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The number of conics tangent to five given
conics : the real case.
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Abstract

It is classical result, first established by de Jonquitres (1859),
that generically the number of conics tangent to 5 given conics in
the complex projective plane is 3264. We show here the existence
of configurations of 5 real conics such that the number of real
conics tangent to them is 3264.

0 Introduction
The following is a classical problem in enumerative geometry :

Given 5 generic conics, find the number of conics tangent to them.

In 1848 J. Steiner believed to have found that there are 6°. In 1859,
E. de Jonquieres found the correct answer : 3264; however, he did not
publish his result because it was in contradiction with Steiner’s, and
because M. Chasles didn’t trust him. Finally, Chasles established the
correct answer in 1864, and Th. Berner again in (1865) (cf. [6], page
268).

The problem has been reworked more recently by Fulton-McPherson
[2] and Procesi-De Concini [1] (see also [3], example 9.1.9 on page 158).
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We shall prove the existence of configurations of 5 real conics that admit
exactly 3264 real conics tangent to them at real points. By a real conic
we mean a conic whose equation has real coefficients and by the exact
number we mean that there are no multiplicities to take into account :
each solution to the problem is a smooth conic which is simply tangent
at exactly 1 real point of each of the 5 given conics.

The configuration of 5 conics will be found as a small deformation of
the 5 degenerate conics constituted by suitable pairs of lines crossing at
the vertices of a regular pentagon in an affine plane. By taking different
pairs of lines, it is possible to find configurations of 5 conics with a
number of conics tangent to them smaller then 3264, but we do not
investigate this any further here.

The main ingredient that we shall use to control the deformation in
the real case is theorem 8, which might have some interest by itself. It
says that if the derivatives of a C*° map F' at some point xg coincide up
to order 2 with those of the map (z1,...,zx) — (z3,...,z2), then there
exist regular values near F'(z¢) with 2% preimages near z.

We have been informed that W. Fulton had realized already in 1986-
87, using a similar approach, that there exist 5 real conics with 3264
real conics tangent to them.

1 First contacts

Most statements of this paragraph will be made over R, but they remain
valid, as well as their proofs, over .

Let us denote by Q (respectively Q,) the space of all bilinear sym-
metric forms (respectively the bilinear symmetric forms of rank r) on
R2. Denote by PQ the projective space of Q and by PQ, the locally
closed subvariety of IPQ corresponding to Q,. Let P? = PR? be the
real projective plane.

Geometrically, P Q is the space of all (possibly empty) real conics of
P2 P Qs is the set of all smooth conics, PQs is the set of all singular
conics consisting of 2 distinct lines, and P Q; is the set of all double
lines.

For ¢ € Q\{0} (resp. = € R>\ {0}) we denote by [g] (resp. |z])
its image in PQ (resp. IP?); for simplicity, we will sometimes drop

5
the brackets [ |. Consider the subvariety W of (PP Q)° x (PZ) x PQs
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defined by:
W= {([q1]1 [q2]7 Ty [q5]1 [11]1 T [1:5]’ [q]) € (PQ)5 x (P2)5 X PQ3 I
[x5] # [zj],i # j and the following equations hold, i =1,---,5:
(Dgi(zi, zi) = 0, (I)g(zi, z:) = 0, (IM)gi(zs, 1) A gz, -) = 0}
Note that in fact the equations ¢{(z;, z;) = 0 and gi(xi, z;) = 0 imply al-
ready that gi(zs, ) Aq(zi, -) vanishes on {z;} A R® and therefore equation
(III) can be viewed in (R3 AR/ {z:} A R?’)* ~ R. Alternatively, if we
choose z}, ! € R such that their images in R>/[z}] are linearly inde-
pendent, then in a neighbourhood of ([g1], - - -, [gs], [zY], - - -, [«9],[q)) e W
equations (III) can be written :

(gi(zi,") A a(zi, ) (24, 28) = qiles, zi)a(zi o)) —qilwi, 27 a (i, 27) = 0

The conditions defining W mean that the 2 conics defined by g;(z) =
0 and ¢(x) = 0 are tangent at [z;]; if [z;] is singular on ¢;, it means simply
that z; € ¢ N ¢;. In order to simplify the notation, we shall say that z;
belongs to ¢ and ¢;, or z; € ¢ N ¢;, and that ¢ and ¢; are tangent at z;.
We shall denote by (q)sing and (g)reg respectively the singular and the
regular part of q.

Denote by

F:wW — (PQ)°

5
the restriction to W of the natural projection (P Q)° x (P2) x P Q3 —

(IPQ)5. The problem is to find the maximal number of elements of
F~(u), for u € (PQ)® belonging to a suitable open, dense subset U C
(PPQ)° that we will define in this paragraph.

Remark. The image of W by the projection
5
p: (PQ)° x (P2) x PQ3 — (PQ)® x PQs

is the set of ([q1], ..., [gs], ¢) such that ¢ is tangent to ¢;, i = 1,...,5 at
some unspecified point. Denote by Wy the locally closed subvariety of
(PQ)°x P Q3 of the ([q1], - . -, [gs], [g]) that are such that the intersection
of gand q;, i = 1,...,5, consists of 3 distinct points, at 2 of which ¢ and
g; are tranversal, and the third (necessarily a real point) at which ¢ and
g; are tangent. Denote by Fp: Wg — (P Q)5 the natural projection; our
genuine problem is to compute the cardinality of the fibers Fyy’ Y(u) for
u in a suitable open subset of (PP Q)°.
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Clearly, Wy is open and dense in p(W) and p induces a bijection
from p~1(Wy) N W to Wo. It follows from Proposition 1 below that
W and (PQ)° have the same dimension, and so there the open subset
U = (PQ)°\F(W\p~1(Wy) is non-empty and p induces a bijection:
F~Y(u) = Fy(u) for u e U.

