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An unknotting theorem for tori in S*.

Akiko SHIMA

Abstract

Let T be a torus in S* and T* a projection of T'. If the singular
set I'(T™) consists of one disjoint simple closed curve, then T' can
be moved to the standard position by an ambient isotopy of S*.

1 Introduction

In this paper we will study an embedded torus T in S*. If the singular
set of the projection T* (C S®) of T consists of one double curve, then
what can be said about the position of T'? The following theorem is the
main result.

Main Theorem (Theorem 4.1). Let T be a torus in S*. If the
singular set T'(T*) consists of one simple closed curve, then T can be
moved to the standard position by an ambient isotopy of S*.

We will work in the PL category. All submanifolds are assumed to
be locally flat. Let S* be the 4-dimensional sphere, S* the 3-dimensional
sphere, and p : §%\ {00} — S$3\ {00} the projection defined by
P(21,$2,$3,$4) = ($1,102,$3)~

Let B = {(21,22,73) € R|lg? + 22+ 23 < 1}, and P, = BN
{(z1,z2,23) € R®z; = 0}. Let F be a closed oriented surface, and
f:F — 8%\ {00} a map. We say that f is in general position, if for
each element z of f(F), there exist a regular neighborhood N of z in
§3\ {00} and a homeomorphism h : N — B such that N and h satisfy
the following two conditions:
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(1) Under h, (N,N N f(F),z) is homeomorphic to either
(B, Py, (0,0,0)), (B, AU P2, (0,0,0)) or (B, L UP,U P, (0,0,0)).

(2) Let R be a component of f~!(f(F) N N). There exists an integer
i such that ho f|[R: R — P; is a homeomorphism.

Note. If (N,N N f(F),z) is homeomorphic to (B, P, U P, (0,0,0)),
then z is called a double point. If (N, NN f(F),z) is homeomorphic to
(B,PAUP,U P3,(0,0,0)), then z is called a triple point.

Throughout this paper, we assume that p|F is in general position.

With every point P or subset F of §*\ {oco}, we associate the point
P* = p(P) or the subset F* = p(F). We define I'(F*) to be the set of
all double points and triple points and put I'(F) = p~}(['(F*)) N F.

A solid torus V is said to be standard in S3, if V is a regular neigh-
borhood of a trivial knot in S3. And the torus 8V C S C S* is said to
be a standard torus in S%. In [H-K], they proved that a boundary of a
handlebody in S* is unique up to ambient isotopies of S*.

The circle is taken to be the quotient space S = R/(6 ~ 6+2~ for
all 8 € R). We will write 78 € S'”. We denote by (a,b) the greatest
common divisor of the integers @ and b. Let p, : I x S* — I x §!
be the b-fold cyclic cover given by (z,8) — (z,b0) for b € Z\{0}. Let
r¢ : I x 8 — I x S* be the rotation map given by (z,6) = (2,0 + ¢)
for ¢ € S. Let o: S* — I x S! be an immersion. Let 35 : I x S' —
IxS'x8cCIxS!xS! be the inclusion map (z,¢) — (z,¢,0). Let
a, b be integers satisfying b #0. We define immersed surfaces a(a, b) in
I x S' x S, which satisfies

a(a,b)NIx S'x 0= igrag/b(pb'l(a(sl))).
In particular, we denote by 7 (a,b) the immersed tori a(e,b) obtained
from a shown in Figure 1.

Figure 1
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All the homology groups are with coefficients in Z.

Example 1.1. If (a,b) = 1 and b # 0, then there exists a torus T in 5*
with T* = a(a,b) (see [T, Theorem 8]).

Example 1.2. There exists an embedded torus T in S* with T* =
Ty(a, b) where (a,b) = 1, b # 0. We can check that (S I'(T*)) is home-
omorphic to (53, (a,b)-torus knot) where (a,b)-torus knot is defined
in [R] (see p 53). Therefore Tj(a,b) is the immersed torus having the
singular set I'(T™) of one simple closed curve.

