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On the relative Nash approximation of
analytic maps.

Alessandro TANCREDI and Alberto TOGNOLI

Abstract

Let X, Y be real or complex Nash spaces and Z a subspace
of X; the paper deals with the approximation of analytic maps
¢ : X — Y, Nash on Z, with Nash maps ¢ : X — Y such that
Y|z = ¢|z.

0 Introduction

The problem of the approximation of analytic objects by algebraic ones
has been considered by quite a number of mathematicians ([BCR], [DLS],
[Sh], [TT1], [TT2], [T2]) and it is one of the main and oldest problem
in the Nash geometry where cohomological methods are not available.
A strong limit of the approximation methods is that they work mainly
for the non-singular spaces.

Recently the use of the so-called Néron desingularization ([Po], [Sp]),
a deep result of commutative algebra, has allowed a significant develop-
ment in the approximation methods in the real case ([CRS]) and in the
complex case (|Le]).

Let X, Y be Nash spaces and Z a subspace of X; we deal with the
approximation of analytic maps ¢ : X — Y, Nash on Z, with Nash
maps ¢ : X — Y such that ¢|z = ¢|z. In the past we had given
some results in the non-singular case ([TT1 ], [TT2]) and now, using
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the results of |[CRS] and [Le], we can consider the singular real case (2.3,
2.5, 2.6) and the singular complex case (4.6, 4.7).

Moreover we point out the unicity, up to analytic isomorphisms, of
the Nash structure of a coherent compact real analytic space. This
suggests the study of Nash structures of some couples of spaces that we
begin in this paper with quite different methods, unfortunately available
only in the non-singular case (3.2).

For the complex Nash spaces, that will be examined more carefully
in a forthcoming paper, we can obtain here weaker results (4.6, 4.7,
4.8). The complex Nash functions are indeed less plastic than real ones
and the results that are available in the complex case (4.2, 4.3) are less
satisfactory than in the real one (1.1).

1 Preliminary remarks and definitions

Let k& be the field of real numbers R or the field of complex numbers .

We will consider the strong topology on the algebraic subvarieties of
k™.

Let D be an open domain in k"; an analytic function f : D — &k
is called a Nash function if there exists a non-zero polynomial P €
kft1,...,tnt1] such that P(z, f(z)) = O for every x € D. A map f :
D — k% is called a Nash map if every component of f is a Nash
function. The composition of Nash maps is a Nash map and the inverse
function theorem holds for Nash maps. We denote by Nyn the sheaf
of Nash functions on k™: it is a coherent subsheaf of the sheaf Ogn of
analytic functions on k™.

A Nash (resp. analytic) subspace X of k™ is a locally closed subset
that is, locally, the zero set of a finite number of Nash (resp. analytic)
functions. Nash (resp. analytic) functions on open sets of X are locally
restrictions of Nash (resp. analytic) functions on open sets of k™. We
denote by Nx (resp. Ox) the sheaf of Nash (resp. analytic) functions
on X.

A Nash (resp. analytic) space is a k-ringed space that is locally
isomorphic to Nash (resp. analytic) subspaces of k™. We recall that a
Nash space is (locally) irreducible if and only if it is (locally) irreducible
as an analytic space. A Nash manifold is a Nash space that is smooth
as an analytic space.
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We speak of real functions (spaces) for ¥ = R and of compler func-
tions (spaces) for k = €

We say that a real Nash space is coherent if it is coherent as an
analytic space. All the analytic spaces we consider are paracompact
with bounded embedding dimension.

A Nash space X is normal if the ring N'x . is integrally closed in its
full ring of quotients for every z € X; X is normal as a Nash space if
and only if it is normal as an analytic space.

We will use the following deep results of [CRS|] (Theorem 1.6).

Theorem 1.1. Let X be a coherent compact real Nash subspace of R™.

i) The ideal Ix C N R" of Nash functions vanishing on X is gener-
ated by finitely many global Nash functions.

it) Every Nash function on X eztends to R™.

We recall that a diffeotopy 6 on a differentiable manifold X is a
differentiable map 6 : X x [0,1] — X such that the map z — 6(z, t)
is a diffeomorphism of X for every ¢ € [0, 1].