This justifies that we concentrate on the study of the generic fibers
of F rather than Fj.

In fact we shall denote by & an open set in (PQ)5 that will shrink
during this paragraph, as we add more and more genericity conditions.

Recall that for [z] € P™ = P(R™"!) the tangent space Ty P" =~
R™1/[z]; we shall write Z for an element of Tz P", or for some of its
representatives in R™.,

Proposition 1. The wvariety W is smooth, of dimension 25. For
w = ([gi], [xs], [g]) € W, the tangent space T,W is the set of
(31,---,95, Z1,---,%5,q) such that:

M 2gi(zi, T:) + (i, zi) = 0
() 2q(zi, %) + @(zi, z:) =0 fori=1,...,5.
) @iz, ) + (@i, ) A (=i, -) + iz, ) A @G, -) +9(Fi,-)) =0

Proof. Let w = (g1}, [g2], - - -, lg5), [x1], - - - » [z5], [g]) € W and let us take
the following derivates of the equations defining W at the point w :

o, o . am_. _ .
a—qi(q.-) = gi(zi, z:) az,-(z‘) =2q(2i, %) Pa. (@) = Tz, INa(zs, ) -
Choose z}, z! € R® linearly independent in R3/[z;] ~ T[xi]lﬂ, i=
1,...,5. It is readily checked that the linear map

(@3, Ti) = (?I'i(zi, :),2q(z4, Ti), (3i(zs, -) A qli, -)) (s, x”)i:l,...,ﬁ

is surjective, which shows that W is smooth of dimension 25, and that
the projection W — PP Q3 is a fibration.

The second assertion follows by taking the total derivatives of the
equations I, IT and III defining W
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We now introduce a first series of genericity conditions on
(la1l,---,lgs]) € (PQ)°. Although the gi’s are real conics, the lines
and points mentioned below are taken into account even if they are not
in P%(R) :

(G1) : V distinct 4,5, k, ¢; N g; Ngr = 0 (in P(C)).
(Gy1) : Vdistinct i, j, k, g;, gjand g have no common tangent (in P%()).

(G2) : V distinct 4,3, k,¢, any common tangent to g; and g; does not
contain points in gx N g (in P%()).

(G3) : V distinct 4, j, k, £, m, if dr.s is any tangent common to ¢, and g,
we have that d; j Nde N gm = 0 (in PX(0)).

(G3) V distinct i, j, k, £, m and Vz, 5 € grN g5 the line through zi; and
Zk,¢ is not tangent to gp,. (in P2(¢))

(G4) : Vi # j, gi and g; intersect transversally (in P?(€)) at pomts that
are smooth both on ¢; and a5

In other words, the configurations represented in figure 1 are excluded
(as usual, we draw a real picture that represents objects in P2(€)).

Figure 1. Configurations that we don’t want in Section 1.
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Let U4 C (PQ)° be the set of ([qi],...,[qgs]) satisfying the above
genericity conditions. It is readily venﬁed that U is a Zariski-open,
nonempty subset of (PP Q)°. Let

W(u) = {([q1]1 Ty [95]1 [1'1]7 R | [1'5]1 [Q]) ew | ([q1]7 T [Q5]) € u}

Proposition 2. F : W(U) — U is proper

Proof. We will use the space P PO of complete conics (see [4], example
22.27, page 297). Recall that PQ is the closure in PQ x P Q of the set

{(la) [d']) € PQ3s x PQ | ¢’ is the dual of ¢} ;

In fact, the natural projection @ — PQ is the blowing up of PQ
along PQ;. Set theoretically, P Q consists of pairs [q], [¢'] where

o [¢'] = [g] if [g] is of rank 2 or 3.

e in the case when [g] is of rank 1, [¢/] consists of a pair of lines

W
(distinct or not) of P~ which are the lines of IP? going through
one of two points (distinct or not) of [q].

—— ~ 5
Denote by W (U) the closed subvariety of (PPQ)5 x ( 2) x (PQ)°x

(ﬁQ) X PQ which consists of the w = (([g4], [zi], [43])i=1,... 5, ([g], [¢]))
such that:

(1) (q1)s---.lgs]) €U

(2) zi €4

(3) gi(zi,y) = q(zi,y) =0, Vy € ¢;
(4) ¢'(¢s,8:) =0

fori =1,...,5. Consider the commutative diagram:

wu 5 W (U)

FN 7 F
u
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where F and ¥ are induced by the natural projections; now Fis proper.
Therefore it suffices to show that the genericity conditions defining &
imply that ¢ is an isomorphism. But the lemma below implies that if
w € W(U), then ¢ € PQ3, and so the map

(lgil: [=il, [q]) = (lgil, 23], Tzl (lal, [d])
is an inverse ;)f .

Lemma. If & = (([gi}, [z, [d)izr,...5. ([a], [47) € W (U), then q €
PQOsj.

Proof. Indeed, if ¢ € PQy, one of the conditions (G;), (1), (G2) or
G3 is violated. If ¢ € P Q;, the tangents ¢; to ¢; at z; belong to one of
the sheaves of lines defined by ¢/, but then one of the conditions (G3),
(G1), (G2) or Gj is violated .