2 Solid to_ri and immersed surfaces in S°

Lemma 2.1. Let V be a solid torus, A a properly embedded annulus
into V with [a;] # 0 in Hy(V) where ag,a; are the components of 0A,
then there ezists an embedding map h : Ax I — V with h{a,0) = a for
alla € A, and h(0AX TUA X 1) C V.

Proof (Only outline). We find a disk E such that 0F = Uk, [
and k are disjoint arcs, intENA = ¢, INk = 8l = 9k, | C OV, and
k C A. Let B be a component of dV \ (ap U a1) with B D {. Then
AU B is a torus. There exists a 3-manifold W with 0W = A U B,
W D E. Let N(E) be a regular neighborhood of E in W. We have
that ON(E) = Do U C U D; such that D; is a disk, C is an annulus,
and ON(E)NOW = C. Then d(W\ N(E)) = (AUB\C)U Do U D,
is a 2-sphere. By the Schoenflies Theorem ([R] p 34), W \ N(E) is a
3-ball. W is obtained from W \ N(E) by attaching a 1-handle N(E).
Therefore W is a solid torus. We make a map h by using W.

Lemma 2.2. If V;, Vs and Va are solid tori in S® such that V;NV; =
OV; N dV; is an annulus and S® = Vi UV, U V3, then there ezist integers
i, j such that V; and V; are standard solid tori in S3.

Proof. The set V;NV,NV;3 consists of two disjoint simple closed curves.
Let ¢ be a component of V;NV2NV3. We denote ¢ = p;l;+g;m; € Hy(0V;)
(i=1,2 or 3) where [; is a preferred longitude of 0V;, m; is a meridian of
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0V;, and (p;, ¢;) is a pair of relatively prime integers. By van Kampen’s
theorem, we have m (V; U V;) &< I;, ;| P = I;” >. We get

zZ if (pi,p;) =1

Z® 2y if(pi,pj)=ldl#1
Z®Z|p3] Pk=07ps?£07{k,3}={i,]‘}
ZoZ pi=p;j=0

H(V;uV;) = {

Since V; U V; is the complement of an open regular neighborhood of
some knot, Hy(V; UV;) & Z. Hence we have to consider the following
two cases:

(1) pi#0,p; #0,(pi,p;) =1 or
(2) pr=0,p, = %1, {k, s} = {i,5}.
Case (1).

We construct a Seifert fibration on S in which each solid torus V;
has c as a fiber. If |p;| # 1 for all ¢, then there are three exceptional
fibers. But we can show that in any Seifert fibration of the 3-sphere,
there are at most two exceptional fibers (see [J-S] p 181). This is a
contradiction. Hence there exists an integer k with pr = +1. We have
T (ViU Vi) < I, | 1P = l,fl >& Z. Therefore V; is a standard solid
torus (j # ¢, k). Similarly, we can show that V; is a standard solid torus.

Case (2).

Since ¢ = qxmy = *l; + g,m,, we have qr = £1. There exists a disk
D in Vi with ¢ = 8D C dVj. Hence [c]=0 in H,(S3\ intV;) and ¢, = 0.
The solid torus V; is a regular neighborhood of some knot K. But K
is a boundary of some disk ir S3. Hence K is a trivial knot and V, is
a standard solid torus. Let V = V, U V,. Since ¢ = +my = I, and
Vi NV, is an annulus, then V is a solid torus. Let V; be the third solid
torus with t # k,s. Then S =V UV;, VNV, =8V = 8V;. But up to
homeomorphism there is only one way of decomposing S? into two solid
tori with the same boundary. Therefore V; is a standard solid torus.

