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A-realcompact spaces.
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Abstract

Relations between homomorphisms on a real function algebra
and different properties (such as being inverse-closed and closed
under bounded inversion) are studied.

1 Introduction and notation

By a function algebra A on X we mean a family of real-valued functions
on X such that: 1) A is a linear algebra with unit under operations
defined pointwise, 2) A separates points on X and 3) A is closed under
bounded inversion, that is, if f € A and f > 1, then yle € A. We
denote by Hom(A) the family of all A-homomorphisms, that is, non null
multiplicative real linear functionals on A, endowed with the Gelfand
topology.

Hom(A) has been intensively studied when X is a completely regular
Hausdorff space and A4 is C(X) (see [12]). In recent years different pa-
pers have been devoted to study homomorphisms on some subalgebras
of C(X), for example algebras of differentiable functions have been con-
sidered in [1]-[5], [14] and [15]. As can be seen in the quoted papers, in
studying function algebras frequently one needs results asserting that a
homomorphism is the evaluation at some point of the supporting space.
This paper is devoted to elaborate a general theory related with this
subject.
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2 Single-set evaluating algebras and
A-realcompactness

2.1.- Let X be a completely regular Hausdorfl space, Y C X
and f : Y — R a continuous map. If f has a continuous extension to
p € X \ 'Y, this extension will be denoted by f(p) For f : X — R,
Z(f)={z € X : f(z) = 0}. Aset SCY is a zero set if there exists
g € C(Y) such that S = Z(g) and 5% is the closure of § in X. As usual
BX denotes the Stone-Cech compactification of X.

2.2.- The elements of any function algebra can be considered as uniformly
continuous functions on X in the following sense. Denote by Aj the
subalgebra of all bounded functions in A. Let U4 be the uniformity
generated on X by Ap, that is U4 is defined by the pseudometrics

df(z,y) =| f(z) = F(y) |; f € Apz,y€X.

Let 74 denote the topology induced by U4 on X. Since A separates
points in X , (X, 74) is a completely regular Hausdorff space. All topo-
logical notions on X are assumed in the 74 topology.

Denote by X4 the completion of the uniform space (X,U,), then
X 4 is a compact Hausdorff space and X can be considered as a dense
subspace of X a. It is known that each f € Ap has a unique continuous
extension f to X4. Set A = {f f € Ap}. A _separates points in X 4
(I7]) then, by the Stone-Weierstrass theorem, A is a dense subspace of
C(X4) in the uniform norm.

2.3.- The following result from [7] will be used in the sequel:
Theorem. Let A be a function algebra on X, then

(a) ¢ € Hom(Abj if and only if there exists a (unique) p € X 4 such
that o(f) = f(p) for every f € A. Moreover X 4 is (homeomorphic
to) the mazximal ideal space of Ap;

(b) ¢ € Hom(A) if and only if there exists a (unique) point p € X4
such that, every f € A has a finite continuous extension f(p) to
p and o(f) = f(p). The set I(A) of all such p, with the topology
induced by X 4, i3 (homeomorphic to) the mazimal ideal space of
A.
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2.4.- In what follows we associate to a given function algebra A the
spaces X 4 and J(A) defined above. Moreover, we identify Hom(A) with
I(A) and X with a (dense) subset of X 4. Thus we have the inclusions,

X CI(A) C Xa.

In studying properties of homomorphisms it is important to have
conditions to recognize points in I(A) \ X. It is easy to verify that for
a point p € X4 \ X the following assertions are equivalents:

(a) p € I(A);

(b) for every f € A, there exists a net {z,} in X such that zy — p
and f(z)) is bounded;

(e) for every f € A, there exists a neighbourhood V of p in X 4 such
that f(V () X) is bounded.

2.5.- We need some definitions: a function algebra A on X is called
single-set evaluating if, for every ¢ € A and each f € A, there exists
r € X such that o(f) = f(z). A is called inverse-closed if for every
f € A such that Z(f) = 0, } € A. Tt is easy to prove that inverse-closed
algebras are single-set evaluating. There exist single-set evaluating al-
gebras which are not inverse-closed [6].

