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An equivalence criterion
for 3-manifolds*.

M. R. CASALI

Abstract

Within geometric topology of 3-manifolds (with or without
boundary), a representation theory exists, which makes use of
4-coloured graphs. Aim of this paper is to translate the home-
omorphism problem for the represented manifolds into an equiva-
lence problem for 4-coloured graphs, by means of a finite number
of graph-moves, called dipole moves. Moreover, interesting conse-
quences are obtained, which are related with the same problem in
the n-dimensional setting.

1 Introduction and basic notations

Within every topological-combinatorial representation theory of PL-ma-
nifolds, great importance has been attached to the problem of deciding
whether two different “objects” do represent the same manifold: recall,
for instance, [R] and [S] for Heegaard diagrams of 3-manifolds, [K] for
framed links, [M] for generalized Heegaard diagrams, [Pi] for simple 3-
coverings of §° branched over links. From this view-point, our attention
is fixed upon 4-coloured graphs representing 3-dimensional manifolds,
with or without boundary: as pointed out later on in the present
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paragraph, edge-coloured graphs are a “discrete way” to handle pseu-
dosimplicial complexes triangulating manifolds (i.e. a suitable gener-
alization of simplicial triangulations, where two (curvilinear) simplices
may intersect in more than one face: see [HW]).

This paper completes the effort of translating the homeomorphism
problem for the represented 3-manifolds into an equivalence problem for
4-coloured graphs, by means of a finite set of graph-moves, called dipole
moves; moreover, interesting generalizations are obtained, which are re-
lated with the same problem in the n-dimensional setting. Actually, the
same n-dimensional problem was already faced - and solved - in [FG],
but in the closed case only; here, the whole class of PL n-manifolds is
considered, and the deeply different approach to the problem involves
- among other - up-to-date knowledges related to stellar and bistellar
operations (which are reviewed in the third paragraph).

The manifold representation theory via edge-coloured graphs was
firstly introduced by M.Pezzana and his school (see [FGG]| and its ref-
erences); further, it has been developed by other researchers, too (see
[BM], [LM], [V], [CV]). We shall repeat here the terminology and the
basic notions useful for this paper, in order to make it essentially self-
contained. For the graph theory involved, we refer to [W]; as far as
piecewise-linear (PL) topology is concerned, see [RS]. For sake of com-
pleteness, definitions and results will be given - where it is possible -
in the n-dimensional piecewise-linear (PL) setting, even if our attention
is mostly fixed upon the 3-dimensional case (where no difference arises

- among topological manifolds, PL-manifolds and differential manifolds:
see [Mo]).

An (n+1)-coloured graph (T',~) is a multigraph ' = (V(T'), E(T))
endowed with a proper edge-coloration v : E(I') — A, = {0,1,...,n}
(i.e. 7(e) # 7(f) for any two adjacent edges e, f € E(T)).

For every B C Ay, we set I'g = (V(I'), 7" }(B)); the connected com-
ponents of I'g are said to be B — residues, or ¢ — residues if B =
An — {c}, ¢ € An. Moreover, I'g(x) denotes the B-residue containing
the vertex z € V(T').

We say that an (n+1)-coloured graph (T, v) is regular with respect
to the colour c € A, if every é-residue is a regular graph of degree n.
The symbol Gy, denotes the class of all (n+1)-coloured graphs regular
with respect to the %last” colour n; note that the degree of a vertex v



An equivalence criterion. . . 131

in a graph (I',v) € G, is either n + 1 (and, in this case, v is said to be
an internal vertex) or n (and, in this case, v is said to be a boundary
vertex).

A theorem of Pezzana ([Pe]), together with its subsequent improve-
ments and generalizations (see [FG], [CvG], [G1])) states that every PL
n-manifold M™ (with or without boundary) may be represented by an
element of Gn: this means that (at least) a graph (T, v) € G, exists, from
which a suitable pseudosimplicial triangulation K (I') of M™ - having as
many simplices as the vertices of V(I') - is obtained.

