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A geodesic completeness theorem
for locally symmetric Lorentz manifolds

J. LAFUENTE LOPEZ

ABSTRACT. We prove that a locally symmetric and null-complete Lorentz manifold
is geodesically complete.

0. INTRODUCTION

The concept of null, timelike and spacelike completeness in Lorentz
manifolds are logically inequivalent: Kundt [3] gives an example of a
timelike-complete and null-complete spacetime which is not spacelike
complete. Geroch [2] shows by an example that a globally hyperbolic
manifold may be timelike incomplete but complete in other senses. Finally,
an example by Beem [1] together with some modifications to Kundt’s
example proposed by Geroch [2] show that the other possibilities may actual-
ly occur.

The aim of this work is to prove that, for locally symmetric Lorentz
manifolds null-completeness implies timelike and spacelike completeness.

A slight modification of the reasoning in 4.1 shows that for these
manifolds the three types of completeness are equivalent (see 5.2). The rest of
this paper is devoted to prove the following main result:

Theorem 1. Let M and M be locally symmetric, connected, and null-
complete Lorentz manifolds. Let M be simply connected, and fix 6e M, oe M.
Then if L: T,M - T,M is a curvature preserving linear isometry, there is a local
isometry ¢:M —M such that ¢(6)=o0 and d¢(0)=L.

In particular, if M is locally symmetric and nuIl-complete its universal
covering M will have the same properties. Then for each & € M the symmetry
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L:T; M 3 v— —ve Ts M is curvature preserving and, by Theorem 1 there is a local
isometry ¢:M—M such that ¢(0)=0 and d¢(6)=L. Clearly dp?*(0)=L*=id
and ¢*=id by 1.1; hence M is symmetric and, in particular, geodesically
complete. This completeness is inherited by M and the aim of the paper is
achieved:

Corollary 2. A locally symmetric and null-complete Lorentz manifold is
geodesically complete.

1. PRELIMINARY RESULTS
The following classical results are essential in the proof of theorem I:

Proposition 1.1 [4] If @1, ¢p2:M —M are local isometries between connected
semi-Riemannian manifolds and d¢(p)=d¢,(p) for some pe M, then ¢, = ;.

Theorem 1.2. (E. Cartan) [4]. Let MM be locally symmetric Lorentz
manifolds, oe M, oeM and L:TM—-T,M a curvature-preserving linear
isometry. Let Us be a starred neighbourhood of 6 in T,M, such that exps and
exp, are defined on U; and U,=1(Us), and exps is a differomorphism from U,
onto its image U. Define then ¢ =exp,- L-exp;':U—exp,(U,)=U.

~
Given a geodesic 7:[0,11-U such that 5(0)=0, 7' (0)=0v€ Us, and taking
Wt)=exp,(tv) te[0,1], v=L(v) we get:

dp((t)=P,-L-P;* for te[0,1]
where P, and P, are the parallel displacements along y and 3.

In particular ¢:U—-U is a local isometry and in fact the only one such that
dp(0)=L.

From now onwards, unless the contrary is stated, all the hypotheses of
Theorem 1 are assumed.
2. L-PROJECTIONS

The following preliminary result will justify definition 2.2.

Proposition 2.1. Let 7:[0,a]—>M be a null geodesic such that 7(0)=0, 7'(0)
=0, L(D)=v. Define y(t)=exp,tv) for te[0,a] (remark that by hypothesis
exp(tv) is defined for all t). There is a partition O=t,<t, <...<t,=a and a
family U ={U¢;):i=1, ..., r} such that:
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P1) U, is convex and open in M, and 3[t;_y,t;] < U, for i=1,...r.

3

P2) $:U;»¢i(U)=U; is an isometry for i=1, .., r and ¢,(0)=o,
d¢(0)=L.

P3) o) =7y(t) for te[ti_y, t1]i=1, ..., r. Moreover
ddi((t:) = A+ 1(7(t).
Proof: If PP, are as in 1.2 for t€[0,a] we define
Li=P,-L- P;_l.’Ti(t)M“‘)Ty(t)(M).

By local symmetry, P, and P, are curvature-preserving and so is L}
Using 1.2 we see that for each t € [0,a] there are ¥, V, convex neighbourhoods
of 7(t) and y(t), and an isometry ¥..V,—V, such that V,(5(t))=7y(t) and
dy (1) = L;.

We claim that if 7[t1,t,] < V;, then for t € [ty,t2] we have ¥, (7(£)) =7(¢), and
dy, (7())=L;.