A time-dependent vector field on X is a differentiable map x from
X x [0,1] to the tangent bundle T(X) such that x(z,t) € Tx(X) for
every z € X, t € [0,1]. If we denote by 7 the canonical projection
X x [0,1] — X it is easy to see that the time dependent vector fields
on X can be identified with the differentiable sections of the pullback
vector bundle *T'(X).

Theorem 1.2. There ezists a one to one correspondence between time
dependent vector fields x on a compact differentiable manifold X and
diffeotopies 8 on X given by

%(x,t) = x(0(z,t),t) .

Proof. See [Hi]

Let E be a differentiable vector bundle on X and Z a subset of X.
We say that a continuous section ¢ of E on Z is a differentiable section
if for every z € Z there exist an open neighborhood U of z in X and a
differentiable section s : U — E such that s|zny = t|znv.
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Lemma 1.3. ‘Let X be a.dijferentiable manifold, Z a closed subset of
X, E a differentiable vector bundle on X. Any differentiable section
t:Z — FE extends to X.

Proof. By a straightforward use of a partition of unity argument.

Let (S;)icr be a finite family of closed differentiable submanifolds of
X. We say that the submanifolds S; are in general position if for all sub-
sets {i1,...,%ir}, {j1,...,Js} of distinct elements of I the submanifolds
SiyN---NS; and S5 N---N Sj, intersect transversally.

The following result generalizes the theorem of extension of dif-
feotopies ([Hi]).

Theorem 1.4. Let X be a compact differentiable manifold, (S;)icr a
finite family of closed differentiable submanifolds of X in general position
and let (8;)icr be a family of diffeotopies 8; : S; x [0, 1] — S; such that
6; = 65 on (S; N Sj) x [0,1] for everyi,j € I. There exists a diffeotopy
6:X x[0,1] — X such that 8|g,[0,1] = 0: for everyi € I.

Proof. By 1.2 it is enough to prove that if E is a differentiable vector
bundle on X and (s;)icr a family of differentiable sections s; of E on
S; such that Sz'ls.-nsj = 3j|s‘.ngj for every i,j € I, then there exists a
differentiable section s of E on X such that s|g, = s; for every i € I.
Let us consider the continuous section ¢ of E on US; defined by t|s, = s;
for every ¢ € I. By 1.3 it is enough to prove that the section t is
differentiable, i.e. that it is locally restriction of differentiable sections
on open subsets of X. Since the question is local we can suppose that
the s; are differentiable functions and the conclusion follows easily by
the transversality condition.

2 Real Nash approximation

Let X, Y be two real analytic spaces. We will consider on the space
E(X,Y) (resp. O(X,Y)) of differentiable (resp. analytic) maps from X
to Y the Whitney C! topology (see e.g. [GMT}) and by approzimation
of maps between real analytic spaces we will mean always approximation
in this topology. Let (U;);cr be a locally finite open covering of X and
(Vi)ier a locally finite open covering of Y such that there exist locally
closed analytic embeddings ¢; : U; — R™, v; : V; — RP: for every
i € I let (K;)ier be a covering of X such that K; is a compact subset
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of U; for every i € I and (¢;)icsr a family of positive real numbers. Let
6o : X — Y be a differentiable map and let us consider the sets

U = U0, (Ui, di)ier, (Vi, vi)ier, (Ki)iel, (€i)ier)
= {0 €E(X,V)|0(Ks) C Vi, |[0ib; " — pibod; b,k < €Vi € I},

where || “éi(Ki) is the Cl-norm on ¢;(K;). The Whitney topology on

E(X,Y) (resp. O(X,Y)) is the topology that has as a base all possible
sets U.

Theorem 2.1. Let X, Y be two coherent real analytic spaces. The set
of isomorphisms is open in O(X,Y).

Proof. We follow the method of the proof given in [Hi} for differentiable
manifolds. Let 6y be an isomorphism and ¥ a neighborhood of g in the
Whitney topology. If H is a compact set in Y there exists a finite number
of compact K; that covers §~1(H) for every analytic map §: X — Y
such that 6(K;) C V;. It follows that we can find a neighborhood U
of 6p such that every 6 € U is a proper map. On the other hand if U
is small enough every 6 € U is a local embedding of analytic spaces.
Moreover since 8o(K;) N 6o(X — U;) = O for every i € I we can find U
in such a way that 6(K;) N 6(X — U;) = 0 and 0|y, is injective for all
0 € U, i € I. Therefore, for U small enough, every § € U is a closed
embedding. Since X and Y are coherent there exist decompositions into
irreducible components, X = U, X", Y = U, nY", and we can
suppose that 8g(X¥) = YV for every v € IN. Moreover, since §(X")
is a closed irreducible subset of Y, if § is near enough to 6y, we have
6(X¥) =YV for every v € IN and then 6 is an isomorphism.