Proposition 3. The fibers of F = F(U) : W(U) — U are finite.

Proof. Consider the complexification Fp: W (U)p— Upof F and the
projection p : W(U)p— (PQ3)g . Let u € Up; since Fp is proper and
(PQ3)p is an affine variety, p(Fi,l(u)) consists of a finite number of
points. Moreover, pIF‘E,1 (u) — (P Q3)ghas finite fibers because of (G4).

Here comes a genericity condition that we will need later on. Let
k € {1,...,5} and denote by Vi the subvariety of W (i) consisting of
the (gi], [z, [g]) such that the order of contact of ¢ and ¢ at zj is at
least 3. For example, let [gx] € PPQ2 and let x; be the singular point
of gx; if ¢ is tangent to one of the 2 lines through z; that constitute g
then the order of contact of ¢ and gi at zi is 3 if ¢ is smooth (see figure

L

{
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2).

Figure 2. The order of contact is 3.

Since W () and U have the same dimension, F(Vx) € U and F (Vi)
is closed, since F is proper. Our last genericity condition is the following:

(G5) : ([qll’ cee [q5]) ¢ Uk:l,...,SF(Vk)‘

We shall denote again by U the set of ([q1], - -, [gs5]) that satisfy all
the genericity conditions introduced so far.

Notice that U contains configurations of the form ([g1],-- -, [¢5]) with
¢i € Q2,%i = 1,...,5. Indeed, there is no problem in choosing ul =
4., qg)l ¢) € PQy, i=1,...,5, satisfying conditions (G1) through

(G4) and Gy, G3. For some k € {1,...,5}, let y denote the singular
point of qg. Counsider

F ) = {20, 2], a) € W) | 2k = wi )

this is a finite set which depends only on yj, not on gx. Therefore, we
can deform u? into v = ([q1], ..., [g5]), where ¢; = q? for i # k, and gy is
singular at y, but for all (u, [z4], [g]) € F~(u) none of the two distinct
lines composing gy is tangent to [g] at zx = yk, that is : u & F(Vi).

2 On the singularities of the map F

Throughout this paragraph we shall assume that u € U.
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Let w = (u, [zi], [q]) € F~*(u) and

s =s(w) = I{xi |zi € (q‘)sing}l

where | X | denotes the cardinality of X. We shall see that the behaviour
of F near w essentially depends only on s(w).

Proposition 4. Let s € {0,...,5} and assume that z; € (gi) sing for
i < s and z; € (gi)reg for i > s. Then the projection

(F1,.--,%5,8) = (T2, ..., Fs)
induces an isomorphism
¢ : Ker(dFy) > {(ZF1,...,%s) | ¢(zi,-) N i(Fi,-) =0,i=1,...,s}
If 7; € Tiz 9 \ {0}, then

Im¢ = {(El"":f-?) IQi(TiyE‘i):O,'iZ 1,...,8}

Corollary 5. dimKer (dFy,) = s(w)

Proof. Indeed, since g;, i = 1,...,s consists of 2 distinct lines, the
linear map
T[mi]P2 - R , Ti— q(r,T;)

has a kernel of dimension 1.

We give now a geometric description of Im ¢. Let PR[IM denote the
set of lines of PR? through [z;]. Let us recall how two lines £,¢" €
PR[IZ‘,] define a polarity among pairs of lines of PR[lzi]. Let a be a
homogeneous 2-form in 2 variables whose zeroes are £’ and ¢"; if v,w €
R?\ {0} are such that a(v,w) = 0, we say that the line through v is
polar to the line through w with respect to the two lines £/, £”. Choose
7; € Tizq \ {0}; then ¢;(Z;, 7:) = 0 for (Z1,...,Z;s) € Im¢. This means
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that T; must lie on the polar line to T},,)(¢) with respect to the 2 lines
through [z;] defined by g¢; (see figure 3).

Figure 3. Geometric interpretation of the kernel of dF,.

Proof of proposition 4. According to proposition 1, Ker (dF,,) is the
subspace of (@i:l,...,s T[Zilﬂﬂ) ® Tjq P Q defined by the equations:

@ qi(z:, ;) = 0
(4) (11) 2¢(z4, i) + G(zi,z:) = 0 i=1,...,5

(III) qi(Eiv ) A Q(xi9 ) + qi(wia ') A (a(x'iv ) + q(fl, ')) =0
For i < s, since g;(z;,-) = 0, this set of equations is equivalent to

(1) 2q(x;, %) + Gz, x:) = 0
(B) ' { gy q:](fi, A q(;],-, )=0 tss

and for i > s there exist scalars \; such that ¢(zi,-) = Aigi(zi, -). There-
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fore (A)(I) implies that g(z;,Z;) = 0 and the set of equations becomes:

0y) qi(xi, %) = 0
(€) "y o(zi,z:) =0  i>s
) gz, ) A (a(Zi,-) + 3z, <) — Xigi(Ti,-)) = 0

Equation (B)(I1I) shows that ¢ is well defined.

¢ is surjective. Let T; € T[,,‘,]P2 be such that g(z;,-) A ¢i(Zi,-) = 0 for
¢ < s. Since ¢ is non-singular, three of the z;’s are never aligned and so
there exists § € Q such that

_ ~2q(zs,z;) if i<s

q(@i @) = { 0 if i>s
We choose T3, ¢ > s, such that (C)(I) is satisfied. Then T; = £;- i, where
7; is some fixed non zero element in T|;,)q and §; is a scalar.