Hence by 1.1, ¥, coincides with iy, on the connected component of V,, N V,
containing 7(t).

In order to prove the claim note that
Yo (7(t)) = Y (expran((t — 11)7 (1)) =
expyen((t — t)L5 (7'(t1))) = expyaf(t — 1)y (t1)) = (2)
the second assertion is now an easy consequence of Cartan’s theorem.
Using the claim and the compactness of [0,a], we get a partition
O=t,<ti<..<t,=a and s;€[t;—y, t;) such that if U;=V, and ¢;=ys, the

family % ={(U;, ¢:):i=1, ..., r} verifies P1), and automatically P2) and P3).

We give the following general definition:

Definition 2.2. Iet 5:[0,0] >M be continuous. We say that ¥ is L-projec-
table if 7(0)=0 and we have a continuous curve y:[0,a]—>M, a partition
0=t,<ty <...<t,=aand a collection U, such that (P1),(P2), (P3) in proposition
2.1 hold.

We say then that y is a L-projection of 7 and (t;), % are the associated
partition and covering of the projection.



104 J. Lafuente Lopez

The definition is easily adapted for curves defined in [a,b]; this being valid
for all results in the section.

Proposition 2.3. Let 7:[0,a]—>M be continuous. Then
(i) The L-projection vy, if it exists, is unique.

(ii) If y is the L-projection and has a covering % and an associated partition as
in 2.2, then the linear isometry

Lty = dd)i(’?(t))."];(t)M—)E(t)M for te [ti_ 1, ti] i= 1, e
is curvature-preserving and depends only on 7.

(@il If 3 is a null geodesic with $(0)=0, then it is L-projectable, and its L-
projection y is a null geodesic. Also with the notation in 2.1 we have
Li=P,-L-P;" for te[0,a].

Proof:

(@) If y; and 7y, are L-projections we may choose projection coverings
UD={U®, pW)i=1, .., r} a=1,2 with the same associated partition
0=t,<..<t,=a. Let U; be the connected component of U NTP
containing J[t;-1, t;]. Let us prove that ¢/U;=¢P/U; i=1, .., r.
Using condition (P2) and 1.1 the statement is shown to be true,
since d¢p{V(0)=L=d¢?(0). If the statement is true for i>1, using
(P3) we get:

do{21(7(t:)) = ddV(F(t:) = dpPF(t) = dp2 1 (7(t:)

and using 1.1 the inductive step can be completed. For each te[t;_,,¢;]
we have y1(t) = ¢ (7(1) = ¢PAH(8)) = ya(t).

(i) The preceding argument applied to the projection coverings % ® o« =1,2 of
7 over y with the same associated partition (t;)) shows that ¢/U,;=
=¢?®/U,, where U, is defined as in (i). In particular d¢{(5(2)) =doP(3(t))
for each te[t;-1,t].

(iii) It follows immediately from 2.1.

Definition 2.4. If the hypothesis 2.3 (ii) holds, the map L% Ty )M - T,\M is
called the transport of L from %(0)=0 to y(t) along %.

We remark that L§=L. We will write L;=Lj.

The following statements are elementary and will be used in the future
more or less explicitly.
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Proposition 2.5.
(i) The L-projectability of  depends essentially on im 7 and not on the specific
parametrization chosen with compact domain and origin at 6. Analogously
the transport L; depends only on imy and the final end of .

(ii) If 71, 7. are continuous curves with 3, L-projectable and ¥, L;,-projectable,
the joint curve =%,V ¥, is L-projectable and Ly =(Ls,)s,.

(iii) Reciprocally, if y is continuous and L-projectable in M and we can write
=71 V9, we have that ¥, is L-projectable and %, is Ls -projectable.

Using 2.5 and 2.3 we trivially obtain:

Corollary 2.6. Any null piecewise geodesic 7:[0,a]—>M with $(0)=06 is
L-projectable.

3. L-PROJECTIONS AND HOMOTOPIES

We will see that in order to show the existence of the local isometry ¢ of
theorem 1 it is enough to prove that all continuous curves with origin at
0eM are L-projectable.

Proposition 3.1. Let 7:[0,1] % [0,a]€(s,t)=7s(t)e M be a homotopy with
75(0)=0, ys(a)=p for all se€[0,1]. Suppose that for all s€[0,1] the curve y; is
a L-projection of ¥s. Then

(@) 00,171 x[0,a] (s,t)—yt)e M is a homotopy and y{a)=p does not depend
on s.

(i) L;.TTM—T,M does not depend on s.