Corollary 2.2. Let X, Y be two coherent real Nash spaces. The set of
isomorphisms is open in the space N(X,Y) of Nash maps from X toY
with the topology induced by the topology of O(X,Y).

Proof. A Nash map that is an analytic isomorphism is a Nash isomor-
phism.

Theorem 2.3. Let X be a coherent real Nash space and Z a closed

Nash subspace of X. The following conditions are equivalent.

i) Let Y be a real Nash space and F : X x Y — R? a Nash map.
Every analytic map ¢ : X — Y Nash on Z that satisfies the
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equation F(z,¢(z)) = 0 on X can be approrimated by a Nash map
¥ : X — Y such that ¥|z = ¢|z and F(z,v¥(z)) = 0 for every
r € X.

i) LetY be a real Nash space and F : Y — R? a Nash map. Every
analytic map ¢ : X — Y Nash on Z that satisfies the equation
F(¢(zx)) = 0 on X can be approzimated by a Nash map ¢ : X —
Y such that |z = ¢|z and F(y(z)) = 0 for every z € X.

1i) LetY be a real Nash space and ¢ : X — Y an analytic map Nash
on Z. Then ¢ can be approzimated by a Nash map ¥ : X — Y
such that ¥|z = ¢|z.

Proof. The implications i) = ii) and i) = iii) are obvious.

i11) = i) Let I' = {(z,y) € X X Y|F(z,y) = 0} and let us consider
the analytic map 8 : X — I defined by =z — (z,¢(z)). There exists
a Nash map w : X — T arbitrarily near to 6 such that w|z = 6|z.
Let # : I' — X and 7 : ' — Y be the Nash maps induced by the
canonical projections and p = nw. If w is near enough to 6 the map p
is near to the identity of X and then by 2.2 p can be supposed a Nash
isomorphism. It follows that the map ¥ = Twp™! satisfies the required
conditions.

Remark 2.4. In [CRS] it is proved that the equivalent conditions of
the previous theorem hold for Z = @ when X is a compact coherent
subspace of R™ and Y is a subspace of RP zero set of finitely many
Nash functions on RP.

We point out that the previous theorem is quite formal and it can be
stated in any situation, in the differentiable, analytic or Nash setting,
where the set of isomorphisms is open in some suitable topology.

However we remark that, if Y is singular, differentiable maps are
not approximable by analytic ones as we can see by a simple example:
let X = R,oreven X = P(R), Y = {z € R¥a? + z? — 23 = 0}
and let us take two C'® bump functions A,z : R — [0, 1] such that
supp(A) = [—1,0] and supp(p) = [0,1]. It is easy to check that the
differentiable map ¢ : X — Y defined by ¢(z) = (A(z) + u(z), (M (z) -
p(z))A + Mz) + u(m))%) for every z € X is not approximable by any
analytic map since for every neighborhood U of 0 in X ¢(U) is never
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contained in only one analytic branch through the origin of the algebraic
curve.

Theorem 2.5. Let X C R™ be a compact coherent real Nash space, Z a
closed coherent Nash subspace of X, H : RP — R, F : X x R — RY
Nash maps and Y = {y € RP|H(y) = (0,...,0)}. Every analytic map
¢ : X — Y Nash on Z that satisfies the equation F(z,¢(z)) =0 on X
can be approrimated by a Nash map ¢ : X — Y such that |z = ¢|z
and F(z,¢(z)) = 0 for every z € X.

Proof. By considering the Nash map F : X x R? — R%" defined by
F(z,y) = (F(z,v), H(y)) we can reduce to the case ¥ = RP.