We proceed now to choose £; in order to satisfy (C)(III). Since the
kernel of g(z;,-), which equals the kernel of ¢;(z;,-), is generated by z;
and 7;, we have to choose £; in such a way that ¢(%;, -)+3(zs, )~ Xigi(Zi, -)
also vanishes on z; and on 7;. It clearly vanishes on z;; now g¢;(ri, 5) = 0
and q(7;, ;) # 0. We may therefore take :

€ = _(xi,mi)
o g(mi )
¢ is injective. If T; = 0, i < s, then it follows from (B)(II) that

q(zi, z;) = 0 for i < s and by (C)(II) g(z4, z;) = 0 for i > s. Therefore,

g and g have the 5 distinct points [z;},..., [z5] in common, and no three

of these are aligned because ¢ is non-singular, and so § = 0 in TjgPQ.
Now it follows from (C)(III) that for i > s

ai(zi, ) A (9(Fi,*) — Aigi(Zi,-)) = 0
and therefore there are some scalars pu; such that:
o 9(Zi, ) = Xiqi(Fi, -) + pigi(i, -)

Since ¢i(z;,T;) = 0 and z; ¢ (Qi)sing for ¢ > s, T; belongs to one of the
2 distinct lines that constitute ¢;, say £;, and therefore ¢i(zi,7i) = 0.
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Replacing the dot by Z; in © shows that ¢(z;, 7;) = 0. But ¢N ¢} = {z;},
therefore 7; = 0 in Tj,, P>

Since g is non-singular, g(z;, -) A qi(Zi,-) = 0 is equivalent to say that
¢i(Zi, -) vanishes on the kernel of g(z;,-), which is generated by 7; and
z;. Therefore :

g(zi,-) A qi(Zs, ) = 0 & gi(zi,73) = 0
=

We want now to study the second derivative of F. Recall that for
a C® map G : X — Y between C*® manifolds, the second intrinsic
derivative, first introduced by Porteous [5], is the linear map

é d’G : Ker (dG) ® Tz X — Coker(dGy)

which is obtained from the second derivative at = of G written in local
coordinates. If G: R" — RP and h: U — R™, H™!:V — RP are local
diffeomorphisms on R™ and RP respectively, where U C R™, V C RP,
h(0) = z, H71(0) = G(z), then

d* (HGh)o = dHg()(d*Gz(dho,dho)) + dHg(z)(dGz(dho))
+ d*Hgz)(dG2(dho), dGx(dho))

from which it follows that the linear map d25x : Ker (dG;) @ T,R™ —
Coker(dG,) is affected only by the linear part of the local diffeomor-
phisms k and H. This shows that the linear map of & is well defined.

Let now L1, Lo and L3 be open sets in R™!, R™ and R™ respectively
and let ® : Ly x Lo — L3 be C*® and assume that 0 € L3 is a regular value
of &. Set W = ®71(0) and let F : W — L; be the map induced by the
projection on the first factor. We want to express the second intrinsic
derivative of F in terms of the derivatives of ®. Denote by %(w) and
%%(w) the derivatives of ® in the direction L; and Lg respectively at
the point w = (w1, w2).

Lemma 6. The derivative g;%(w) induces an isomorphism:

6 : Coker(dFy,) =, Coker (—{—’g(w))
dwa
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We have a commutative diagram:

Ker(dFy) ® TuW %3¢ R™
| d%Fy, !

Coker(dFw) (—_~1)'0 Coker ( g%(w))

from which dz'ﬁw can be expressed in terms of the derivatives of .

Proof. The fact that 6 is an isomorphism follows easily from the fact
that ® is a submersion and from the definition of F'.

For the commutative diagram, let h = (hl,h2) :U—-W CLj X Lo
be a local parametrisation of W, h(0) = w. Since ® - k = 0, we have:

d°®y(dho, dho) + d®u(d?ho) = d°®y(dho, dho)
%
¥ e ()(d2ho)+ (W)(d2ho)“

and therefore, for Z; € ToU, i = 1,2, and w; = dho(T;) :
ad 0P
d*® (w1, we) = 6w1(w) (d ho(zl,zg)) mod Imaw2 (w)

Since h! = F - h, d?h}(Z1,%2) = d2Fy(dho(Z1), dho(Z2)) + dFy(d%ho(Z1,72))
and so :
d2® (@1, T2) = —8—q)-(w) (d Fu(dho(Z1), dho(l‘z)))
—-—(w) (ded ho(fl,fz))
= ——-a—q—)—(w) (d Fw(wl,wg)) mod Im a—(w)

from which our assertion follows.
]

We come back to our map F : W(U) — U. Let L; be an open subset

5
of U C (IPQ)%, Ly an open subset of (P2} x PQ3 and L3 = R'®; we
assume that L; and Lo are contained in products of affine open sets, so
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that we have explicit representatives for ([g;], [zs], [q]) € L1 X Lo, and
therefore it makes sense to write the map:

o LyxX Ly— L3, (IQi]a [xi]1 [Q]) =
((Qi(fci, $i))i=1,...,5v (g(z, xi)),':l,...,s(‘h(“’iv ) A gz, ‘))i=1,...,5) .