The process leading from (I',v) to K (') - and viceversa - is largely
exposed in [FGG]; for short, we only remember that the edge-coloration
of (I',v) induces a vertex-labelling of K(I') by means of A,, which is
injective on every n-simplex, and that two n-simplices of K (I') share the
(n-1)-dimensional face opposite to the c-labelled vertex (c € Ay,) iff the
corresponding vertices of V(I') are joined by a c-coloured edge. More-
over, the underlying multigraph I' of the (n+1)-coloured graph (T',~)
associated to a pseudocomplex K, is nothing but the 1-skeleton of the
ball-complex dual to K.

Obviously, not every (I',y) € G, represents a pseudocomplex K (T')
triangulating an n-manifold M™: the necessary and sufficient condition
is that each ¢-residue, ¢ € A, represents either a (n-1)-ball or a (n-
1)-sphere. In order to understand why this holds, some definitions are
needed.

Definition 1. If o is a simplez of an n-dimensional pseudocomplez K,
the disjoint star of o in K, std(o; K ), is the subcomplez of K consisting
of the disjoint union of the n-simplices containing o and of their proper
faces, with re-identification of the faces containing o and of their faces.

Definition 2. If o is a simplez of an n-dimensional pseudocomplez K ,
the disjoint link of o in K, lkd(o;K), is the subcomplez of std(o; K)
consisting of stmplices disjoint from o.

By construction, if K = K(I') is associated to an (n+1)-coloured
graph (T',v), then every m-simplex o, whose vertices are labelled by
{e1,¢2,...,ems1} C Ay, corresponds to a (Ap, — {c1,¢2,...,cm+1})-
residue Z of (T',v), and the associated (n-m-1)-pseudocomplex K (Z) is
exactly lkd(o; K); thus, in particular, the previous characterization fol-
lows from the fact that every é-residue (c € Ay,) represents lkd(ve; K (T)),
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for some c-labelled vertex v, of K(I'). Moreover, if (I',v) € G, is as-
sumed, every 7ni-residue is a regular graph of degree n; this implies that
every n-labelled vertex belongs to the interior of the pseudo-triangula-
tion K = K(T') of M™, while the induced pseudo-triangulation 8K of
the - possibly void - boundary M ™ inherits a vertex-labelling by means
of Ap_1. Actually, K results to be represented by the so called bound-
ary graph (8T,% ), which may be easily recovered from (T',7) by the
following construction (see [CvGl):

- V(8T) is the set of boundary vertices of I';

- two vertices v,w € V(0T') are joined by a c-coloured edge e €
E(8T') (with ¢ € A,,_;) if and only if v and w belong to the same
{e,n}-residue of I.

2 Moves on edge-coloured graphs

As already stated, “dipole moves” constitute the main set of graph-
moves we are interested in; their first introduction is due to [FG], but the
present paper gives them the extended meaning of “(proper) dipoles”,
as defined in [Gg] for graphs with boundary.

Definition 3. Let (I',v) € G, be an (n+1)-coloured graph with #V (I') >
2. An h-dipole (1 < h < n) of ' is a subgraph © consisting of two ver-
tices v,w € V(I') joined by h edges coloured by cy,cq,...,cn € Ay, and
satisfying the following conditions:

a) Ig(v) # I'p(w), with B= Ay, — {c1,¢2,...,¢n};

b) if either v or w is an internal vertex, then either I'g(v) or I'g(w)
is a regular (n + 1 — h)-coloured graph.

The colours ¢1,c2,...,c, are said to be involved in the dipole © =
{v,w}. Moreover, © = {v, w} is said to be an internal dipole if either v
or w is an internal vertex.

Note that, if (T, v) is a regular (n+1)-coloured graph and/or colour
n is involved in the dipole © and/or h = n, then condition b) is always
satisfied.

Definition 4. The elimination (or cancellation) of the h-dipole © in
(T, 7) consists of:
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a) deleting O from (T',v);

b) welding the “hanging” pairs of edges of the same colour ¢ € A,, —
{c1,¢2,...,cn}

The insertion of an h-dipole is the inverse process; by a dipole move
(resp. internal dipole move) we mean either the elimination or the in-
sertion of an h-dipole (resp. internal h-dipole), for some 1 < h < n. By
abuse of language, if I is obtained from I' by means of a dipole move,
we will sometimes indicate as a “dipole move” also the process induced
on the associated pseudocomplexes, yielding K (I'') from K (T').