Proof: Fix s,€[0,1] and set % ={(U;, ¢:):i=1, .., r} be a projection
covering for 7, with associated partition 0=t,<...<t,=a. Note that 6>0
can be chosen such that % is also a projection covering of 7 if |s—s,| <3,
and ¢;(P(t)) =7s(t) for te[t;—1, t;]. This proves the continuity of y. Now for
i=r we have ¢,(7s(a))=d,(p)=7vs(a) for |s—s,|<d. Therefore the map
[0,1]es—ys(a)e M is locally constant; having connected domain it is
constant.

The same sort of argument proves that the map s—L;, s€[0,1] is
constant.

Corollary 3.2. If all curves 7:[0,a]>M, 7(0)=0, are L-projectable; then
there is a local isometry ¢:M—M with ¢(6)=0, dp(06)=L.
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Proof.: Given pe M there is a curve 7:[0,1]—-M with $(0)=0, y(1)=p. If y
is the L-projection of j, the point p=7y(1)=¢(p) and the linear isometry
L;=L;:TM—T;M are uniquely determined by 3.1 since M is simply
connected.

If #={(U,, ¢;)i=1, .., r} is a projection covering of j and (t;) is the
associated partition it is straightforward to conclude that ¢/U;=¢;i=1,...,r.

This shows that L;=d¢(p) and ¢ is a local isometry such that
d¢(0)=Ls=L.

We prove the following technical lemma:

Lemma 3.3. Let 7,:[0,a]>M be a continuous curve such that 7,0)=0.
Suppose that for all ay<a the curve 7,/[0,a,] is L-projectable and there is a
fixed-ends homotopy 7:[0,0] x [0,a] 3 (s,t)—>7t)e M such that

l) 7s/[0’a - S] = ?o/[o’a - S] ’

i) 9s/[a~s,a] is a L3 s-projectable curve.
Then ¥, is L-projectable.

Proof.: Since the homotopy 7 keeps ends fixed there is p€ M such that
¥s(@)y=p if s€[0,0]. Then if y, is the L-projection of y, we get from 3.1 that
p=74a) and L; =Ly, are well determined, independently of s. Moreover L;
is a linear isometry preserving curvature (2.4 i). By Cartan’s theorem we get
convex neighbourhoods U, U of p, p and an isometry ¢:U—U such that
d¢(p)=Ls. Fix 8, >0 such that y,([a—6,, a]) = U if 0<s< ;. We have then
L:, =dop(35(t) if te[a—3d1, a], 0<5< 1. Since y4(t) =7y,(t) for te[0, a—s] we
get L =d(5,(t)) for t € [a— 81, a]. Therefore 7,/[a — 61, a] is L& ~*-projectable
(its projection is y,(t)=d(¥,(t)) for te[a—3d;, a] and %,/[0, a—J,1] is L-
projectable. Using 2.6 ii) we get that j, is L-projectable.

4. PROOF OF THEOREM 1

By corollary 3.2 we just need to prove that any curve 7:[0,a]—>M is L-
projectable. As a first approximation we restrict ourselves to the case where
is a non-null geodesic. This requires the following result valid for any
Lorentzian manifold.

Theorem 4.1. Let M be a Lorentz manifold and y,:[0,a]—>M a non-null
geodesic of sign ¢. There is a fixed-ends homotopy v:[0,0] x [0,a]—M such that
ys/[0,a —s]=7,/[0,a—s], and ys/[a—s,a] is the join of two null geodesics.
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Proof: We take a convex neighbourhood U of yJa)=p and fix the

following notation. If x,ye U we write xy =exp; '(y) and &, (r) = expx(rxy) for

re[0,1], is the only geodesic in U defined on [0,1] joining x and y. The

function ¢(x)= <px,px> and the field P(x)=¢,(1), xeU are related by
gradg=2P.

If C,={xe U:q(x)=0} we have xe C, if and only if £, is a null geodesic.
The point x; denotes y,(a—s).

We sketch the proof as follows. Take J;>0 such that y(t)eU if
te[a—d,,a]. Let Wt), te[0,a] be a null parallel field along y, such that

e<V(a), ys(a)>>0 and exp, o V(t)e U for te[a—dy,a] (1)

The main idea is to prove that for small s the geodesic o(r)
=expx(rV(a—s)), re[0,1] intersects C, in a first point ps.

We construct then the homotopy by a convenient parametrization of the
curves ys=7o/[0,a—s] V &un V &

We go into the details now (see Fig. 1).