Note that because the projective spaces are replaced by affine spaces of
the same dimension, we can also look at ¢; and ¢ as non-homogeneous
polynomials of degree 2 on R2. Their derivatives at z; € R? are linear
maps: R? — R, and if gi(zi, ;) = q(x4, i) = 0, the condition d(g;)z; A
dgg, = 0 is equivalent to g;(z;, -)Ag(zs, <) = 0. We know from proposition
1 that 0 € RS is a regular value of &.

Recall that we assume that [g] € PQq, i =1,...,5, z; €
(q,-)siIlg fori=1,...,5 and z; € (gi)reg fori =s+1....,5. Forw =
([gs), [z4}, [4]), we have that dim Ker (dFy,) = s, and so dim Coker (dF,,) =
dim Coker(a%(w)) = s. Since

%
—672(10)(51, . .,55,6) = (ql(zl,fl), - ,Q5(.’E5,E5),. . ) = ‘0, . ,0,*,. .. ,*)

S

the first s coordinates of R'® represent Coker (38%(10)) and so the re-
striction of the second intrinsic derivative of F to Ker (dFy)®Ker (dFy),
that we still denote by d2ﬁw, can be identified using Lemma 6 to the
bilinear map:

Ker (dFy) @ Ker (dFy) RrR® |, (z1,...,%59) ® (F1,-.-,%5,9
(

—

= _1) '(ql(.‘%‘l’xl)v""qs(x-”xs))

Recall from Proposition 4 that if (z1,...,75,7) € Ker (dFy) \ {0} then

q(zi,-) A qi(ZTi,-) = 0 for i = 1,...,s. If in addition ¢;(Z;,7;) = 0 for

somei=1,...,s, then Z; € (¢;)reg and so the tangent line to q at z; is

a component of ¢;, which is excluded by the genericity condition (G5).
In conclusion, we have proved the following result:

Theorem 7. Let u € U N (PQ2)° and w = (u,[z1],...,[zs],[q]) €
F~Y(u); assume that z; € (‘Ii)sing for i < s and z; € (gi)reg for i > s.
Then:

e dim Ker(dFy) = s = dim Coker (dF,,)
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e Let (z1,...,%5,9) € KerdFy, so that qi(Ti,7i) = 0, for 7; €
T[n](‘]): i=1,...,s; then
dQﬁw(Ely ey X5, 43 %15 - ’55’6) = (—1)'(91(53'1,51), ey qs(i'_s, —fs))

and ¢;(T5,Ti) # 0 forz; #0,i=1,...,s.
=

We will show in the next paragraph that the particular properties of
the derivatives up to order 2 of F imply that there exists u’ near v with 2*
non singular points in its fiber near the point w, where s = dim Ker dF,,.

3 A deformation theorem

We shall use the euclidean distance on R™; B(0, r) will denote the open
ball of radius r centered at 0.

Theorem 8. Let f:Q — R", 0 € & C R" open, f(0) = 0, be a C*
map. Let s = dim Ker(dfg) and assume that

d?fo : Ker(dfo) ® Ker(dfo) — Coker (dfo)

is the product of s quadratic forms of rank 1 with transversal kernels;
that is, for a suitable choice of basis of Ker(dfo) and Coker(dfp) we can
write:

for (ah...,aa), (B1,---,Bs) € Ker(dfo) ,
d2f0 ((alv ey as)v (ﬂl) o 3ﬁ8)) = (alﬂl, R aasﬂs)

(1) After a change of coordinates in the source and target, f can be
written :

F@1y . zn) = (22, .., 2 Torts- -1 Zn) + 9(T15- .-, Tn)
Jor |lz]| < 1, where g: B(0,1) — R?® satisfies:

8%y
az,-a:cj

a
9(0)=0, =2(0)=0,i=1,...,n, (0)=0,i,j=1,...,s.
6:::,-
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(2) In the coordinates of (1), let yo= (1,...,1,0,...,0). There ezists
e —’

8
5 > 0 such that for any €, 0 < /e < &, the equation f(x) = eyo
has ezxactly 2° solutions in the ball centered at 0 of radius v2es, at
which the jacobian of f is non zero.

Proof. (1) is a consequence of the hypothesis on d2fo.

Since f(z) = eyo implies 2541 = ... = 2, = 0, we might as well
assume that s = n.

We have that for t €] — 1,1], g(tz,...,tzs) = t3gi(z,t), where
91: B(0,1)x] — 1,1[— R?® is C*. Let

oz, t) = f(tz)/t? = (z3,...,22) + toi(a, t)

Set v = 81 ; the equation ¢(z, 0) = v-yo has 2° solutions €2, i = 1,...,2°,
of the form (£+/v, ..., +/v), that lie in the ball B(0, 5), and %‘é({i ,

invertible. It follows from the implicit function theorem that there exists
& > 0,7 > 0 and 2° functions &(t) :] — &',6'|— B(&,n) C B(0,3),
i=1,...,2% £(0) = €, such that

for t| < &',z € U B({?,n), #(z,t) = vyo <= Ji such that z = £(t)
i=l,...,2°

and gf({,(t ) is invertible. Since ¢ (B(0,1) \ Ui=1,...22B(€?, n),0) does
not contain ryg, there exists §” < &' such that for [t < 6", vyo ¢

(B(O 5) \ Uiz, ,QsB(Ez, 1), ) and therefore :

1
for |t| < 8", flz|l < 3 #(z,t) = vyo +=> i such that =z = &(t)

Now
f(z) =eyo <= ¢ (\/—?—V, \/E/V) = vyo

If we set 6 = %, then

Ve < § e y/e/v < 8" and H < =& |z < V2es
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Our assertion follows at once

Figure 4. If we deform g; to ¢} = ¢; + ¢ in such a way that g] appears in
the sector not containing TJ,,)q, we can guess that there are 2 conics
near g tangent to gj.