In (Gg, Prop. 5.3] it is proved that, if K = K(I') triangulates a ma-
nifold M™, then dipole move yields a new pseudocomplex K'= K(I")
triangulating M™: in fact, a dipole insertion is nothing but a suitable
re-triangulation of an n-ball #* C |K(I')]. On the other hand, it is
easy to check that internal dipole moves do not affect the boundary
triangulations; so, the following summarizing result holds.

Proposition 1. If K is a pseudocomplez triangulating an n-manifold
M™, and K' is obtained from K by a dipole move, then K' triangulates
M™, too; further, if the dipole move is an internal one, then 9K = 8K’

Our main result states that in dimension three, if the pseudocom-
plexes triangulating 3-manifolds are associated to 4-coloured graphs, the
first part of the statement may be reversed: K = K(I') and K’ = K (I"),
both triangulating the 3-manifold M3, are always equal up to dipoles (ie.
a finite number of dipole moves exists, yielding K’ (resp. K) from K
(resp. K')).

Up to now, we don’t know whether the whole converse of Proposition
1is true, i.e. whether an equivariant version of our Main Theorem holds.

We are now going to define a second set of graph-moves (called wound
moves), which is surely a useful tool for our proofs, but is not really
a “new” set of moves: in fact, in [Gg] - where the original definition
appeared - it is proved that every wound move on graphs representing
manifolds may be performed by means of a finite sequence of dipole
moves (see [Go: Prop. 5.7 and Corollary 5.8]).
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Definition 5. Let (T',v) € Gn with #V(8T') > 2, and let z and y be
two boundary-vertices of I W = {z,y} is said to be a wound of type h
(or, simply, an h-wound) involving colours cy,...,cp (c; € Ap—y, Vi =

1,...,h) iff:
i) Tye;n}(®) = Tye;my(y) foreveryie€{1,2,...,h};
ii) Tp(z) # I'v(y), with B= A, — {e1, 2, ..y cn}-

Definition 6. Let W = {z,y} an h-wound in I’ € G, and let T be the
(n+1)-coloured graph obtained by adding a new n-coloured edge between
" the vertices x and y of . Then, T’ (resp. T') is said to be obtained from
T' (resp. r ) by suturing (resp. by opening) the wound W ; finally, both
the process from T’ to ' and the process from ' to T are called wound
moves.

The third set of graph-moves we are going to define was originally
introduced in {Gz] with the aim of translating the well-known Alexan-
der’s stellar operations (see [A] or [G]], for example) into coloured graph
setting.

Definition 7. Let (T,7) € Gn, and let = be an a-residue (a € Ay,) of
T. The bisection of type (a,b) on = (with b € Ap_1 —{a}) is the process
yielding the following new graph (BT,P~) € Gp:

1) if & = (V(Z'), E(Z)) is a copy of the graph E = (V(E), E(T)),
then
v(er) =V () uV(E)

2) if E is a set of edges connecting every vertex v € V(Z) with its
corresponding vertex v’ € V(Z'), then

E(fT) = (E(T) - E(E())) VEE) VE;

3) By: E(BT) — A, is the edge colouring defined by

[ v(e) ifee€ E(T)

v(g) if e € E(Z') is the corresponding
of e € E(E) — E(Ew))

a if e € E(Z') is the corresponding
Of_é € E(E{b})

A b ifee E

Pr(e) = 4
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It is not difficult to check that, if (I',v) € G, represents the n-ma-
nifold M™, then (,BI‘,ﬂ v) represents M™, too. In fact - as pointed out
in [Go: paragraph 7] - if w is the a-labelled vertex of K (T) such that
K(Z) = lkd(w, K(T)), the pseudocomplex K (BI') associated to AT is
simply obtained from K (I') by performing a direct stellar operation on
every 1-simplex of K (E) having as end-points w (which is an a-labelled
vertex) and a b-labelled vertex; moreover, the vertex-labelling of K (8T)
agrees with the one of K (I') on every “old” vertex, but w (which results
to be b-labelled in K (') 1 ), and assignes label a to every “new” vertex.
In this situation, we shall sometimes say that K (8T) itself is obtained
from K (T') by bisection of type (a,b) around the vertex w.