Let ¢ = (#1,--.,¢p); we will reduce to the case ¢j|z = 0 for every
j=1,...,p. By 1.1 there exist Nash functions g; € Nx(X) such that
gilz = #jlz for every j = 1,...,p. Let us consider the Nash map
F': X x RP — R9 defined by F'(z,y) = F(z,y1+91(z), ..., yp+gp(z))
and the analytic map ¢’ : X — RP where ¢} = ¢; — g; for every
j=1,...,p. Let us suppose that there exists a Nash map %' : X — R?
arbitrarily near to ¢’ such that d);(:z) =0foreveryz€Z,j=1,...,p
and F'(z,v'(z)) = 0 for every z € X. Let us consider the Nash map
¥ : X — RP defined by ¢; = ¢ + g; for every j = 1,...,p: the map
¥ is arbitrarily near to ¢ and obviously ¥|z = ¢|z; moreover for every
x € X we have F(z,9%(z)) = F(z,¥i(z) + 91(2), ... ¥p(x) + gp(z)) =
F'(z,v'(z)) = 0.

Let Zz be the ideal of Nx of the Nash functions vanishing on Z;
since Tz is coherent by 1.1 it is generated as A x-module by finitely
many Nash functions h; € Nx(X), i = 1,...,t. Let Jz be the ideal
of Ox of the analytic functions vanishing on Z; we have Zz0x = Jz
([BCR]) and then Jz is generated by hy,..., hy as Ox-module.

Let G : X x RP x RP* — RY'P be the Nash map defined by

Gj(l',y,z) =F3(x?y) j=1""1q’
G(:H'l(m)yv Z) =y — 2}:1 Zilhi(.’l?) l=1,...,p.

By the Theorem B of H. Cartan for real analytic spaces ([Cal) there
exist analytic functions oy € Ox(X),i=1,...,t,1=1,...,p such that
¢1 = St ayh;. Then the analytic map 0 : X — RP x RP! defined by
0(z) = (¢(z), a11(z),. .., ap(z)) satisfies the equation G(z,8(z)) = 0
on X. By the Remark 2.4 there exists a Nash map w : X — RP x RP
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arbitrarily near to 6 such that G(z,w(x)) = 0 for every z € X. If «
is the canonical projection R x RP* — RRP the Nash map ¢ = 7w
satisfies the required conditions.

Corollary 2.6. Let X C R"™ be a compact coherent real Nash space,
Z C X a closed coherent Nash subspace, H : RP — R' a Nash map and
Y = {y € RP|H(y) = (0,...,0)}. For any analytic map ¢ : X — Y
Nash on Z there exists a Nash map ¢ : X — Y arbitrarily near to ¢
such that ¢|z = ¢|z. Moreover

i) if ¢ is an analytic isomorphism 1 is a Nash isomorphism;

ii) if ¢ is a section of a Nash map 7 : Y — X and the approzimation
s good enough then v is a section of «.

Proof. The main assertion is contained in 2.5.
i) It follows from 2.2.

i) If 6 is a Nash map near enough to ¢, with 6|z = ¢|z, the map
p = 67 is near to the identity and by 2.2 can be supposed a Nash
isomorphism. It follows that the Nash map ¢ = 0p~! is a section
of 7 near to ¢ with ¢|z = ¢z.

In the smooth case the previous result can be easily improved.

Corollary 2.7. Let X C R™, Y C. IRP be two compact real Nash mani-
folds and Z a closed coherent Nash subspace of X. For any differentiable
map ¢ : X — Y Nash on Z there ezists a Nash map ¢ : X — Y ar-
bitrarily near to ¢ such that ¢|z = ¢|z. Moreover

i) if ¢ is a diffeomorphism v is a Nash isomorphism;

ii) if ¢ is a section of a Nash map 7 : Y — X and the approzimation
is good enough then ¢ is a section of w.

Proof. By 2.6 it is enough to find v analytic. By the existence of
the analytic tubular neighborhood of Y in RP the proof follows from a
result on the relative approximation of differentiable functions: for any
difterentiable function f : X — R such that f|z is analytic there exists
an analytic function g : X — R arbitrarily near to f with g|z = f|z

((T1]) .
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Remark 2.8. From 2.6 it follows that the equivalent conditions of 2.3
hold if Z is a closed coherent subspace of a compact coherent subspace
X C R™ and Y is a subspace of RP zero set of finitely many Nash
functions on RP.

