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A multiplier theorem for the Hankel transform.

Rafal KAPELKO

Abstract

Riesz function technique is used to prove a multiplier theorem
for the Hankel transform, analogous to the classical Hérmander-
Mihlin multiplier theorem [6].

The celebrated Hormander-Mihlin multiplier theorem [6] says that if
a function m on R" satisfies the following condition

sup R™" / |RY Dlm(z)|?dz < o (1)

for some integer kg > % then the operator T, defined by (ng)A = mg
is bounded on every LP(R"), 1 < p < o0.

Restriction of the theorem to the set of radial functions on R™ gives
the multiplier theorem on spaces LP(Ry,z?**ttdz), 1 < p < oo with

= "Tz The ordinary Fourier transform on R™ has to be replaced by

the Hankel transform
fwy =2Te+1) [ f@ua) Taenet™las, @)

where J, is the Bessel function of the first kind of order a.
The assumption (1) gets even the simpler form

2R 1 %
sup / |e*m®) (z)|*=dz | < oo,
R>0 \/R <z
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where k =0,1,2,...,k0 and kg > a + 1.

It is quite natural to expect that the multiplier theorem should have
an extension to all values o > % of the real parameter. However the
exact repetition of the Hormander proof does not lead to effect, mainly
because the Hankel transform of the derivative of a function has no
representation in terms of the transformation of the function. In order
to omit this difficulty there were developed two technics in the literature.

The first one, [2], is indirect, uses a relation between the Jacobi
polynomials and the Bessel functions but the result obtained there is

weaker then expected. The proof goes under stronger assumption

' 2R
sup R™! |zkom o) (z)|22 " de < o0, ko = [o] + 2.
R>0 R

The second one, [4], developes the original Hé6rmander’s technique
but instead of the ordinary derivative of a function it makes use of the
powers of a Sturm-Liouville operator. The result is like the Hormander
one, but kg > a + 1 must be an even number.

The aim of the note is to prove the multiplier theorem in full gen-
erality. We assume that ko is the least integer greater than o + 1. In
fact ko may be a real number if one uses the Weyl fractional derivatives
instead of ordinary derivatives. The main idea is based on the fact that
the Hankel transform of Riesz function R (z?) has especially simple
form. Then we follow the arguments of Gosselin and Stempak [4].

For a bounded function m on R, we define the multiplier operator
T, by (Tng) = mg, where ~ denotes the Hankel transform (2).

Theorem 1. Fix a > % and let ko denote the least integer greater than
a + 1. Assume that a bounded function m on R, satisfies

R>0

1
2R 2
sup (/ |ka(k)(x)|2ld:c) < o0,
R T

where k = 0,1, ..., ko. Then the operator T}, is of weak-type (1,1) and,
consequently is bounded on every LP(R,,z%**1dz), 1 < p < .

In the proof we use the notion of the generalized convolution

frg(z)= /000 f)Tig(z)y**dy,
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where T is the generalized translation operator
T29() = b(0) [ 9((z,4)o) sin™ (B)d0,

(z,y)g = (&2 +y? - 2zycos0)%, b(a) = ﬂ'%l"(a +1) (F(a + %)) ' and
f, g are suitable functions on the half-line (cf [5]).

As usual we use C' with subscripts or without subscripts for a con-
stant which is not necessarily the same at each occurence.

Proof. The main idea of the proof is based on the fact that the Hankel
transform of the function

R(s) = gy (=25

has a very simple form
a+kg
= _ U
R(z) = Dlec 12+ (i) kWD) ()

(cf. [7, §4 Theorem 4.15]). ‘

As usual we cut the function m into small pieces by using a fixed
bump function. Let ¥ € C§°(R4) with support in (1,2) such that
Y W(27z) = 1 and m;j(z) = m(z)¥(277z). Define new family of
functions h(z) = m(z?), h;(z) = m;(z?). First using (3) and applying
the method of [4], we will obtain the theorem for h. More precisisely we
will prove

ITaglly < Cipllglly- @)

Then we will show how to deduce the thesis for the function m from the
thesis for the function A.
For h; we write the reproducing formula

hite) = 1 /.zj-n (ko)( )( _ z)ko—ld
Jx—P(ko) R OAC %), du

By (3) we have

oi+1

. . \/E a+tko
hij(z) = (a4 1)20Hk! m' °)(u) — otk (Vuz)du.
J 93 ] z 0
(5)
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Then T), = 335 Ty, where Ty, g = lAzj’* g and g € L'(R,4,z%**1dz). In
order to prove (4) it is sufficient to establish (cf. [4, p.659] and [1, p.75))
that

TVh;(z) — zgfoﬁj(z)| 2tlgz <C, (6)

