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A failure of quantifier elimination.

Angus MACINTYRE* and David MARKER**

Abstract

We show that log is needed to eliminate quantifiers in the the-
ory of the real numbers with restricted analytic functions and ex-
ponentiation.

We let L, be t/]\ne first order language of ordered rings augmented by
function symbols f where f is an analytic function defined on an open
U D [0,1]" for some n. We interpret f as a function on R"™ by

Fla) = {(f)’(az) if x €[0,1)"

otherwise

Let c?n be the language obtained by adding to £,, unary function sym-
bols f, for each r € R. We interpret f, as the function

f(m):{m" ifz>0

0 otherwise

and denote fy(z) by z". Finally we let L, exp be the language La, U
{exp} and ng,exp = LB U {exp}.

In [2] we showed that the Lap exp-theory of R admits quantifier elimi-
nation in the language Lan expU {log}. Indeed, we remark there that exp
is unnecessary as we could actually eliminate quantifiers in the language
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LanU{log}U{z?: ¢ € Q}. Here we show that although exp and log are
interdefinable, log is essential for quantifier elimination.

Theorem. Let ¢(z,y) be the formula

3z (exp(expz) = z Ay = zexp 2).

R

an,exp

Then ¢(x;y) is not equivalent to a quantifier free L -formula.

Of course ¢(x,y) is equivalent to the quantifier free L, U {log}-
formula

z > 1Ay = (logz)(loglogz).

There are several previous “failure of quantifier elimination” theo-
rems for the reals with exponentiation. Osgood’s example

y > 0AJw (wy =z A z=yev)

is not equivalent to a quantifier free formula in the language
{+,—,-,<,0,1,exp} (or any expansion by total real analytic functions
(see for example [1])), while, in unpublished work, van den Dries and
Macintyre showed that

(2 =z Ay=¢?)

is mnot equivalent to a quantifier free formula in the language
{+ -, %, exp, <, 0, 1}. Both of these formulas are equivalent to a quan-
tifier free L?n,exp—formulas.

In [4] Gabrielov gives several “failure of quantifier elimination” re-
sults of a different spirit.

The most interesting open question of this kind is whether the the-
ory of (R, +, -, exp) admits quantifier elimination in either the language
L= {+,-,—,<,0,1} U {exp, log} or £ augmented by all semialgebraic
functions. It seems that to eliminate quantifiers one needs to add some
implicitly defined restricted analytic functions, so we expect both of
these questions to have a negative answer.

Let f(z) = (logz)(loglogz) and let I" be the graph of f. We say
that an open set U C R? contains a tail of T if (z, f(z)) € U for all
sufficiently large z.
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Let ¢(x,y) be the above formula. Suppose for purposes of contra-
diction that ¢ is equivalent to a quantifier free L'.Bn’exp-formula, say
T

s(e,) & \ (File,) = 0A \\ Guglan) > 0)

i=1 J=1
for some LR __terms F;, G; 4+ Let

an,exp
S
Yi = {(z,y) : Fi(z,y) =0A /\ Gy j(z,y) > 0}.
ji=1

By o-minimality there is an i such that (z,y) € Y; if and only if y = f(x)
for sufficiently large z. Fix such an 4.

Let Wy = {(z,y) : Fi(z,y) = 0} and let W; = {(z,¥) : Gij(z,y) >
0} for j = 1,...,s. Each W, contains a tail of I'. Suppose that for each
i there is an M; such that {(z,y) € I': z > M;} is in the interior of W;.
Then {(x,y) € I': * > max M;} is in the interior of ¥;, a contradiction.
Thus a tail of I' must be in the boundary of at least one of the Wj.

Thus we have shown that there is an L?n,exp-term F such that a tail
of ' is in either the boundary of {(z,y) : F(z,y) = 0} or the boundary
of {(z,y) : F(x,y) > 0}. Unfortunately, since our terms need not be
continuous, we must consider both possibilities. The next lemma shows
that we can in fact choose F' such that the first possibility holds and F
is analytic on a neighborhood of a tail of IT'.

Lemma 1. Let f(zx) = (logz)(loglogz). There is an Eg’exp-term

F(z,y) which is analytic on an open U C R? containing a tail of T such
that F(z, f(x)) = 0 for sufficiently large =, and for all = there are at
most finitely many y such that (z,y) € U and F(z,y) = 0. Moreover,
we can choose F such that all of its subterms are analytic on U.