By the previous results it is possible to approximate an analytic sec-
tion s of a Nash fiber bundle E on X that is Nash on a closed Nash
subspace Z of X with a Nash section § such that 3|z = s|z when the
total space E is the zero set of finitely many Nash functions on a nu-
meric space. In particular if E is a strongly Nash vector bundle such an
approximation is well-known ([BCR], [TT3]).

3 Unicity of structures of Nash couples

The Corollary 2.6 states the unicity of the Nash structure on a compact
real analytic space up to analytic isomorphisms and the Corollary 2.7
the unicity up to diffeomorphisms in the smooth case. They suggest
versions for couples of spaces: let X, ¥ be compact real Nash spaces,
S C X, T C Y closed Nash subspaces and ¢ : X — Y an analytic
(resp. differentiable) isomorphism such that ¢(S) = T. Is there a Nash
isomorphism ¢ : X — Y such that (S) = T? If the spaces are
coherent, ¢ is analytic on X and Nash on S the Corollary 2.6 gives
an affirmative answer. In general the question is more difficult. In the
following we will give a positive answer in the smooth case.

Let X ¢ R™ and Y C RR? be two compact real Nash manifolds and
(Si)iel, (Ti)ier two finite families of closed Nash submanifolds S; C X,
T; C Y. We say that (X, (Si)icr), (Y, (Ti)icr) are Nash couples if the
families of submanifolds (S;)ics and (T3)ier are in general position. If 1
is a singleton {i} we write simply S and T instead of S; and T3.

A differentiable (resp. analytic, Nash) isomorphism of such couples
is a differentiable (resp. analytic, Nash) isomorphism ¢ : X — Y such
that ¢(S;) = T; for every i € I.

Lemma 3.1. Let ¢ : (X,S) — (Y,T) be a differentiable isomorphism
of Nash couples and let Z be a closed coherent Nash subspace of S such
that ¢|z is Nash. There exist:

i) a Nash isomorphismy : S — T arbitrarily near to ¢|s such that
1/’[2 = ¢IZI‘
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i) a diffeotopy 6 : T x (0,1} — T such that

6(y, 0) =y for every y € T,
8(¢(x),1) = ¢(z) for every z € S,
0(¢(z),t) = ¢(z) for every z € Z and t € [0, 1];

ii) a Nash isomorphism of couples b : (X,8) — (Y,T) such that
olz = ¢lz.

Proof. i) It follows from 2.7.

ii) Let 7 : W — T be a Nash tubular neighborhood ([Sh}) of T" in
IRP. If ¢ is near enough to ¢|s we can define a diffeotopy 8 : T x [0, 1] —
T by putting

0(y,t) = w(y(1 —t) + vo~(y)t) for every y € T and t € [0, 1] .
If z € Z for every t € [0, 1] we have
0(6(z),t) = m(¢(z)(1 — t) + ¥(a)t) = 7 (¢(x)) = ¢(z) -

On the other hand it is easy to see that (¢(z),1) = ¥(z) for every
x €8S.

ii1) By 1.4 there exists a diffeotopy n : Y X [0,1] — Y such that
n(¢(z),t) = 6(¢(x),t) for every z € S and ¢t € [0,1]. Let us denote by
¢' the diffeomorphism X — Y defined by z — 5(¢(z),1). We have
¢'|s = ¥|s and, as in i) we can find a Nash isomorphism ¢ : X — Y
such that ¢|g = ¥|s. Of course ¢|z = ¥|z = d|z.

Theorem 3.2. Let (X, (Si)icr) and (Y, (Ti)ic) be two Nash couples. If
there exists a differentiable isomorphism ¢ : (X, (Si)icr) — (Y, (Ti)ier),
then there ezists a Nash isomorphism of couples ¢ : (X, (Ss)ier) —
(Y, (Ti)ier)-

Proof. For any positive integer m let us denote by Py, the set of subsets
H = {i1,...,im} of I such that iy, # iy for h # k. If H € P, and
i ¢ H let us denote by H (i) the element {i1,...,%im,i} of Ppy1. For
any H = {i1,...,im} let us denote by Sy (resp. Ty) the intersection
Siyy N---N Sy, (resp. Tj; N---NT;i.). By the hypotheses made Sy and
Ty are Nash submanifolds and ¢(Sg) = Ty for every H € Py, m € IN;
moreover, by the transversality conditions again, there exist ¢ € IV,
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H € Py such that Sy # @ and Sp = 0 for every L € Py, m > g, or
Pm = 0.