}—-_oo “/|:’"‘ y0|>2|y yOI

with C' > 0 independent of y, yo 0.
An application of Leibniz formula yields

1

( [ ime )wx)’ <c@)i, ™
2

J

where C does not depend on j, and kg = o+ 1+ ¢ for an € > 0. We
prove the following estimates:

[ hi@le*+dz < cv@ -, (8)
/0 By (2)e** Hdz < C. ()

To prove (8) observe that by definition, sz (z) coincides with the Hankel
transform of the function

(o T(a+1) (ko) (, 2
I]](y) - l—\(a+k0+l)x[\/—\/2]+l]( ) jo (y )’

with respect to the measure dyu(z) = gloat3+2e
Now Schwartz’ inequality, the Plancherel formula applied to H; and

(7) give
o0 ~ '% [o.] 1 %
(e (e

o 1
(/ Ih (1:)|2 4a+'§+2(dz> t—e
0

oi+1 1
= C (ko) 2 Za+1+cd t €
a,ko (‘/2} I (P | 14 \/i

w o~
[ i@tz
t

IA

IA

C(29)+3+5(20) 5ot~ = C(Vait)~<.
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To prove (9) we use (8). Now changing the variable y = z+/u in (5) we
get

2%
J

But Schwarz’ inequality and (7) yield

i+
- 2041 2 ko) ko—1 vz yot!
[hj(z)|z"* T dz < C3 lm;™* (u)|u™ ™ du A IJa+ko(y)'__‘ya+ko dy.

23

2i+1 2.i+1

[ m s o (/ |m§"°>(u>|’d") @)t <c

Since Jatk, (2) is 2% asymptotically at 0* we have

4
/(; [h;(z)|z2*Hdz < C,.

Also, by (8)
/ (7 (@)|e?*Hdz < Cy + f , Ihi(@)le?+dz < C.
0 2-

Finally, to get (6) we use inequality (8) with estimates of Gosselin and
Stempak (cf. [4, p.661])

J Toh;(z) - T®h;(2)] 22+ dz
lx—y‘)' ZIy—yOI o] ~ 2041 00 ~ 2
s fly_yol hi(2)le o.!+ dz + f2|y—yo| |h;(z) |22+ dz
< Ci(1+ 279 (V2 |y — wol) ™,

which will work for V27 |y — yo| > 1.
Since h; has support in (0,v2/+1) it follows from [4, Corollary 2.2]
and (9) that

/I:v-yol 2ly—ol

< Tgh; — T8 hill LR, w2etrae)
S Cv2* |y — yol llhsl Ly o2ot1d2)
< V2C C1V2i |y — wol,

TVh(z) — Tgoﬁj(z)l g2+l g

which will be enough whenever V2i ly — wo} < 1.
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This completes the proof of (6) and, consequently for the function
h. The result for the function m follows than from the lemma below.
Lemma 1. For a > 0 the transformation z — z* of [0, 00) induces
the isomorphism m(z) — m(z*) of the space of all functions for which

2R 1 %
[lm||2,k, = sup / lefm ) (z)|?=dz | < oo
R>0 R T

for k=0,1,2,..., ko.
Proof. This is a simple consequence of fact that space ||m||2, is
invariant under multiplication by z* and Lebniz formula.

Remark. The method of Riesz function works when we use the Weyl
fractional derivatives instead of ordinary derivatives.

A function f on R4 has the Weyl fractional derivative of order v > 0
if there exists a measurable function g on R such that

f(z) = % [T =g

for almost all z > 0. The function ¢ is unique up to a set of measure
zero. It is denoted f(*) and called v-fractional derivative of order v.

The problem is that for a positive integer v there exist smooth func-
tions in the ordinary sense but not in the Weyl sense.

Theorem 2. Let m be a bounded function on R satisfies the condition

1
2R 1 2
sup (/ |z“m{”)(z)|2—dr) < 00,
R>0 \/R T

where v > a + 1, m(*) is the Weyl fractional derivative. Then the
operator T), is of weak-type (1,1) and, consequently is bounded on every
LP(Ry,z%**4dz), 1 < p < o0.

Proof. As in the proof of Theorem 1 we define h(z) = m(z?) and
obtain the theorem for function h. To do this we don’t work with bump
functions and define

] 2J+1 ( ) 2 v—1
hj(z) = —/ m\" (u) (u -z )+ du.
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Clerly Th = 3°%, Th, where Th,g = iAej * g. The rest is the exact repe-
tition of the proof of Theorem 1. Finally the result for the function m
follows from lemma below.

Lemma 2. For o > 0 the transformation z — z* of [0, 00) induces
the isomorphism m(z) — m(z®) of the space of all function for which

R 1 %
|Im]l2,» = sup (/ Iﬂ«'"m(")(w)V—dx) < 00,
R>0 \/% z
Proof. The lemma is a modification of [3, Proposition 3.9]. The only
difference is the norm ||.||(,),2,1 is changed into the norm ||.||2,, and the
proof is essentially the same.
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