2.6.- Given a nonempty set X, (A, B) is called a subordinated pair [7]
on X if: i) A and B are function algebras on X; ii) B C A; iii) every
homomorphism on B has an extension to a homomorphism on A.

2.7.- Theorem. For a function algebra A on X the following conditions
are equivalent:

(a) A is single-set evaluating;
(b) For allp € I{A)\ X, if f € A and 0 < f < 1, then f(p) # 0;

(¢) (RA,A) is a sudordinated pair, where RA the smallest inverse-
closed algebra on X containing A.
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Proof.

i)

ii)

iii)

Suppose that (a) holds but (b) does not. Fix p € 7(4) \ X and
h € A such that 0 < h < 1 and h(p) = 0. Since evaluation at p is
a homomorphism on A, A is not sinigle-set evaluating.

Suppose that (b) holds and A is not single-set evaluating. Take
@ € Hom(A), p € I(A) and k € A such that ¢(g) = §(p) for every
g € A and (k) # k(z) for all z € X. Set h(z) = (k(z) — ¢(k))?

and f(z) = p252Ls. Then f(p) = ¢(f) = 0 and 0 < f(z) < 1. This
contradicts (b).

For (a) implies (c) see lemma 16 of [6].

Since RA is inverse-closed it is single-set evaluating. If (RA, A) is
a subordinated pair, then A is single-set evaluating,

2.8.- Recall that a completely regular Hausdorff space Y is realcompact
[12] if every C(Y )-homomorphism is the evaluation at some point pin Y.
This concept can be generalized in the following way: if A is a function
algebra on X, X is said to be A-realcompact if every A-homomorphism
is the evaluation at some point p of X. A similar notion was used in [8],

[16] and [17].
2.9.- Remarks.
1). If Ay = A, then X is A-realcompact if and only if X is com-

2.10.-

pact (in the 74 topology). When X4 \ X # 0 we can obtain
A-realcompactness only when A contains an unbounded function.
In particular if (X, 7) is a pseudocompact noncompact, completely
regular Hausdorff space and A = C(X), then X 1is not
A-realcompact.

Notice that if A and B are function algebras on X, B C A, with
X A-realcompact, then X is B-realcompact if and only if (A, B)
is a subordinated pair.

Proposition. Let A and B be function algebras on X with B

uniformly dense in A. Then (A, B) is a subordinated pair.
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Proof. Since By is uniformly dense in A, the spaces C'(X4) and C(X g)
are isomorphic, thus by the Banach-Stone theorem (see [12]) X4 and X
are homeomorphic. We may identify X 4 and X 5. Fix a homomorphism
¢ on B and a point p € X4 such that for every f € B, o(f) = f(p).
We will finish our proof by showing that every g € A has a (unique)
continuous finite extension to p. Fix g€ A and f € B such
that su‘})){ | f(z) — g(z) |< 1. There exist a neighbourhood V of p in X 4
z€

and a positive constant M such that for every y € VN X, | f(¥) |< M.
Then for every y € VN X, | g(y) |[< M + 1, now the assertion follows
from 2.4.

In [10] (proposition 1.8) was proved the following fact: if X is a
realcompact space and A C C(X) is a subalgebra with unit, closed
under bounded inversion, uniformly dense in C(X), then Hom(A) = X.
Our next result, as an application of proposition 2.10 (see remark 2.9.2),
provides a natural extension.

2.11.- Corollary. Let A and B be function algebras on X, BC A. If B is
uniformly dense in A and X is A-realcompact, then X is B-realcompact.

2.12.- Theorem. Let A be a single-set evaluating algebra on X. Then
X is A-realcompact if and only X is RA-realcompact (see (c) in 2.7).
Moreover if A is inverse-closed, then X is A-realcompact if and only if
for every p € X4 \ X, there exists

feAy, 0<f<1, suchthat f(p)=0. (1)

Proof. The first part follows from theorem 2.7, the remark 2) in 2.9
and the construction of RA.