Proof. We know there is an £§11€xp-term F(z,y) with the following
property:

() There is an open U C R? containing a tail of I such that I' is in
the boundary of either

a) {(z,y) € U : F(z,y) = 0} or

b) {(z,y) € U : F(z,y) > 0}.
We may, by induction on terms, assume that if any nonconstant subterm
of F is replaced by the constant term 0 or 1, then the resulting term
does not have property (x).
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We next try to find an open V C U containing a tail of I" such that
F and all of its subterms are analytic on V. We try to prove this by
induction on subterms of F. We will see that the only obstructions to
this induction will lead to a new term F; with property (x) such that
Fy and all of its subterms are analytic on an open set containing a tail
of I.

e If a subterm ¢ of F is a constant or variable, it is analytic on all of
U. v

e Suppose tg and t; are a subterms of F and ¢; is analytic on V;
where V; is an open subset of U containing a tail of I'. Then V = VynV;
contains a tail of I' and ¢ % ¢, ¢tot1 and exp(t;) are analytic on V. -

e Suppose ty,...,t, and h = g(¢1,...,t,) are subterms of F, where g
is the function symbol for a restricted analytic function and ¢4, ..., t, are
analytic on an open set U; containing a tail of I. Using the o-minimality
of Rgp exp 0One of the following holds for each .

Case 1. There is an open V; C U; containing a tail of I" such that
ti(z,y) € (—00,0] U (1, +o0) for all (z,y) € V;.

Case 2. There is an open V; C U; containing a tail of I" such that
ti(z,y) = 1 for all (z,y) € V;.

Case 3. There is an open V; C U; containing a tail of I such that
0 < ti(z,y) < 1 for all (z,y) € V;.

If we are not in cases 1)-3) then ¢;(x, y) must be equal to 0 or 1 on
a tail of I. Since t;(z,y) is analytic on an open neighborhood of a tail
of I', we must be in one of the following two cases.

Case 4. There is an open set V; C U; containing a tail of I" such that
ti(z, f(z)) = 0 but {y: (z,y) € Vi A ti(x,y) = 0} is finite for sufficiently
large x.

Case 5. There is an open set V; C U; containing a tail of I such that
ti(z, f(z)) = 1 but {y: (z,y) € Vi Ati(z,y) = 1} is finite for sufficiently
large .

Cases 4) or 5) are the cases where our induction breaks down. In
case 4) we replace F' by t;(z,y). Then t;(z,y) satisfies (*) and ¢; and all
of its subterms are analytic on V;. In case 5) we replace F by t;(z,y)— 1.
In either case the new term has the desired property.

In case 1)

§(t1, ey tn) = a(tl, ceestiz1,0,8i41,... ,tn)
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for all (z,y) € Vi. Thus we could replace this occurence of ¢; by 0 to
obtain a new term F* such that F* = F on an open set containing a
tail of I. This contradicts our assumptions on F. Similarly in case 2)
we can replace this occurence of ¢; by 1 contradicting our assumptions
on F.

Thus we may assume we are in case iii). Let V = ()., V;. Then
(t1(z,9), .-, tn(z,y)) € (0,1)" for all (z,y) € V and h is analytic on V.

e Suppose h and ¢ are subterms of F', h = t" and t is analytic on an
open set U containing a tail of I As above, we can find an open set
V C U containing a tail of I such that one of the following holds:

Case 1. t(z,y) <0 for all (z,y) €V,

Case 2. t(z, f(z)) = 0 and {y : (z,y) € V At(z,y) = 0} for sufficiently
large z, or

Case 3. t(z,y) > 0 for (z,y) € V.

As above case 1) can not happen as we could simplify F by replacing
h by 0. In case 2) we can use ¢ instead of F' and we are done. Thus we
may assume that we are in case 3) and note that & is analytic on V.

This completes the induction. Either we will find a simpler term
satisfying the conditions of the theorem or we will eventually thin U to
an open V containing a tail of I' such that F is analytic on V. In the
later case, since F is analytic on V, {(z,y) € V : F(z,y) > 0} is open.
Thus we must be in case a) of (*) and F is the desired term.

Let F(z,y) be the term guaranteed by lemma 1. Note that since F
and all of its subterms are analytic on U, one can show by induction
that all of the partial derivatives of F' are equal to Egl’exp—terms on U.