Let us sketch how we will use this theorem to calculate the cardinality
of a maximal generic fiber of the map F of paragraph 1. Let u €
UnN(PQ2)5 so that u = ([g1], ..., [gs]) where g; is a degenerate conic
that consists of 2 distinct lines meeting at a point [y;]. For s € {0,...,5}
we set '

Flu)s= {w € F1(u) | dimKer (dFy) = s}

We restrict the equations g;, i = 1,..., 5 to some affine chart on P2 con-
taining [41], ..., [vs], that we identify to R2. For w € F~!(u),, perhaps
after renumeration, w = ([v1], .- -, [Us], [Zs+1], - - - [z}, [gi)s - - - [gs]. L))

Recall that if (Zy,...,75,9) € KerdFy, then Z; is polar to T}, ¢ with
respect to g;, and so Z; and Tjy,)q lie on different components of the
complement of g;, for i = 1,..., s; if we choose the equations g; in such a
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way that ¢;(Z;, T;) > 0, or equivalently g¢;(7;, 7;) < 0 for 7; € Tyy,q, then
it follows from theorems 7 and 8 that if we replace g; by ¢} = gi+¢,e > 0
small enough, then F~1(v'), v’ = (¢},..-,q} gs+1,---,gs) will have 2°
points in a neighborhood of w. This can be confirmed intuitively, be-
cause then g; will have 2 sheets near T}, q (see figure 4).

Remark. It can be shown in fact that F' can be written locally, in the
neighborhood of a w such that dimKer (dFy) = s, as (t1,...,tN) —
(¢3,...,t2,ts41,...,tN). However, this cannot be detected from the
properties of the derivatives of F' at the point w, as shows the example
(t1,t0) > (t1 + t2%+1 42).

The next problem is that if F~1(u) = {wy,...,w;}, we will have to
find a deformation u’ as above,valid for all the wy,...,w;. This means
that whenever ([z1],...,[zs], [q1],---, [g5], [g]) € F~1(u) and [z;] = [vi],
then ¢;(7;,73) < 0 for 7; € T}y, 1q (we will do this in Section 5). Then we

will have : ;
lF‘l(u')I =32 |F Y (u)s
s=0

Finally, there are (2)25“" ways of choosing a subset I C {1,...,5} of
cardinal s, and 5 — s lines, one among each pair of lines that constitute

the ¢;’s. Therefore
s

where n, denotes the number of conics passing through s points and
tangent to 5 — s lines. The number n; depends on the mutual positions
of the s points and the 5 — s lines and will be determined in the next

paragraph.

!F—‘l(u)s

4 Basic enumerations

Given a point [z] € P? and a line £ C P2, we can define the 2 following
divisors in P Q:
Dy={lgl € PQ|z € q}

D¢ = {|g] € PQ| q is tangent to ¢}



The number of conics tangent to five. .. 409

The first divisor is a hyperplane, and some properties of the second are
given in the following easy lemma, that we leave to the reader :

Lemma 9.

(1) D¢ has degree 2

(2) (Dl)sing ={qlgDt}~ I32

(3) ifqge (Dg),.eg and [z] = ¢N ¢, we have:
TiqDe = {[d] | 3(=) = 0}
| |

We introduce now genericity conditions on the choice of s points

. . 2 2\% 5—s8
and 5 — s lines in PP*: we define Q, C (P ) X (P ) as the set of
([z1),-- -, [zs)s Ls+1, - - -, £5) that satisfy:

(1) 3 among the [z;]’s are not aligned (in particular, [z;] # [z;] for
i # j)-

(2) 3 among the ¢;’s do not go through a same point (in particular,
£; # ¢; for i # j).

(3) Vi,jzi ¢ ¢

(4) Vi1 # i2, j1 # j2 any line through z;; and z;, does not go through
£, 0Ly,

(5) V distinct i1, 19,i3,i4 and Vj the intersection of the line through
[z,] and [zj,] with the line through [z;,] and [z;,] does not belong
to ¢;.

(6) V distinct ¢;,12,13,i4 and V j, z; does not belong to the line through
£;, N4, and £;; N £4,.
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In other words, the configurations shown in figure 5 are not allowed.

Figure 5. Configurations that we don’t want in Section 3.

Lemma 10. Let ([z1],.--,[zs),€s+1,---85) € Qg and [g] € Dz N
«eeN Dy, N Dy, N...N Dgs. Then [q] ¢ PQ2 and if l[q] € PQs,
Dzyy---yDazyy Diypys - - - Dis intersect transversally at [q].

Proof. Assume that [q] € PQg and let [y] be its singular point. Then
the genericity condition (1) implies that s < 4. Any tangent to g goes
through y, and so condition (3) implies that [z # [y}, i =1,...,s, and
condition (2) implies that s > 3.

If s = 3, condition (1) or (4) is contradicted, and if s = 4 condition
(1) or (5) is contradicted.