:

Via—s)

o1)

7(0)=J(1)

FiG. 1
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The variation ¢:[0,0:] X [0,1]€(s,r)—0{r) =expx,(rV(a—s))e U defines on
the geodesic g, a Jacobi field J(r)= %%/(o,,). Consider 7:[0,0,]es—04(1)e U.
We remark that J(0)= —y,(a), J(1)=7'(0), a5(1) =P(1(0)), 7(0)=expy(V(a)).
We get from (1) that £ < —y4(a), V(a)> =¢<J(0), 05(0)> <0. Multiplying

V() if necessary by a suitable constant A€[0,1] we may assume by continuity
that e<J(1), 65(1)> <0 and therefore:

0>e<J(1), o)(1)> =& <7(0), P(x(0)> = %s <7(0), grad > = %s(q -7)(0).

On the another hand, since g-7(0)=g(expy(V(a))=0 there is é such that
0< <6, with eqr(s) <O for s€[0,0]. If se[0,6] the map &g - 1::[0,1]—R verifies:

€q-0{0)=¢q(x;)>0, eq- o (1) =¢q-1(s) <0

Therefore, there is a first 6;,€(0,1) such that ¢q-o,(6)=0. By the implicit
function theorem, the map (0,0] 3s—6,€[0,1] is continuous.

Define p,=0,(65). We define (see Fig. 2) the homotopy y as follows:
Po(t) if te[0,a—s] (ruled area)

26,
oi(t)= €Xpx, (T(t +s—a)V(a —s)) if te [a —S, a— 5] (dotted area)

2
expp<— E(t —a)PPs) ifte |:a - %, a:| (shaded area)

a
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We check easily the continuity of y at the points in [0,6] X [0,a] except at
(0,a). The continuity at this point is proved using that p=1lim p,. Therefore

for any convex neighbourhood W of p, there is n>0 such tohat ps€ W for
O<s<n, and &), &, are in W.

Corollary 4.2. Any geodesic ¢:[0,11—M with 6(0)=6 is L-projectable.
Proof: Null geodesics are L-projectable by 2.1.

If 6 is a non null geodesic consider I={a€(0,1]:6/[0,a] is L-projectable}.

By Cartan’s Theorem, I is a non empty open subset of (0,1]. To see that

(0,11 =1 we just need to prove the following statement. If (0,a) = I for a€(0,1),

then ael. Let $,=6/[0,a]. We construct using 4.1 a fixed-ends homotopy

7:[0,1] x[0,a]—>M of 7, such that:

(i) 7s/[0,a—s]=%,/[0,a—s] wich is L-projectable by hypothesis.

(i1) 7s/[a—s,a] is a piecewise null geodesic, which is Lj;-projectable by 2.7.
We get from 3.3 that ¥, is L-projectable and ael.

Corollary 4.3. Any curve ¢:[0,1]>M such that (0)=0 is L-projectable.
Proof: As before the set I={ae(0,1]:6/[0,a] is L-projectable} is a

non empty open subset of (0,1]. We show that ae€(0,1] and (0,a) = I

imply ael. Consider j,=0/[0,a]. Take U, convex neighbourhood of

Pp=7%,(a) and & >0 such that 7,(t)e U if te[a—,a]. If we define p;=7.(a—s),
we can construct a fixed-ends homotopy %:[0,0] x [0,a]—>M such that:

(i) 7s/[0,a—s]1=%,/[0,a—s] which is L-projectable by hypothesis.

t+s—a

(i) 4= exp,—,:< [)J)), te[a—s,al.

Since js/[a—s,a] is Li*-projectable by 4.2 we get from 3.3 the result.

Theorem 1 is now inmediate, since 4.3 and 3.2 give a local isometry
¢:M—-M such that d¢(0)=L.

5. REMARKS

The key point in the proof of theorem 1 is 4.1 which can easily modified in
this way.
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Theorem 5.1. Let M be a Lorentz manifold and y,:[0,a]>M a geodesic
with sign ¢ (€€ { —1,0,1}). If we fix ¢' € { —1,0,1}, there is a fixed-ends homotopy
of 7, say 7:[0,0] x [0,a] =M such that y5/[0,a—s]=7,/[0,a—s] and y[a—s,a]
is a piecewise geodesic with sign &'.

Theorem 5.1 allows to modify analogously theorem 1, and, as con-
sequence, also corollary 2, whose new statement becomes.

Corollary 5.2. The null, timelike and spacelike completeness are equivalent
in a locally symmetric Lorentz manifold.
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