Remark. Let V;,V; be as above. If Hy(V;UV;) 2 Z and [¢]=0 in
Hy{(V;UVj), then pr = 0,p, = 1, {k,s} = {i,j}.
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Fact. Let F be a closed surface in S§* with p|F in general position,
and c a simple closed curve in S® such that ¢ is transverse to f(F),
cNT(F*) = ¢. Then the number of points of ¢cNT'(F*) is even.

Lemma 2.3. If F is an oriented closed surface in S* with p|F in general
position, then F'\ I'(F) is divided into some regions. Then we can color
each region black or white so that adjacent regions have different colors.

Remark. Suppose that I'(F*) consists of double points, and let n be
a number of components in I'(F) which are not contractible in F. By
Lemma 2.3, one sees that if F' is a torus, then n is even.

Proof. Let Dy, ..., D, be the components of $3\ F*. We will construct
a function f :{D,...,Ds} — Z;. Let zo be a point of S®\ F*, z;
a point in D;, and /; an arc in S3 such that /; is transverse to F* and
ol; = {zo,z;}. We define f(D;) = 0 if the number of points of /; N F*
is even, otherwise f(D;) = 1 . By Fact, we can show that f does not
depend choices of z; and /;. And then f satisfies the property that D;
is an adjacent region of D; (i.e. there exists a path [ C S such that
1(0) € D;, I(1) € D;, l(I)NT'(F*) = ¢, and I(I)NF* = {one point}), then
f(D;) # f(D;). Let € = {Ej,..., E;} be the components of F*\ I'(F*).
The orientation of F induces the orientation of F;. We define a function
h: & — Z by h(E;) = 1 if the positive normal vector of E; points to
a white region, otherwise h(E;) = 0. Using h, we color the regions of

F\T(F).

Lemma 2.4. Let F, p|F be as above, and v* a component of I'(F*).
If v* is a simple closed curve, then p~!(y*) N F consists of two disjoint
simple closed curves.

Proof. Let N be a regular neighborhood of 4* in S3. Then p~}(N)NF
consists of either two disjoint annuli, one M6bius band or two disjoint
Mobius bands. Since F is an oriented surface, p~}(N) N F consists of
two disjoint annuli. Therefore p~!(y*) N F is two disjoint simple closed
curves. This completes the proof of Lemma 2.4.
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3 Local moves of surfaces in S*

Lemma 3.1. Let F be an oriented closed surface in S* with p|F in
general position. Let v* be a component of I'(F*) which is a simple
closed curve, ¢y, cy the components of p~(y*)NF. If v* satisfies one of
the following conditions, then v* can be cancelled by an ambient isotopy

of S4.
(1) There exist disks Dy, Dy in F with D; = ¢; and intD;NI'(F) = ¢.

(2) There exists an annulus A in F, and a solid torus V in S such
that 84 = ¢; Ucq, OV = A%, intV N F* = ¢, and 4* is a generator
of H 1 (V) ~Z.

(3) There exists an annulus A in F with 04 = ¢;U ¢, [¢] = 1 in
m1(F), and intANT(F) = ¢.

Proof. If v* satisfies (1), the lemma is proved by [Y, Lemma (4,4)]. If
v* satisfies (2), the proof is easy.

Suppose 7* satisfies (3). The surface A* is an embedded torus in S,
and v* is a simple closed curve on A*. Since [¢;] = 1 in m(F), there
exist disks D; in F with 8D; = ¢; (see [E, Theorem 1.7}). Let D = D;
with AND; = ¢;. Let Vi, V, be the closures of the components of S3\ A*
with ViUV = 83, 8V; = A*, and V; O F*U D*. By the solid torus
theorem (see [R] p107), either V; or V; is a solid torus. In general, D*
is an immersed disk. By Dehn’s lemma, there exists a non-singular disk
E with intE N A* = ¢ and OF = ™.

Case 1) V; is a solid torus.