For the second part suppose first that X is A-realcompact. Suppose
that p € X4 \ X. Taking into account that p ¢ I(A) = X, there
exists f € A\ Ap such that for every net {z,} in X, with z) — p,
f(z») is unbounded (see the last assertion in 2.4). Then k(p) = 0 and

0 < h(z) <1 for z € X, where h(z) = ii{‘zg)

Suppose now that for all p € X4\ X there exists f € A such that
0 < f <1and f(p) = 0. By defining g(x) = 71;5, we have that g € A
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and for every net {z,} in X, zy — p, {g(z))} is not bounded. This
completes the proof.

2.13.- Remark. In general condition (1) does not imply A-realcompact-
ness. For example, let X be the real interval (0,1] and A the restriction
of continuous functions in [0,1] to (0,1]. In this case the condition holds
but X is not A-realcompact (notice that X4 = [0,1]).

2.14.- Theorem. Let A be a function algebra. Then X 4 is the Stone-
Cech compactification of X if and only if for any disjoint zero sets S
and T in X, there exists f € A, such that

0<f<1, f(8)={0}and f(T)={1}. @)

Proof. If A satisfies (2) by theorem 11 of [11], Ap is uniformly dense
in the space Cp(X) of all real continuous bounded functions on X, then
BX = X4,

On the other hand if 8X = X4, A is dense in Cy(X) and the result
follows again from theorem 11 of [11].

From theorems 2.12 and 2.14 we obtain a proof of the following result
due to S. Mréwka (proposition 3.11.10 in [9]).

2.15.- Corollary. Let X be a completely regular Hausdorff space. Then
X is realcompact if and only if for every p € BX \ X, there exists f €
C(X) such that 0 < f(z) < 1,z € X, and f(p) = 0.

~ The next result extends Theorem 2 of [15]. Jaramillo presented in
[15] different examples of functions algebras for which Theorem 2.16 may
be applied.

2.16.- Theorem. Let us suppose that a function algebra A on X satisfies
the following conditions:

(a) for every f,g € A and p,e > 0, if the sets

P(f) = {z:| f(z) | €} and Qp(g) = {z :| 9(z) |2 p}
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are not empty and disjoint, there exists h € A , 0 < h <1, such
that

h(Pe(f)) = {0} and h(Q,(9)) = {1};

(b) given an open (in the T4 topology) cover {Hp} of X , such that
Hp C Hp41, and f : X =R, if there exists a sequence f, in A
such that fn |H, = f |H., then f € A;

(c) for every p € X4\ X there ezists g € C(X a) which satisfies (1).
Then X is A-realcompact.

Proof. Let ¢ be a homomorphism on A. There exists p € X 4 such that
o(f) = f(p) for every f € A. We will show that p € X.

Suppose that p € X4\ X, take g € C(X 4) such that 0 < g <1 and
g(p) = 0. Set

1
En={z€ X4:9(z) > ﬁ}’ n=12,..

We may suppose that each Ej is not empty. Since A is dense in
C(X 4), there exists a sequence {fn} in A such that

. 1 o 1
|| frn =9 llo< ni3 and || frn — fr+1 Hoo< TS’

where || . ||oo denotes the sup norm in C(X4). Set

Fa={z € Xal (@) |2 55}

It is easy to prove that for n > 2, En_1 C Fn C En41.

Now we have that (XN U En)=NX U Fn, thus {Fo,N X} is
nclN neIN
an increasing open cover of X. For each n > 2 takegn € A,0< g < 1,

such that
gn(FSpi2(X) = {1} and gn(Fan[ ) X) = {0}.
o0
Notice that gn(p) = 1, thus ¢(§n) = 1. The function f(z) = X gn(z),
n=2

n
z € X is well defined. Set kn(z) = Y gj(«). Since k, € A, f € A.
. j=2
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It is easy to see that for every z € X and each n, k,(z) < f(z), then
n

o(f) = ¢kn) = 3 ©(g5) = n (see 1.4 of [13]), this says that ¢(f) = oo,
j=1

a contradiction.

