈ [0, T ]. This solution transforms the ball Bρ(x0) into

Bt
ρ(x0) = {y : y = X(x, t), for some x ∈ Bρ(x0)}.

Moreover, the following formula hold

d

dt

∫
Bt

ρ(x0)

Φdy =

∫
Bt

ρ(x0)

(
∂Φ

∂t
+ ub∇Φ

)
dy , (6.52)

dJ

dt
= J div ub, J = det

(
∂X

∂x

)
, J(x, 0) = det

(
∂X(x, 0)

∂x

)
= 1. (6.53)
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In the considered case, we have that J(x, 0) = J(x, t) = 1. We introduce the energy
functions

E(ρ, t) =

∫ t

0

∫
Bt

ρ(x0)

|w|n+2|∇w|n+1dydτ,

∂E(ρ, t)

∂ρ
=

∫ t

0

∫
St

ρ(x0)

wn+3|∇w|n−1ndSdτ, St
ρ(x0) = ∂Bt

ρ(x0)

B(ρ, t) =

∫
Bt

ρ(x0)

|w|2dy, B(ρ, t) = sup
0≤s≤t

B(ρ, s).

(6.54)

Then, applying the results of [8, Chapter 3], we can prove the following theorem.

Theorem 6.1 Let w be a non-negative weak solution to the problem (5.43)-(5.45). As-
sume ub satisfies (5.46)-(5.47) and (6.48) holds.

1. If (6.49) is verified, then there exists t∗, 0 < t∗ < T , such that

w(x, t) = 0 a.e. in Bρ(t)(x0), ∀ t ∈ [0, t∗],

with ρ(t) given by
ρν(t) = ρν

0 −
ν

γC
tλEγ(ρ0, 0),

with some positive constants ν, λ and γ.

2. If additionally to (6.49), the following condition holds∫
Bρ(x0)

|w0|2dx ≤ ε(ρ− ρ0)
µ, ρ > ρ0, µ = µ(n) > 0, ε > 0,

then, there exist t∗, 0 < t∗ < T , and ε∗ > 0, 0 < ε ≤ ε∗, such that

w(x, t) = 0 a.e. in Bρ0(x0), ∀ t ∈ [0, t∗] .

PROOF. Multiplying equation (5.43) by w and integrating (formally) over Bt
ρ(x0) ×

(0, T ) with regard to (6.52), (6.53) and (6.54), we come to the energy relation

1

2
B(ρ, t) + E(ρ, t) = I +

1

2
B(ρ, 0)−

∫ t

0

∫
Bt

ρ(x0)

w|∇w|2dydτ, (6.55)

where

I =

∫ t

0

∫
St

ρ(x0)

wn+3|∇w|n−1ndSdτ, St
ρ(x0) = ∂Bt

ρ(x0)
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and n is the unit outer normal vector to St
ρ(x0). Notice that B(ρ, 0) = 0 if ρ ≤ ρ0 which

corresponds to the first assertion. In this case, (6.55) leads to the ordinary differential
inequality(see [8, §3.2])(

B(ρ, t) + E(ρ, t)
)γ ≤ Ctλρ1−ν

(
∂E(ρ, t)

∂ρ

)
, 0 < γ < 1, 0 < λ, ν.

Integrating last inequality, we come to the estimate

Eγ(ρ, t) ≤ Eγ(ρ0, 0)− γ

ν
Ct−λ

(
ρ1−ν

0 − ρ1−ν
)
,

which lead us to
E(ρ, t) = 0, if ρ1−ν ≤ ρ1−ν

0 − ν

γC
tλEγ(ρ0, 0).

First assertion of the theorem is proved. In the second case, we come to the nonhomoge-
neous inequality with ρ ≥ ρ0(

B(ρ, t) + E(ρ, t)
)γ ≤ C

[
tλ
(

∂E(ρ, t)

∂ρ

)
+ εγ(ρ− ρ0)

γµ

]
, µ ≥ 1

1− γ
.

According to ([8, §3.3]), all solutions of the last inequality permit the majority

E(ρ, t) ≤ Cγ(ρ− ρ0) , ρ ≥ ρ0

if ε > 0 and t > 0 are sufficiently small. Second assertion of the theorem is proved.�

Remark 6.1 It is possible to apply local energy methods, as the presented before and
inspired in [8, Chapter 3], for the more general formulation (given in terms of a) of the
variational inequality presented in [15], which holds when a can be negative in some big
region (always for the case l = cst, ub 6= 0 and divub = 0). Indeed, by using parabolic
type local energy domains of the type

P (t) ≡ P (t; ϑ, υ) = {(x, s) ∈ Q : |x− x0| < ρ(s) ≡ ϑ(s− t)υ, s ∈ (t, T )}

for suitable choices of the parameters ϑ and υ (ϑ > 0, 0 < υ < 1), and by defining the
local energy functions

E(P ) :=

∫
X(t,P (t))

|w|n+2|∇w|n+1dydτ, C(P ) :=

∫
X(t,P (t))

|w(y, τ)| dydτ

b(T ) := ess sup
s∈(t,T )

∫
X(t,P (t))

|w|2dy ,

we can adapt the results of [8, §3.4] in a similar way as was done for the Stefan and
obstacle problems in [16] to prove dead core type properties. I.e. even if we assume
initially that h(x, 0) = h0(x) > l for a.e. x ∈ Ω, if h(x, t) < −ε < 0 a.e. on Bρ(x0) ⊂ Ω,
t ∈ (0, T ), for some ε > 0 and some Bρ(x0), then h(x, t) = 0 on a positive measured
subset of the form P (t), for t large enough.
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