Move T by an ambient isotopy of S*, then we may assume that V; is
a standard solid torus. And V; is a standard solid torus, too. We have
v* = OF C 0Vy, E C V;. Then 4* is a meridian of V; and a preferred
longitude of V. We have A = ¢; U ¢z, 0V = A%, intVo N F* = ¢,
and [y*] = +1 in Hy(V2) = Z. Using Lemma 3.1 (2), we can prove the
lemma in Case 1).

Case 2) V; is a solid torus.

Let [ be a preferred longitude of dV2, m a meridian of V. We
express v* = pl + gm where (p, q) is a pair of relatively prime integers.
Since v* = 8E C 8Vj, then E C V; and [y*] = 0 in H;(V1). Hence
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Ip|=1 and ¢ = 0. We have 0A = ¢; U ¢y, dV2 = A%, intVa N F* = ¢,
and [y*] = £1 in H{(V2) = Z. Using Lemma 3.1 (2), we can prove the
lemma in Case 2).

We will define a symmetry-spun torus in S* (see [T]). Let D? x S!
be a solid torus, and K a knot in D? x S!. Let p; : D? x §' — D?x S!
be the b-fold cyclic cover given by (z,6) — (z,b0) for b € Z\{0}. Let
7y : D?xS' — D?x S! be the rotation map given by (z,6) — (z, 0+¢)
for ¢ € S1. Let 39 : D2 x S* — D? x S' x § C D* x S* x S! be the
inclusion map (z, @) + (z, 9, 8). Let a, b be integers satisfying b #0. We
define an embedded torus T%(K3) in D? x S! x S, which satisfies

T*(Ky) N D? x S* X 8 = i759(p " (K))-

And we identify D? x S! x S! with a regular neighborhood of a standard
torus in S4. Then the torus T%(Kj3) is called a symmetry-spun torus in
S4.

Let T be a torus in S%, o : S1 — I x S! an immersion. Suppose
T* = a(a,b) where (a,b) = 1, and b # 0. Then there exists a knot & in
D? x S! such that T is ambient isotopic to T%(db).

Remark. Let T be as above. There exists a symmetry-spun torus
T*(c) in S* such that (T°(d3))* = a(a, b) and T is ambient isotopic to
T%(a).

Lemma 3.2. Let T be a torus in S*, and o an immersion from S! to
I x S! with T* = a(a,b) where (a,b) =1, and b # 0. Let & be a knot in
D? x S! obtained from as above. If & is a trivial knot in S3, then T can
be moved to the standard position by an ambient isotopy of S*.

Proof. We may assume that 7 is ambient isotopic to T*(ds). By
[T,Theorem 8], then there exists a homeomorphism f : S4 — §% with
f(T*(63)) = TO(ci1) or T'(di1). We easily check that T(c;) and T (di)
can be moved to the standard position by an ambient isotopy of S*.
Then there exists a solid torus V in S§* with 8V = T°%(d;) or T*(day).
Hence 8f~1(V) = T*(c), and f~1(V) is a solid torus. By [H-K, Theo-
rem 1.7], T*(cis) can be moved to the standard position by an ambient
isotopy of S4.
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4 Main Theorem

Theorem 4.1. Let T be a torus in S* with p|T in general position. If
[(T*) consists of one simple closed curve, then T can be moved to the
standard position by an ambient isotopy of S*.

Proof. We distinguish four cases according to the position of I'(T’). See
Figure 2.

@ ‘
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Figure 2

If the position of T'(T) is either I or II, then T can be moved to the
standard position by Lemma 3.1. The case 111 cannot happen by Lemma
2.3. We will consider the case IV. Let A;, Ay be the closures of the
components of T \ I'(T), and yv* = I'(T*). Then T; = p(A;) is an
embedded torus, and T; N T3 = v*. By the solid torus theorem, there
exist solid tori Vi, Vp with dV; = T;,. We distinguish two cases: (1)
T.CVjor () VinTy = 1" ({i,4} = {1,2}).

Case 1) Ty C Vo or T, C Vi

We may assume T; C V2. Move T by an ambient isotopy of S4, and
we suppose that V3 is a standard solid torus.

