Multiplicative functionals on function algebras

J. GÓMEZ and J. G. LLAVONA

ABSTRACT. Let X be a completely regular Hausdorff space and $C(X)$ the algebra of all continuous \mathbb{K}-valued functions on X ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}). If $A \subseteq C(X)$ is a subalgebra, in [4] can be found conditions on A under which each character of A, i.e., each non-zero \mathbb{K}-linear multiplicative functional $\phi: A \rightarrow \mathbb{K}$, is given by a point evaluation at some point of X.

In this paper we present a «Michael» type theorem for the particular case in which X is a real Banach space. As consequence it is showed that if E is a separable Banach space or E is the topological dual space of a separable Banach space and A is the algebra of all real analytic or the algebra of all real C^m-functions, $m = 0, 1, \ldots, \infty$, on E, then every character ϕ of A is a point evaluation at some point of E.

Let E be a real Banach space with topological dual E' and let $C(E)$ be the algebra of all continuous \mathbb{R}-valued functions on E. Let $l^1(\mathbb{N}) = \{ \alpha = (\alpha_n) \in \mathbb{R}^\mathbb{N} : \sum_{n=1}^{\infty} |\alpha_n| < \infty \}$.

Theorem 1. Assume that there exists $(\phi_n)_{n=1}^{\infty} \in E'$, $\|\phi_n\| \leq 1$ for every $n \in \mathbb{N}$, such that (ϕ_n) separates points of E. Let $A \subseteq C(E)$ be a subalgebra with $1 \in A$. Assume:

(i) If $f \in A$, $f(x) \neq 0$ for all $x \in E$, then $1/f \in A$.

(ii) $E' \subseteq A$ and for every $\alpha = (\alpha_n) \in l^1(\mathbb{N})$, the function $\sum_{n=1}^{\infty} \alpha_n \cdot \phi_n^2$ belongs to A.

Then every character $\phi: A \rightarrow \mathbb{R}$, such that $\phi(\phi_n) = \phi_n(a)$ for every $n \in \mathbb{N}$ and some $a \in E$, is the point evaluation at a.

1 Research partially supported by CAICYT grant PR83-2197.
Proof. Let $\alpha=(\alpha_n)\in l^1(\mathbb{N})$ with $\alpha_n>0$ for all $n\in\mathbb{N}$. Condition (ii) implies that the functions:

$$f(x) = \sum_{n=1}^{\infty} \alpha_n \phi_n^2(x-a) \quad \text{and} \quad g(x) = \sum_{n=1}^{\infty} \frac{\alpha_n}{n} \phi_n^2(x-a)$$

belong to A.

For each $N \in \mathbb{N}$, let $x \in E$ such that $\phi(f) = f(x)$, $\phi(g) = g(x)$ and $\phi(\phi_i) = \phi_i(x)$, $i = 1, ..., N$ (a such x exists after condition (i)). For this $x \in E$, we have

$$\phi(f) = \sum_{N+1}^{\infty} \alpha_n \phi_n^2(x-a) \quad ; \quad \phi(g) = \sum_{N+1}^{\infty} \frac{\alpha_n}{n} \phi_n^2(x-a)$$

Therefore $0 \leq N \phi(g) \leq \phi(f)$ and it follows that $\phi(g) = 0$.

If $h \in A$ is given, let $y \in E$ such that $\phi(h) = h(y)$ and $\phi(g) = g(y)$. Since $\phi(g) = g(y) = 0$, it follows that $\phi_n(y) = \phi_n(a)$ for all $n \in \mathbb{N}$, i.e., $y = a$ and $\phi(h) = h(a)$.

Remark 1. The hypothesis on the real Banach space E in Theorem 1 is equivalent to say that E' is $\sigma(E'; E)$-separable. Therefore it holds when E is a separable Banach space and when E is the topological dual space of a separable Banach space.

Consequences

Let $A(E)$ be, respectively $C^m(E)$ ($m = 0, 1, ..., \infty$), the subalgebra of $C(E)$ of all real analytic functions (see [2]), respectively of all C^m-functions in the Fréchet sense, on E.

Corollary 1. If E is finite dimensional and $A = A(E)$ or $A = C^m(E)$, then every character $\phi: A \to \mathbb{R}$ is a point evaluation at some point of E.

Proof. This follows from Theorem 1 if we consider (ϕ_n) as the canonical projections.

Proposition 1. For every character $\phi: A(E) \to \mathbb{R}$, the restriction $\phi|_E$ is $\sigma(E'; E)$-sequentially continuous.