Let p € I'NU. By repeated application of the Weierstrass division
theorem we can find an open neighborhood V of p, n € N and an
analytic function g on V such that on V

F(z,y) = (y — f(x))"g(z,v)

and there is no point (x,y) € V \ {p} such that y = f(x) and g(z,y) = 0.
Note that for each m < n there is an analytic hy, on V such that

%Z‘;np"(x, y) = G%T(y — f&@)" " ™(g(z,y) + (¥ — F(x))hm(z,v))-
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Let G be an Egn,exp-term such that G = % on U. Then G

vanishes identically on I'NV and %”- does not vanish on I'NV \ {p}. By
analytic continuation and o-minimality

G(z, f(z)) =0

and
%j—(x,m)) £0

for sufficiently large z.
Since (e®*, z¢®) parameterizes the curve y = f (z), G(e%,ze*) = 0
for sufficiently large 2. Differentiating with respect to z we see that-
:0G | .z G | .
0= e%e® 5;(:36 ,2€%) + (2 + 1)625;1—(6e , z€e%)
and P
e 2 (e, ze%)

%!G‘-(eez ze?) -1 (1)

for sufficiently large =.

Suppose M is a nonstandard model of the Lanexp-theory of
R, z € M, and = > R. Let N be the smallest L',Bn,exp-substmcture of
M containing R(e®”, ze®), i.e. N is the smallest subset of M containing
R(e®”, ze®) and closed under LR -terms and exponentiation. In fact N is
the smallest LR _elementary submodel of M containing R(e®, ze%) and
closed under exp. Since G and ‘%g are Eg,exp-terms, x € N. We will
obtain a contradiction by showing this fails when M is the logarithmic-
exponential series field R((t))“E constructed in [3].

For the remainder of the proof we assume familiarity with the nota-
tion and results from [3].

Lemma 2. Let z = t7! € R(t)LE. Let N ¢ R((t)LE be the smallest
£§n,exp-substructu1‘e of R((t)E containing R(e®",ze®). Thenz & N.

Proof. We first note that in fact N C R((t)E. We build a chain
(Fa : @ < A) of truncation closed LB -elementary substructures of N
such that:

i) Fo = Upcq Fp if a is a limit ordinal,
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ii) there is yo € F, such that F,,; is the smallest Cg-elementary
submodel of R((t))F containing F(e¥*) for all a < ), and

Claim. Suppose F is a truncation closed Lan-elementary substructure
of R((t))® and the value group of F" is an R-vector space. Then F is an
LR _clementary substructure.

Ify€ Fandy > 0, then y = at?(1+¢) wherea € R,a > 0,t9,c € F
and v(e) > 0. Then y" = a"t"™(1 + ¢)". Since z — (1 + 2)" is analytic
near zero, (1+¢)” € F. Since the value group of F is an R-vector space,
t™ € F. Thus y" € F. By the quantifier elimination from {5, F is an
LR _elementary submodel of R((t))E.

The above claim, the truncation results of §3 of [3] and the valuation
theoretic results from §3 of [2] guarantee that if F is a truncation closed
LB _clementary submodel of R((¢)E, y € R(¢)E, v(y) € v(F) and F* is
the smallest LR -elementary submodel of R((t))F containing F(y), then
F* is truncation closed and the value group of F* is v(F) & Ru(y).

Let Fo be the the smallest LR -elementary submodel of R((t))E con-
taining R(e”, ze®). By the above remarks Fy is truncation closed. We
can then build (F, : & < )) satisfying i)-iii) above. Since

- x —p®
e*=t""ande® =t"°

the value group of Fg is R(1 + z) ® Re®. Clearly R(1 + z) is a convex
subgroup of the value group of Fy. We argue that R(1 + z) is a convex
subgroup of the value group of Fy, for all @ < A\. Thus R(1+ z) is a
convex subgroup of the value group of N. In particular z ¢ N.

In fact the value group of Fy is of the form R(1 + z) & H where
supp h < R for all h € H. The next claim allows us to inductively show
that this is true for the value group of F, for all a.

Claim. Let F C R((t)E be a truncation closed LR-elementary sub-
model with value group G = R(1 + z) & H where supp h < R for all
h € H. Suppose y € F, ¥ € F and F; is the smallest L',Bn-elementary
submodel of R((t))E containing F(e¥). Then Fj is truncatjon closed and
G1, the value group of Fy, is R(1+ =) & H; where supp h; < R for all
hy € Hy.
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Let y = a + B where supp a < 0 and »(8) > 0. By our assumptions
on G, supp a < R. Since e? € F, F(e¥) = F(e®) and e® = t~% Thus
the value group of F; is G&® Ra. Thus supp (ra+h) < Oforallh € H.
Since H; = Ra & H, this proves the claim.
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