(1-1) [7*]:0 in H] (Vg)

The simple closed curve v* is a meridian of V. Let V = S3\ intVs.
Then A, is an annulus satisfying 04z = ¢;Ucy, OV = A3, intVNF* = ¢,
and [y*] is a generator of H;(V) 2 Z. By Lemma 3.1 (2), 7* can be
cancelled. '

(1-ii) [y*] # 0 in Hy(V2).

Let N be a regular neighborhood of v* in V3, A = cl(ON N intV3),
and ag, a1 the components of A. Then A is an annulus, and [a;] #0in
Hy(V3). Cut V; by a meridian disk. We obtain Figure 3 (1) by Lemma
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2.1. In Figure 3 the curve v* is coiled four times to a preferred longitude
of Vo. Let V.= Vo \ N, and B =T \ intN. Then V is a solid torus,
and B is an annulus. Let by, b; be the components of @B, then [b;] # 0
in H;(V). We obtain Figure 3 (2) or (3) by Lemma 2.1. By Lemma 3.1
(2), we cancel v* of Figure 3 (2). We see in Figure 3 (3) that 7" is an
immersed torus Tj(a,b) with (a,b)=1, b # 0. By Lemma 3.2, T' can be
moved to the standard position. We completed the proof in Case 1).

Case 2) ViNTy =y*or VoNTy = v~

If Vo O Vj or V; D Vs, then we can use the method of Case 1). There-
fore, we may assume V; NV, = vy*. Let N be a regular neighborhood of
~*in 83, and W = V; U N U V,. Then W is a torus.

(2-1) [v*] =0 in Hy(W).

We denote v* = p;l;+q¢;m; € H,(0V;) where l; is a preferred longitude
of 3V; and m; is a meridian of dV;. We calculate H;(V;UV2) in a similar
way to Lemma 2.2. Since H;(W) 2 Z and [y*] =0 in H;(W), we have
p; = 0,|pi] = 1 where {i,j} = {1,2} (see Remark after Lemma 2.2).
Moreover, we get |¢;| = 1, and v* = %I; + ¢;m;. Since 7" is a boundary
of a meridional disk of 9V}, V; is a standard solid torus and v* = %I;.
By Lemma 3.1 (2), v* can be cancelled.

(24i) [y*] # 0 in Hy (W).

Suppose that W is a solid torus. Let A; = V;NdN, and a},a} be
the components of dA4;. Then A, is an annulus, and [a¥] # 0 in Hy(W).
Cut W by a meridional disk D. Using Lemma 2.1, we get Figure 4 (1).
Drawing the picture of 7* N N N D, then we get Figure 4 (2). Then we
see T* N D in Figure 4 (3). Moreover, v* satisfies Lemma 3.1 (2). Thus
~* can be cancelled.

Suppose that W is not a solid torus. Let V = S\ intW. By the
solid torus theorem, V is a solid torus. We find an annulus A with
N D AD«y* 0N D I0A An(V1UV,) = v*, and a; C J; where J; and J,
are components of N \ (intV; UintV,) and a1, a; are the components of
J0A. Let N; be the closure of the component of N\ A with N;NintV; # ¢.
Then V; U N; is a solid torus. Let Z; = V; U Ny, Zo = Vo U Ny and
Z3 = V. Then Z; is a solid torus, Z; N Z; = 0Z; N 0Z; is the annulus,
and S3 = Z; U Z, U Z3. By Lemma 2.2 and the fact that W is not a
solid torus, we have that Z; and Z, are standard tori. Let W; = Vj,
and W, = 83\ intV,. Then W, is a solid torus, W; = 9V, = T}, and
Wy D W;. We can reduce the argument to Case 1).
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This completes the proof of Theorem 4.1.

7K

Figure 3
A;
N
A; \
@
() 2)
Figure 4
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