2.17.- Theorem 2.3 gives a representation of the real maximal ideal of A
but, as the following result will prove, we can not expect to obtain a one
to one relation between z-ultrafilters and maximal ideals. The notion on
z-filter is used as in [12]. An ideal in A is a proper ideal. For an ideal I,
ZI)={z(f): fel}. fJisazfilter J;' = {f € A: Z(f) € J}.

2.18.- Theorem. Let A be a function algebra which satisfies (2). The
following assertion are equivalent:

(a) for each mazimal ideal I in A, there exists p € X such that
—B8X
I={feA:pez(f)}.

(b) for each mazimal ideal I in A, there exists a mazimal ideal J in
C(X) such that I C J;

(c) for each mazimal ideal I in A, Z(I) is a z-ultrafilter;

(d) A is inverse-closed.

Proof. Since A satisfies (2), for every zero set P in X there exists f € A
such that Z(f) = P.

The assertions (a) implies (b) and (b) implies (a) follow directly from
the Gelfand-Kolmogorov theorem ([12], 7.3).

(b) implies (c) Fix maximal ideals I and J in A and C(X) re-
spectively, with I C J. Z3;'(Z(J)) is an ideal in A. Therefore, I =
Z3Y(Z(J)). Since Z(I) = Z(J), Z(I) is a z-ultrafilter.

(c) implies (b) Fix a maximal ideal I in A, since Z(I) is a z-ultrafilter
J={fe€C(X):Z(f) € Z(I)} is a maximal ideal in C(X) containing
I.

(c) implies (d) Take f € A such that Z(f) =0 and set
I=1{gf:g¢€ A}. Since f € I, I can not be an ideal, therefore I = A.

(d) implies (c) Fix an ideal I in A. Since A is inverse closed @ ¢ Z(I).
On the other hand, if f,g € I and h € A, Z(f%+4¢%) = Z(f)NZ(g) and
Z(f) C 2(f9) = 2(g).
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3 The sequentially evaluating property

3.1.- A function algebra A on X is called sequentially evaluating if, for
every ¢ € Hom(A) and each sequence {f,,} in A , there exists r € X such
that o(fn) = fn(z), for n = 1,2, ... This property has been intensively
studied in [2]. As far as we know the use of this property goes back to S.
Mazur (see the note to statement A of [8}). If a function algebra A on X
has the sequentially evaluating property, then every homomorphism on
A is sequentially continuous on A, where A, is the algebra A endowed
with the pointwise convergence topology. This fact was noticed for some
particular algebras in [2] and [6].

3.2.- Denote by [A|JC (X 4)] the closed under bounded inversion algebra
on X generated by A and C(X4). By setting

n
Al = {kagk : fk € Avgk S C(XA),TI, € N}’
k=1

we have that [A(JC (X 4)] = {h1/h2: h1,ho € A1, he > 1}

3.3.- Theorem. Let A be a single-set evaluating algebra on X. The
following conditions are equivalent:

(a) A has the sequentially evaluating property.
(b) Each zero set in X4\ X does not meet I(A).
(c) [AUC(X4)] is single-set evaluating.

Proof. Suppose that (a) holds and (b) fails, then there exists a zero set
P C X\ X such that P(I(A) # 0. Fix ¢ € P(I(A) and let ¢ be
the evaluation at ¢g. Since P is a zero set, there exists f € C(X4) such
that P = Z(f). Since A is dense in C(X 4) for the uniform norm, there
exists {fp} in Ap, with [ — uniformly on X 4. We have that ¢(fy,) =
falq) = f(q) = 0. Set gn = fn — ©(fn) € Ap. According to the above
arguments g, — f uniformly on X 4 and ¢(g,) = 0. By the sequentially
evaluating property there exists zo € X such that ¢(g,) = gn(zo) = 0.
This says that li'rln gn(zo) = f{zo) = 0 and we have a contradiction.