Figure 1(a) shows the effect of a bisection on a particular 3-residue =
of a 4-coloured graph (T',y) € G3 (note that (T, ~) and (8T,?v) agree in
the not depicted parts), while Figure 1(b) shows the effect of the same
bisection on a single 3-simplex of K (I') containing the vertex w, with
K(E) = lkd(w, K(T)).

Fig. 1(a)

In fact, lkd(w; K (BT')) is represented by the b-residue =’ of AT.
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(w) (w)

Fig. 1(b)

Let now (T',v) € G, represent the n-manifold M™. Obviously, the
first baricentric subdivision K of K (T') is a simplicial triangulation of
M™; moreover, a canonical vertex-labelling on K may be easily obtained,
by assigning to every vertex v of K the dimension of the simplex o(v)
whose baricenter is v.

Definition 8. With the above notations, the (n+1)-coloured graph (f, ¥)
€ Gn associated to K with the canonical vertez-labelling is said to be the
first baricentric subdivision of (I',v) € Gn.

The following result shows the strict connection between baricentric
subdivisions and bisections.

Proposition 2. Let (I',y) € G, represent the n-manifold M™, and let
(T, %) be its baricentric subdivision. Then, (T,v) and (T, %) are equal up
to bisections, i.e. (I',) may be obtained from (T',7) by means of a finite
sequence of bisections.

Proof. Let V; (j € Ay) be the set of j-labelled vertices of the pseu-
docomplex K (T'); obviously, in K, every vertex v € V; results to be
0-labelled, for each j € A,. Thus, it is not difficult to check - by re-
membering the effect of a bisection on the pseudocomplex associated to
the coloured graph - that (I', 7) may be directly obtained from (T',~) by
performing the following sequence of bisections:

for increasing j = 1,2,...,n, do the j bisections of type (k, k —1) , with
decresing k = j,j —1,...,1, on every k-residue representing the disjoint
link of a vertex v; € V;.

.

Figure 2 illustrates the proof of Proposition 2 in the bidimensional
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case. In fact, the baricentric subdivision of a 2-symplex (with the canon-
ical vertex-labelling) is performed by the depicted sequence of bisections:

- bisection of type (1,0) around the vertex vy;
- bisection of type (2,1) around the vertex va;

- bisection of type (1,0) around the vertex v.

2 (v2)

2 1 0 (w)
1 1
—> — 4
0 1 0 0 0 0 0 0
1 1

(w) () (vo) 1 (v)
Fig. 2

3 Moves on simplicial triangulations of mani-
folds

In the present paragraph, K will denote a simplicial triangulation of
a PL n-manifold M™ (with possibly void boundary, if not otherwise
stated); as usual, K and Int K = K — 8K will denote the (possibly
void) boundary complez and the interior of K respectively.

Moreover, if A € K is an arbitrary simplex, we set: st(4;K) :=
{Ce K/3BeK, CCB, B2 A}lk(A;K)={CeK/CE€
st(A;K), CNA =0}

Let now introduce the notion of bistellar operation, which was orig-
inally defined by U.Pachner in [P], with slightly different notations.

Definition 9. [P] Let A # 0 be a k-simplez (0 < k < n) of K, such
that lk(A; K) is the boundary complex dB of an (n — k)-simplez B not

contained in K. Then, bistellar k-operation x(4,B) on K is the process
yielding the new simplicial triangulation of M™

x(4,B)K = (K —A%38B) U 8A*B

where Ly x Lo denotes the join of the two simplicial complezes Ly and
Ls. '
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Note that x(_Al’ B) = X(B,A) is a bistellar (n — k)-operation; thus, we
can say that two simplicial triangulations K, K’ are bistellar equivalent
if they can be obtained from each other by a finite sequence of bistellar
operations.

As far as closed n-manifolds is concerned, the above move is sufficient
to solve the equivalence problem; in fact, in 1986, U. Pachner proved
the following result, which is analogous to Alexander’s one about stellar
subdivisions.

Proposition 3. - [P]. K, K’ are simplicial triangulations of the same
closed n-manifold M™ if and only if they are bistellar equivalent.