Let H € Pg such that Sy # 0; by 3.1 there exist a Nash isomorphism
Yy : Sg — TH near to ¢|g, and a diffeotopy 0y : Ty x [0,1] — Ty
such that 8(¢(z), 1) = v y(z) for every z € Sy.

Let L € P41 and let us consider the sets L(i) of P;. By 1.4 there
exists a diffeotopy 6, : Tp x [0,1] — T, such that oLlTL(i)x[O,li = 03)
for every i € I such that Sy # 0. If T, # 0 and Ty = @ forevery i € I
as above we find a diffeotopy 6. It follows that for every J, L € Py,
with T # @ and T, # @ we have 65 = 61 on (TyNTg) x [0,1].

By proceeding step by step we find a diffeotopy 6y : Ty x 0,1} —
Ty for every H € P, with m < ¢ such that 8g|1,x(0,1) = 6. for every
J O H. By 1.4 there exists a diffeotopy 8,4 : Y x [0,1] — Y such that
OglTy x[0,1) = 0H for every H € Pp,, m < q.

Let ¢4 : X — Y be the diffeomorphism defined by = — 64(é(z), 1);
by the construction made ¢4 defines a differentiable isomorphism of Nash
couples (X, (Si)icr) — (Y, (Ti)icr) such that ¢g4|s, is a Nash isomor-
phism for every H € P,

Let us consider now H € P,_1 such that Sy # 0. From 3.1, applied
to ¢qglsy with Z = {US;|J € Py, J D H}, it follows that there exists a
Nash isomorphism ¢y : Sg — Tq such that Yg|s, = ¢4ls, for every
J € P,

By repeating the above constructions we find a differentiable iso-
morphism of Nash couples ¢4_1 : (X, (Si)icr) — (Y, (Ti)ier) such that
#q—1|s; is a Nash isomorphism for every H € Py_;.

After a finite number of steps we find a diffeomorphism
é1: (X, (Si)ier) — (Y, (Ti)icr) such that ¢1|s, is Nash for every i € I.

By applying 3.1 again to ¢1 with Z = U;¢1S; we get the conclusion.

4 Complex Nash approximation

Theorem 4.1. Let X be a normal closed complex Nash subspace of an
open set A C €" and f : X — @ a Nash map. There ezist a normal
affine subvariety N C €"P™ 4 regular map # : N — X induced
by the canonical projection C"P*t —— €, an open Nash embedding
o : X — N such that wo = idx and a regular map h : N — @F such
that ho = f.
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Proof. It is a version of the complex Artin Mazur Theorem (see e.g.

[BCR], [TT2)).

Corollary 4.2. Let X be a closed normal complez Nash subspace of an
open set A C €, f1,...,fp € Nx(X) Nash functions and Z = {z €
X|fi(z) = - = fp(z) = 0}.

i) There ezists an algebraic subvariety T C N such that o|z is an
open embedding into T. '

ii) The ideal sheaf Tz C N'x of the Nash functions vanishing on Z is
generated by finitely many Nash functions on X wvanishing on Z.

Proof. i) Let f = (f1,...,fp) and b = (hy,..., hp); the affine variety
T = {z € N|hi(z) = - - - = hp(2) = 0} has the required properties.

ii) By i) we may assume that Z = T'N{ where 2 is an open set of an
algebraic subvariety N C €" and T is an algebraic subvariety of N. Let
R N be the sheaf of regular functions on N and Jr C Ry the ideal sheaf
of the regular functions vanishing on T'. Since J7 is generated by finitely
many regular functions on N vanishing on 7T it is enough to prove that
JrNN = Z7. We can assume N = €" and the conclusion follows using
a classical result of Chevalley as in the analogous statement on the ideal
sheaf of analytic functions vanishing on T (see e. g. [Ru]) since the
Nullstellensatz holds for complex Nash germs.

Theorem 4.3. Let X be a normal closed complex Nash subspace of a
Runge domain A C €" and K a holomorphically convex compact subset
of X.

i) There exist Nash functions fi,..., fs on a polynomial polyhedron
U in A, with K C U, such that X NU = {z € U|fi(z) = --- =
fs(z) = 0}.

ii) For every Nash function f € Nx(X) there exist a polynomial
polyhedron U C A, with K C U, and F € Ngn(U) such that
Flunx = flunx.