(b) implies (c) Suppose that (b) holds and let ¢ be a homomorphism
on [AUC(X4)]. We will prove that for each h € [AUC(X4)l,
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Z(h = ¢(h)) # 0. Since ¢ is a homomorphism on A (C(X4)), there
exists p € I(A) (¢ € C(X4)) such that, for each f € A (g € C(X4))
o(f) = ) (plg) = i(a)). Since A, C ANC(Xa), for cach J € Ay
f(p) = f(g). Taking into account that A separates points in X 4, we have
that p = q. Now if f € (AUC(X4)),set g = f—o(f). U Z(g)NX =0,
then Z(g)(NI(A) = 0 and this is not posible (p € Z(g) NI(A)).

- 2
Since for every f € 4, ; +f ff J 7 has a continuous extension to X 4,

we have that for any h € Ay (see 3.2), Z(h — ¢(h)) # 0. In fact, if
fiy-s Jn € A and gy, ..., gn € C(X4),

N (fr — o(fx))? 3 2
0 # Z(kz::1 T3 (= o) + (9 — ©(9x))")

2(3 Uk — o))k + o) ok — w(x))
k=1

= 2D frge — o> frox))
k=1 k=1
Now if h1, ho € A with h2 > 1, then
Z(—— = 90( )) = Z(p(ho)h1 — ¢(h1)h2)

= Z(p(h2)h1 — ¢(h1)h2 — p(p(h2)h1 — p(h1)h2)) # 0.

(c) implies (a) Suppose that [A|JC(X4)] is single-set evaluating.
Fix ¥ € Hom(A). There exists p € I(A) such that, for each f € A,
¥(f) = f(p). Let us prove that ¥ may be extended to a homomorphism
¢ on [AUC(X4)]. It is sufficient to prove that every function h €
[AUC(X 4)] has a (unique) continuous extension to p.

Suppose first that & = i fkgk, with fr € A and g € C(X,4), for
k=12..n Set il,(p) Z fk(p)gk(p) We have that, for any net

{-T)\},\GA in X, such that z —>p in X4,

n
limh(zy) = thfk(w,\ lim gi(z») = S fip)dr(p) = h(p).
k=1 k=1



A-realcompact spaces 27

Finally, if b = & € [AUC(X4)l. with k1, ho € A1 (hg > 1), set
h(p) = % Then, by defining ¢(h) = h(p) for h € [AUC(X4)], we
have that ¢ € Hom([A|JC (X 4)]) and (f) = v (f) for f € A.

Now, fix a sequence {fn} in 4. Set gn(a) = g T2 and

o0
g = Y. gn- We have that § € C(X4). Let us prove that ¢(g) = 0.

n=1

n
In fact, notice that the sequence { }_ gi} converges uniformly to g and

n n

3 gk < g. Then, given € > 0 and n such that || Y gk — g ||o< ¢, it
k=1 k=1
follows that

0= o> a) < () = wlo - > ar) < (1) = .
k=1 k=1

Taking into account that [A|JC(X 4)] is single-set evaluating, there
exist o € X such that 0 = p(g) = g(zo). Therefore ©(fn) = fn(zo) for
each n.

3.4.- Remark. If A is an inverse-closed algebra on X closed under the
uniform convergence, then [A|JC(X4)] = A, and A has the sequential
evaluating property. This assertion can be obtained from the result
of S. Mazur quoted in [8] and gives a proof of following fact: X need
not be A-realcompact when A is a sequentially evaluating algebra on
X. For certain class of algebras the sequentially evaluating property
implies A-realcompactness (for example if X is a Lindelof space in the
74 topology), this just was the main reason for studying this property
in [2].

The last proposition in this section can be proved as theorem 2.16.

3.5.- Proposition. If a function algebra A satisfies conditions (a) and
(b) in theorem 2.16 then A has the sequentially evaluating property.

Acknowledgments. The authors thank the referee for several sugges-
tions which have been incorporated into the final version.
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