Recently, the same universal property for bistellar operations has
been extended to triangulations of the same n-manifold coinciding on
their (non-void) boundary complexes.

Proposition 4. - [C]. Let K, K’ be simplicial triangulations of n-ma-
nifolds, with 8K = 0K'. Then, |K|,|K'| are PL-homeomorphic if and
only if K, K' are bistellar equivalent.

4 Main results

The present paragraph is entirely devoted to prove the equivalence cri-
terion for 4-coloured graphs representing manifolds.

Main Theorem Let (I',v) € G3 {resp. (I',¥') € Gs ) represent the
8-manifold M3 = |K ()| (resp. N3 = |K(I)| ). Then, M3 and N3 are
PL-homeomorphic manifolds if aad only if (T,v) and (I',7’) are equal
up to dipoles.

For, we need some preliminary results; the first one has the purpose of
linking together the subjects of the previous two paragraphs, i.e. moves
on simplicial triangulations and moves on coloured graphs.

Lemma 5. Let K, K' be bistellar-equivalent n-dimensional simplicial
complezes. If T(K) (resp. T(K')) denotes the (n+1)-coloured graph
associated to the (canonically labelled) baricentric subdivision K (resp.
K') of K (resp. K'), then T(K) and I'(K') are equal up to (internal)
dipoles.

Proof. Let us assume K’ being obtained by means of a bistellar k-
operation x(4,8) on K (with 0 < k < n). In other words (see the
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third paragraph), K (resp. K') contains a k-simplex A (resp. an (n-k)-
simplex B), such that st(A; K) = A « OB (resp. st(B;K') = B x0A).
Since 8(st(A;K)) = 0(st(B;K’)) and K —st(A;K) = K'—st(B;K'),
we are going to prove the statement by showing that the baricentric
subdivision of st(4; K ) may be transformed - by means of dipole moves
in the associated coloured graph - into the cone on its boundary.

First of all note that, if H is a (pseudo-)simplicial triangulation of an
n-manifold M™, then the (n+1)-coloured graph I' = I'(H) associated to
the canonically labelled baricentric subdivision H of H has the following
combinatorial properties (which are direct consequences of the particular
geometrical structure of H):

1) #V(f‘) = p (n + 1)!, where p is the number of n-simplices of H;

2) every {i,j}-residue of I" has length four, Vi, € {0,1,...,n = 1},
with j # i+ 1;

3) every {i,n}-residue of T has length four, Vi € {0,1,...,n — 2};

4) every {i,i+ 1}-residue of T has length six, Vi € {0,1,...,n — 2};

5) every {n — 1,n}-residue R of ' corresponds to a 1-simplex o(R)
of H and has length 2m, where m is the number of n-simplices
constituting std(o(R); H).

In particular, let us assume H = st(A;K) = A * 8B; since every
n-simplex of st(A; K) shares exactly one (n-1)-faces with eachone of
the other n-simplices of st(A; K), and since every three n-simplices of
st(A; K) constitute std(c; H), for some internal 1-simplex o of H =

- st(A; K), then property 5) turns to the following:

5’) every {n — 1,n}-residue of I" has length six.

Now, if 21,9, ...,E,_k4+1 are the i-residues of r (corresponding to
the n-simplices of H), and if e; (with 1 < ¢ < n — k) is an (arbitrarily
chosen) n-coloured edge of r connecting a vertex z; of Z; with a ver-
tex z; of 441, it is not difficult to check that the sequence of 1-dipole
eliminations {z;,z}}, for i = 1,2,...,n — k, induces the creation of an
h-dipole (h > 2) {w,w'} for every pair of n-adjacent vertices w,w’ in I".
Thus, by performing every such dipole eliminations, an (n+1)-coloured
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graph (T',7) is obtained, which contains no n-coloured edge, and has
the same boundary as I'2 : this obviously implies that the associated
complex H = K (') is exactly the cone from an inner n-labelled vertex
on the canonically labelled boundary of H (first baricentric subdivision
of H = st(A; K)).

The statement is now a direct consequence of the fact that st(4; K)
and st(B;K’') have the same boundary, and that bistellar operation
merely “exchanges” st(A; K) with st(B; K').