Now let [q] € PQs; then by lemma 9 (2) [q] is a smooth point of
each divisor Dg,, D¢; and the intersection of the tangent spaces of the
divisors at [g] is ‘

(1€ TPQ | a(z1) = - = 4(zs) = Tyars) = -+~ = 2(ys) = 0}

where y; = ¢ N ¢;. Conditions (1), (2) and (3) imply that the points
[x1]..-,[zs], [ys+1);---,lys] are 5 distinct points on g, and therefore 3
of them are never aligned. But there is exactly 1 conic going through 5
points, 3 of which are never aligned. |
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Let

Va = {(([xllv-"y [$3],£3+1,...,£5), lq]) e st
PQ3|q€ Dz N...NDz,NDyg,,, N...N Dy}

Proposition 11. The variety V; is smooth and the natural projection
w: Vs — )5 is a proper submersion with finite fibers.

Proof. The facts that V, is smooth and that = is a submersion follow
from lemma 10.

If in the definition of V; we allow [¢] € PQ , the corresponding
projection 7 is obviously proper. Lemma 10 implies in this case that
g ¢ Qo, and if s > 3 the genericity condition (1) implies that ¢ ¢ Q).
Therefore = is proper for s > 3. The case s < 2 is obtained by observing
that associating to a conic its dual induces an isomorphism Vg >~ V5_,.

a
Corollary 12. The map
Q=N , wr lﬂ“l(w)l
is locally constant.
|

We compute now |r~!(w)]| for various connected components of €2,.
By applying our results to the dual conics, the cases s = 3,4,5 will be
deduced from the cases s = 2, 1, 0 respectively.

First of all, we compexify the situation. Then it follows from lemma 9
(1) that Ifr"l(w)| =1,2,4,4,2,1forallw € () ,5=10,1,2,3,4,5. We
set Ng = |1ri,1 (w)|- Back to the real case, we shall say that a component
Q0 of Q, is mazimal if [x~1(w0)| = N, for w° € Q2.

In what follows, we will make use of the action of the group PGI(3, R)
on {,; since it is connected, it will preserve the connected components

of Q..
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Figure 6. s = 5; the sixth forbidden line is at co.

[ s =0 and s = 5 | There is exactly one (non-singular) conic through
5 points, 3 of which are never aligned, and so all the components of
Qs are maximal. Dually, it follows that all the components of Qg are
maximal.

In fact, the variety )5 has 12 connected components: the set of 4-
tuples of points of P2 3 by 3 not aligned is connected because it is
a homogeneous space for PGI(3, R). Therefore we can fixe the first 4
points [z1], .. ., [z4]; then for the fifth point there will be 6 lines forbidden
by the genericity conditions, namely those through the pairs of the first
4 points. It is now easy to check on an explicit example that there are
12 connected components in the complement of such 6 lines (see figure
6, in which one of the forbidden lines is the line at 00).

The variety ; has 16 connected components. Indeed, using
the action of PGH3, R) we can fix the four lines and [z;] must belong
to the complement E of this 4 lines, but not to the lines joining pairwise
intersections of the £;’s. Among the components of E, there are 4 trian-
gles T; and 3 quadrangles Q;. Clearly (see figure 7), the components of
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type Q are maximal, those of type T are not.

Figure 7. s = 1; choose z; in a quadrangle if you want to be in a
maximal component.

The variety 22 has 12 connected components. Indeed, we can
fix the 3 lines £1, £2, £3 and the point [z;]; the point [zo] must be choosen
in the complement of the 6 lines ¢;, £2, £3 and the three lines joining [z;]
to the intersections £; N £,. The maximal components are those where
[x1] and [zg] are in the same component of the complement of the 3
lines £;,¢9,£3. Since the choice of £, £o and £3 is irrelevant, it suffices
to check on a particular case. We take :

1] = [-1:0:1], [z} =[1:0:1),83={y=—=2}, ¥4
= {x=2z}, £5= {.’L‘:—‘ —22}
Let g(z,y,2) = a:c2+by2+cz2+dzgy+c:z:z + fyz = 0 be a conic through
[z1], [x2] and tangent to £1, £2 and £3. Then:

g(z1)= 0= a+c—e=0

glzz)= 0= a+c+e=0 }=>a=—c,e=0
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Then the conic ¢ = a(z? — 22) + (by + dz + fz)y must be tangent to:

3= d?>—4a(—a+b—-f)=0
ty=> (2d+ f)?—12ab=0
5= (-2d+f)®>-12ab=0

It follows from the last 2 equations that df = 0.
If d = 0, we have
1) a(-a+b-f)=0
(2) f*-12ab=0 ;
a = 0 gives the double line through [z;] and [x2], for which we don’t
care. Replacing b = a + f in equation (2) above gives 2 distinct real

solutions: f = a(6 + 4v/3).
If f =0, we have

(1) d?—4a(-a+b)=0
(2) 4d%-12ab=0

which implies that a(4a — b) = 0, and replacing b = 4a in equation (1)
above gives 2 new real solutions: d = +2av3. If @ = 0, we find again
the double line through [z1] and [z2].

In conclusion, we have 4 good real solutions.

Ly a0

@ R
| A

Figure 8. s = 2; the dashed line should not go through a vertex. At
right, the particular case that we investigate.



The number of conics tangent to five. .. 415

This case is dual to s = 2. The maximal components of 13 are
those for which the 3 points [z;], [z3] and [z3] are in the same component
of the complement of the 2 lines ¢; and £2 (see figure 9).

This is dual to s = 1. If we let 5 be the line at oo, its
complement can be identified with R?, and it contains the 4 points
[z1],...,[z4]. The maximal components are those for which these 4
points are the vertices of a conver quadrangle in R? (see figure 9).

Figure 9. s =3 and s = 4.