Proof. See [TT2]

Theorem 4.4. Let K be a holomorphically convex compact subset of an
affine algebraic variety N, ¢ a complez analytic map from a neighborhood
of K to P, G a complex Nash map from a neighborhood of the graph of



On the relative Nash approximation ... 197

¢ in N x @ to €7 such that G(z,¢(z)) = 0 for every z € K. Then ¢
can be uniformly approzimated on K by compler Nash maps ¥ from a
neighborhood of K to @ such that G(z,v(x)) = 0 for everyz € K.

Proof. See [Le].

Lemma 4.5. Let A C €" be a Runge domain, X C A a normal complex
closed Nash subspace, K a holomorphically convexr compact subset of X,
B C @F an open set, F : X X B — €7 a Nash map and ¢ : X — B an
analytic map such that F(z,¢(z)) = 0 for every x € K. There ezist an
open neighborhood U of K in X and a Nash map v : U — B arbitrarily
near to ¢ on K such that F(z,y(z)) =0 for everyz € K. '

Proof. By 4.1 there exist a normal affine subvariety N C €*™ and
an open Nash embedding ¢ : X — N such that mo = idx, where
7 : N — X is induced by the canonical projection € — €". Since
the open set = 6(X) of N is a closed subset of A x €' then o(K) is
holomorphically convex in N.

Let us consider the Nash map G : 2 x B — €4 defined by G(z,y) =
F(o7!(z),y) and the complex analytic map ¢o ! on a neighborhood of
o(K).

By 4.4 there exist an open neighborhood V of o(K) in Q and a
Nash map o' : V — €%, arbitrarily near to ¢o~1 on o(K) such that
G(z,v'(z)) = 0 for every z € o(K). The Nash function ¢ = ¢'c on the
open set U = o~ 1(V) satisfies the condition F(z,¢(x)) = 0 for every
z € K and approximates ¢ on K ; moreover if ¢ is near enough to ¢ on
K we can suppose %(U) C B.

Theorem 4.6. Let A C € a Runge domain, B C @ an open set,
X C A a normal closed compler Nash subspace, K a compact set in X,
91,---,9qg € Ngr(B) Nash functions and Y = {y € Blgi(y) = --- =
gq(y) = 0}. Every complez analytic map ¢ from a neighborhood of K
i X toY can be approzimated on K by a Nash map ¢ defined on a
neighborhood U of K. Moreover U and v can be chosen in such a way
that:

i) if ¢ is an analytic isomorphism v is a Nash isomorphism U =

¥(U);

1) if ¢ is a section of a Nash map 7 : Y — X then ¢ i3 a section of
monU.
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Proof. By considering a neighborhood of the holomorphic hull of K in
X we can assume K holomorphically convex and taking the Nash map
F : X x B — @7 defined by (z,y) — (g1(y),.--,94(y)) the existence
of ¢ follows from 4.5.

i) It is a standard fact (see e.g. [GMT]) that, if the approximation
is strong enough, v is an injection and a local embedding on a neigh-
borhood of K; since Y is locally irreducible ¢ is an open map ([Fi]).

i1) It is a consequence of i) as in 2.6.

Remark 4.7. By the previous theorem it is not difficult to state a com-
plex version, taking the approximation on a neighborhood of a compact
set K, of the equivalent assertions of 2.3. More difficult is to check when
the equivalent assertions hold. Using 4.2, 4.3 and the Theorem B of H.
Cartan for complex spaces ([Fi]) the proof of 2.5 can be repeated when
X and Y are closed normal subspaces of Runge domains, Z a closed
subspace of X and K a compact set in Z.

Moreover from the results of {[TT3] it is also possible to approximate
analytic sections with Nash sections of Nash vector bundles generated
by finitely many Nash global sections.

The proof of 2.5 can be also repeated in the setting of affine varieties
as in the following theorem that was given in [TT1] for Y = €.

Theorem 4.8. Let X and Y be two affine algebraic subvarieties, Z an
algebraic subvariety of X, K a holomorphically convex compact set in
X and ¢ : X — Y a complez analytic map algebraic on Z. There exist
Nash maps on open neighborhoods U of K in X, arbitrarily near to ¢
on K such that ¥|ynz = ¢lunz.
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