From now on, we restrict our attention to dimension n < 3; in this
setting, the following result shows how to “factorize” bisections by means
of dipole moves.

Lemma 6. Let (T',v) € G, represent an n-manifold M™, with n < 3,
and let (BT, ) be obtained by bisection of type (a,b) on a a-residue =
of I' (with a € Ay, and b € Ay — {a}).

We have:

i) if 2 is a regular graph, BT’ may be obtained from I' by means of a
finite sequence of dipole insertions;

it) if Z has not empty boundary, BT may be obtained from I’ by means
of a finite sequence of dipole insertions, followed by a finite se-
quence of wound openings.

Proof. For sake of notational simplicity, we will consider only the case
n = 3; on the other hand, the (simpler) bidimensional case has already
been handled in [CP: Prop. 5].

Let R1,R2,...,R,s be the (A3 — {a,b})-residues of the é-residue =
of I'; by construction, they exactly represent the 1-simplices of K (T') on
which a direct stellar operation is performed, in order to obtain K (8T).
Since b # 3 is assumed, it is obvious that = is a regular graph of degree
three if and only if every R; (1 < i < s) is a regular graph of degree
two. Moreover, since (T',v) represents a 3-manifold M3, the 3-residue =
represents either the 2-sphere $2 (in case = being a regular graph) or the

?In fact, every performed dipole has involved colour n and is, obviously, an internal
dipole.
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2-ball D? (in case E being not regular); thus, 8= - if not empty - is a con-
nected 2-coloured regular graph, representing the 1-sphere $! and con-
taining all the boundary vertices of =. In other words, if R1, Rs, ..., R;
(t < s) (resp. Rit1, Riyo,...,Rs) are the regular (resp. not regular)
(A3 — {a,b})-residues of E, and if z;,y; are the two boundary vertices
of the open path Riy; (for j = 1,...,s —t), then 9Z - if not empty -
consists of exactly one {b,c}-coloured cycle (with {c¢} = A — {a,b}),
having {z;,y; / 1 < j < s—t} as vertex-set, with z; c-adjacent to y;, for
every j € {1,2,...,s — t}, and y; b-adjacent to z,(;), p being a suitable
cyclic permutation of {1,2,...,s — t}.

Now, if (8T',2v) € G3 is obtained by bisection of type (a,b) on &,
it is easy to check - by making use of Definition 7 - that {y;-,:c;(j)} is
a l-wound in BT involving colour a, for every j € {1,2,...,s —t ~ 1};
moreover, the suture of those 1-wounds yields a 2-wound {y;_,, x;(t_ s)}
involving colours a,c. Thus, after suturing s — ¢t > 0 wounds, a new 4-
coloured graph (T, 7) is obtained, so that the (possibly boundary) vertex
w of K (T) originally represented by Z is represented in K (I') by a regular
b-residue =, whose (A3 — {a,b})-residues are R}, R}, ..., R, (copies of
R1,Ra,...,Ry) and R (obtained by connecting through n-coloured edges
the copies of Riy1, Rt42,...,Rs).

It is not difficult to prove that, since £ is a regular and planar
graph (representing $2), a finite sequence {v},w}},...,{v],w]} (with
l = (#V(E)—2)/2) of dipoles, all involving colour a, exists, whose elim-
inations transforms = into the standard 3-coloured graph consisting of
two vertices ( vj, wh, say). 3

Further, the particular structure of T' ensuresthat {v}, w}},...,
{v}, w]} constitute subsequent dipoles in T, too: for, note that, if &, w
are boundary vertices of =, then v, w may be a-adjacent if and only if
they are also 3-adjacent in T. Finally, it is very easy to check that,
after elimination of the sequence of dipoles {v},wi},..., {v],w]} and of
the 3-dipole {vg, wg}, the b-residue 2 disappears, and the starting graph
(T',~v) is re-obtained.

Hence, the statement results to be proved, by simply inverting the

3Note that, precisely in this step of our proof, the dimensional assumption is
essential: in fact, for n > 4, it is known the existence of n-coloured graphs representing
S™~1 which can not bé “reduced” by a sequence of dipole eliminations.
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whole process from (T,v) to (8,2 7).