5 The final step

In this paragraph we shall work in some affine chart of P 2 that we iden-
tify with R2 Let yi,...,ys € R? be the vertices of a regular pentagon
and denote by II the convex hull of y1,...,ys (i.e. the pentagon itself).
Denote by i’i the space of lines through y; and let E? € Iv’i, i=1,...,5,
be such that for all I C {1,...,5} the configuration ((v:)icr, (eg)jeC(I)),
where C(I) = {1,...,5} \ I, belongs to a maximal component of
(figure 10 shows such a configuration). Let L;, i = 1,...,5 be open
neighborhoods of the £0’s such that for all I C {1,...,5} the configura-



416 Felice Ronga, Alberto Tognoli and Thierry Vust

tions ((vi)ier, (¢5)jec(n) still belong to a maximal component of £ ;.

Figure 10. 5 generic lines that generate maximal configurations.
Set
V() = {((l'j)jeca),Q) € (eow Lj) x PQs|
-q(y;) = 0,Vi eI and Vj € C(I) ¢ is tangent to lj}
The following lemma tells us that it is possible to make a good choice
of lines and that this choice is stable, in some sense.
Lemma 13. Let U C Ly X --- X Ly be defined as follows :
03 et | S b v vier e
Then : v
(1) U is open and dense in Ly X --- X Ls.

(2) If(£1,...,8) € U, there exist connected neighborhoods U(£4) = Uy,
of bp in Ly, h=1,...,5 such that:

vIc{1,...,5},V (e;)jecm € Uj

we have : ((e;)jec(l) ,q) EV(I)= Ty, 9 ¢ Ui, Viel
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Proof.
(1) For I C {1,...,5} and ip € I set

5
_ .2
V'(1,i) = {(1,.-.,25),q € H P, xPQs |
h=1

t; € LiVjeC(I),q(yi) =0Viel,q
is tangent to £;Vj € C(I) and Tiy,y19 = io}

V'(1,1p) is a closed subset of codimension 1 of the set

5
v 2
V(1) = {((ts, .-, 85),9) € [ P, x PQs|
h=1
¢; € LiVj€C(I),q(y;) =0Vi€I,qis tangent to £;Vj € C(I)}
and it follows from proposition 11 that the natural projection
v 2
pr:v'@) - (I ) x (T1#}.)
jec() iel

is proper, and therefore the set
XI,’io = pI (V'(Ia iO))
. . . . v 2 g
is closed, of codimension 1 in (HjeC(I) LJ-) X (Hie I Pm) . Now :

U=Lyx--xLs\ U X
Ic{y,...,5} ,ipel

therefore U is open, dense in Ly X --- X Ls.

(2) For I C {1,..., 5}, consider the diagram :

.2
v(I) L Thies P vi
pe(n §
Iiccuy Li

where 77 ((Zj)jGC(I)1Q) = (T[y‘]q)iel' Let u = (¢1,...,%5) € U and
set z = (lj)jecm, w = (£);c;. Since u € U, we have that 77 !(w) N
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P(}b)(z) = 0. It follows from the fact that pab)(z) is finite and that
pc() is a covering that there exist open sets :

Ué‘(l),j C Lj, Ué‘(!),j 3¢;,Vjec)

Ufg CLi, U3 34, Vi€l

such that, setting Ué(l) = [Liecn Ué(;) jand U 7 =1her Ul :

P (U N UY) = 0

If we take Up, to be the connected component of :

( N U'ca),h) n (ﬂ Uf',h)
c()>h IS

that contains £5 then assertion (2) will be satisfied

If ¢' and £ are lines through the point y in R? that are not perpen-
dicular then they determine two angles : one that is strictly smaller than
7 /2, another that is strictly larger than n/2. We shall call the sector
determined by £' and £" the set of lines that go through y and lie in the
smaller angle.

Choose (¢1,...,£5) € U and £}, # £}, € Up(¢n), h=1,...,5; then any
pair (£}, £}) determines a sector as explained above, which is contained
in Up. We choose an equation gp of the conic ¢, U}, h=1,...,5in
such a way that g takes negative values in the sector determined by
(€., ¢4). Set u = (lq1], - .., [gs]); we may assume also that u € U (that is
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: u satisfies conditions (G1) through (Gs) of Section 1).

Figure 11. The sector defined by (¢, £/) does not contain the tangent
to g at y;.

It follows from the properties of the U’s, h = 1,...,5, that if w =
(lq1);, - -, [gs), [l - - -, [zs], [a]) € F~*(u)s, then for all i such that [z] =
[il, Ty,jq will lie outside the sector determined by £;, £; (see figure 11),
and so its polar with respect to ¢; will lie inside the sector. Therefore it
follows from theorems 7 and 8 that if we replace ¢; by g} = ¢i +¢, where
e > 0 is small enough, then there are 2° points of F~1([q],..-,[g}]) in a
neighborhood of w. Note that the conics defined by the g} lie inside the
sector defined by (£}, £/), which is what we expect intuitively.

Let s € {0,...,5} and

Fl(u)s= {w € F7'(u) | dimKer (dFy) = s}

S

as in Section 3. Then :

lF—l(u)s
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where ng = 1,2,4,4,2,1 for s = 0,1,2,3,4,5. Finally, we set v’ =
(¢},---,95) and so :

|F~1@")| = 22525—3 (i)ns
=2 (§1+ Q2+ Q1+ Qa+ Q2+ 1) = 3264.
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