Proof. Assume that $(x'_n) \subset E'$ converges to zero for the $\sigma(E'; E)$-topology. If $\phi(x'_n) \neq 0$, there are $\alpha > 0$ and (x'_{np}), subsequence of (x'_n), such that

$$\left[\phi \left(\frac{x'_{np}}{\sqrt{\alpha}} \right) \right]^2 > 1$$

for every $p \in \mathbb{N}$. Since $(x'_{np}) \to 0$ ($p \to \infty$) for the $\sigma(E'; E)$-topology,
the function

\[f(x) = \sum_{p=1}^{\infty} \left[\frac{x'_{np}(x)}{\sqrt{\alpha}} \right]^{2p} \]

is well defined and \(f \in A(E) \). (See ([2], Th. 6)). For each \(N \in \mathbb{N} \),

\[\phi(f) \geq \phi \left[\sum_{p=1}^{N} \left[\frac{x'_{np}}{\sqrt{\alpha}} \right]^{2p} \right] = \sum_{p=1}^{N} \left[\phi \left[\frac{x'_{np}}{\sqrt{\alpha}} \right] \right]^{2p} \]

Therefore \(\sum_{p=1}^{\infty} \left[\phi \left[\frac{x'_{np}}{\sqrt{\alpha}} \right] \right]^{2p} < \infty \) and then \(\left[\phi \left[\frac{x'_{np}}{\sqrt{\alpha}} \right] \right]^{2p} \to 0 \) \((p \to \infty)\), which is a contradiction because \(\left[\phi \left[\frac{x'_{np}}{\sqrt{\alpha}} \right] \right] > 1 \) for all \(p \in \mathbb{N} \).

Corollary 2. Let \(E \) be a separable Banach space and \(\phi : A(E) \to \mathbb{R} \) a character. Then \(\phi_E \) is a point evaluation at some point of \(E \).

Proof. This is immediate from Prop. 1, since by ([5], Ch. IV; Th. 6.2 and Corollary 3) for \(\phi_E \) to be \(\sigma(E'; E) \)-continuous it suffices to show that \(\phi_E \) is \(\sigma(E'; E) \)-sequentially continuous.

Corollary 3. Let \(E \) be a separable Banach space and \(\phi : A(E) \to \mathbb{R} \) a character. Then \(\phi \) is a point evaluation at some point of \(E \).

Proof. This is immediate from Theorem 1, Remark 1 and Corollary 2.

Let \(F \) be a separable Banach space and \((y_n)_{n=1}^{\infty} \) a dense subset in \(\{y \in F : \|y\| \leq 1\} \). Let \(E = F' \). Let \(\phi_n : E \to \mathbb{R} \) be defined as \(\phi_n(x) = x(y_n) \). Then \(\phi_n \in E' \), \(\|\phi_n\| \leq 1 \) and \((\phi_n)_{n=1}^{\infty} \) separates points of \(E \). The mapping \(y \to \phi_y \), defined as \(\phi_y(x) = x(y) \), allow us identify \(F \) with a subspace of \(E' = F'' \). Thus, if \(\phi : A(E) \to \mathbb{R} \) is a character, Prop. 1 implies that \(\phi_F \) is \(\|\| \)-continuous, therefore \(\phi_F \in F' = E \). Then, it follows that there exists \(a \in E \) such that \(\phi(\phi_n) = \phi_n(a) \) for all \(n \in \mathbb{N} \). Now the following Corollary is clear after Theorem 1.

Corollary 4. Let \(E \) be a topological dual space of a separable Banach space and \(\phi : A(E) \to \mathbb{R} \) a character. Then \(\phi \) is a point evaluation at some point of \(E \).

Corollary 5. Assume that \(E \) is a separable Banach space or \(E \) is the topological dual space of a separable Banach space. Then every character \(\phi : C^m(E) \to \mathbb{R}, m = 0, 1, ..., \infty \), is a point evaluation at some point of \(E \).
Proof. \(\phi_{(A,E)}\) is a point evaluation by Corollary 3 and Corollary 4. Thus, \(\phi\) satisfies conditions of Theorem 1 with \(A = C^m(E)\).

Remark 2. The Corollary 5, for the particular case \(E\) a separable Banach space and \(m = \infty\), can be found in [1]. Also, for \(E\) with \(C^m\)-partitions of unity and \(m < \infty\), see [3].

References

Departamento de Análisis Matemático
Facultad de CC. Matemáticas
Universidad Complutense
28040 Madrid

Recibido: 12 de febrero de 1988