Corollary 7. Let (I',v) € Gn represent an n-manifold M™, with n < 3.
If T' is the baricentric subdivision of ', then I' and ' are equal up to
dipoles.

Proof. By Proposition 2, we know that, if (T',y) € G,, represents an
n-manifold M ™, then its baricentric subdivision (f‘, 7) may be obtained
from (T, v) by means of a finite sequence of bisections of type (a, b), with
b # n; on the other hand, Lemma 6 ensures that, in the particular case of
dimension n < 3, every such bisection is equivalent to a finite sequence of
dipole insertions and/or wound openings. Finally, the statement follows
by remembering that wound moves on graphs representing manifolds are
nothing but compositions of finite sequences of dipole moves (see [Ga:
Prop. 5.7]).

We are now able to prove that our Main Theorem holds for 4-coloured
graphs having the same boundary; this will be the key-stone to prove it
in the general situation.

Proposition 8. Let (T',v), (I",7') € G3 represent the same 3-manifold
M3. If 8T = 8", then (T,~) and (I',~') are equal up to dipoles.

Proof. Let us consider the baricentric subdivision (I',7) € G3 (resp.
(I',3") € G3) of (T', ) (resp. (I',~")); since K = K([') and K’ = K(P')
are simplicial triangulations of the same 3-manifold M3, with 6K = 9K,
Proposition 4 ensures that K and K' are bistellar equlvalent Thus, 1f
(T,5) € G3 (resp. (I" ,7") € G3) denotes the baricentric subdivision
of (T,7) (resp. (I,7')), then Lemma 5 states that (I',5) and (I, %)
are equal up to (internal) dipoles. Now, a double use of Corollary 7
completes the proof: (T,7) (resp. (I',7')), (T,%) (resp. (I,3')) and
(T',7) (resp. (I",7')) are equal up to dipoles, and so (T,~) and (I, ")
are.
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Remark 1. The proof of Proposition 8, without the aid of an n-
dimensional result similar to Lemma 6 (which probably does not hold!),
yields quickly to the following statement:

Let (T, v), (I",~') € Gy, represent the same n-manifold M™. If 8T =
or’, then (T,v) and (I',7') are equal up to (internal) dipoles and
bisections.

Since both internal dipole moves and bistellar operations do not af-
fect the boundary triangulations, in the general situation it is useful to
know how to induce boundary moves on a manifold triangulation; ac-

tually, an indirect proof of the following result is already contained in
[CG, Lemma A and BJ.

Lemma 9. Let (A, )), (A',)) € Go_1 be equal up to dipoles. Then, for
every (T',7) € Gn with (8T,%~) = (A, )), there exists (I', ') € G, with
(81,2 4") = (A, \') such that (T,~), (I",7’) are equal up to dipoles.

Proof. Obviously, it is sufficient to prove the statement in the following
two cases:

case a) (A’,)') is obtained from (A, A) by a dipole elimination;

case b) (A’,\’) is obtained from (A, A) by a dipole insertion.

Case a) Let (A’,)) be obtained from (A, ) by eliminating the
h-dipole § = {Z,%} (1 < h < n —1) and let = (resp. y) be the bound-
ary vertex of (I',v) corresponding to  (resp. §). Then, the required
(I',~") € G, is simply obtained from (T',7) by adding a new n-coloured
edge between z and y (i.e. by suturing the wound {z,y}, according with
Definition 6).

For, let (I',7) be the (n+1)-coloured graph obtained from (T,7)
by adding four new vertices z’,y’,z”,y” and the following 2n + 2 new

edges: eg,...,e},_; between z’ and y’; e, ..., e} _, between z” and y”;
egf), . ,eff_)l between z’ and z”; egy), ey efly_)l between y' and y”, {®

between z and z’; e between y and y’, with colouring:
7™ (ef) = 3P (ef) = i 0<i<h-1
FM () = P () = 5 h<j<n
It is now easy to check that (T',v) (resp. (I',7’)) may be obtained

from (T, 7) by eliminating the dipole {2, 2"} of type n—h (resp. {z”,y"}
of type h) and the resulting dipole {y’, 4"} of type n (resp. {z’,y'} of
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type n). Since (8I",%') = (A’,\') is obviously verified, in case a) the
thesis follows.

Case b) Let (A’, \') be obtained from (A, A) by adding the h-dipole
¢ = {Z, 7} involving colours ci1,c2,...,cp € Ap_q within the (A,_; —
{e1,¢2,. .., cp})-residue Z of (A,)). Further, let (T',7) be the (n+1)-
coloured graph obtained by taking two copies Z’, Z” of Z, and by adding
them to (T',v) in the following way: if z (resp. 2/, 2”) is the vertex of
(T',7) (resp. Z’) (resp. Z") corresponding to the vertex z € V(Z), then
join each vertex 2’ € V(Z’) with the (boundary) vertex z € V(T') by
an n-coloured edge and with the vertex 2’ € V(Z") by n-h multiple
edges coloured by A,—1 — {c1,c2,...,cx}. Since, for every z € V(2),
{2/, 2"} is an (n — h)-dipole in (T',7), it is easy to check that (T',y)
may be obtained from (T,7) by p dipole eliminations (of type m, with
1 <m < n), where p = #V(Z).

‘On the other hand, (4T,°7) = (8I'%y) = (A,A), and a
dipole 6” isomorphic with § may be added to (T,7) within the
(Ap—1 — {c1,¢2,...,cn})-residue Z”, giving rise to an (n + 1)-coloured
graph (I",7’) with the required properties: (81",%4') = (A’,)’) and
(T, 7v), (I'",v’) equal up to dipoles.

Proof of the Main Theorem. Since it is known that dipole moves
do not affect the homeomorphism class of the represented manifold (see
[G2] or Proposition 1), one only implication has to be proved.

For, let us assume K (I") and K (I") to be (different) pseudosimplicial
triangulations of the same manifold M™. If 8T = 8I" (for example, if T
and I" are both graphs with void boundary), then Proposition 8 yields
the thesis. Otherwise, we will prove the statement (which is trivial
in dimension 1) by induction on dimension n (with n < 3). In fact,
inductive hypothesis (in the closed case) ensures the existence of a finite
sequence of dipole moves connecting 8T" and 8I"; by Lemma 9, a finite
sequence of dipole moves on (I',v’) exists, yielding a new graph (I'/, v")
with 8T” = 8I'. The thesis now directly follows from Proposition 8,
applied to (T',v) and (T”,~").

* |
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In order to derive a partial generalization of the Main Theorem to
dimension n, the following result is of use.

Lemma 10. Let (A, )), (A", )) € Gp—1, with A’ obtained from A by
bisections. Then, for every (T,v) € Gn with (8T,%v) = (A, ), there
exists (I',7") € Gn with (8TV,%+") = (A’,\') such that I" is obtained
from T’ by bisections.
Proof. Without loss of generality, we may assume (A’, \’) to be obtained
from (A, A) by a single bisection of type (a,b) on a d-residue = of A (with
a,b € Ap_1, a # b). Obviously, since (31",37) = (A, )), a a-residue =
of T' exists, such that 82 = E; hence, the required (I',7') € G, is
simply obtained from (T',7) by bisection of type (a,b) on E. In fact, if
w is the a-labelled vertex of K (T') such that K (Z) = lkd(w, K (T')), we
know that the pseudocomplex K (I') associated to I is obtained from
K (I') by performing a direct stellar operation on the set E(, )(w) of 1-
simplices of K (é) having as end-points w and a b-labelled vertex; on the
other hand, since w is also the a-labelled vertex of K (A) = 8K (T') such
that K (Z) = lkd(w; K(A)) = lkd(w; 0K (T)), the 1-simplices of K (Z)
on which a stellar operation is performed in order to obtain K (A’) are
nothing but the boundary ones belonging to E(q p)(w).

The thesis now follows by finite iteration on the number of bisections
involved in the process.

Remark 2. A proof similar to that of the Main Theorem, with the aid
of Remark 1 and Lemma 10, yields quickly to the following statement:

Let (T,v) € Gn (resp. (I',7') € G, ) represent the n-manifold M™ = -
|K(T)| (resp. N™ = |K(I")| ). Then, M™ and N™ are PL-homeomorphic
manifolds if and only if (T,~v) and (IV,v') are equal up to dipoles and
bisections.
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