A summability condition on the gradient ensuring BMO.

Alberto FIORENZA*

Abstract

It is well-known that if $u \in W^{1,1}(\Omega)$, $\Omega \subset \mathbb{R}^N$ satisfies $|Du| \in L^N(\Omega)$, then u belongs to $BMO(\Omega)$, the John-Nirenberg Space. We prove that this is no more true if |Du| belongs to an Orlicz space $L_A(\Omega)$ when the N-function A(t) increases less than t^N . In order to obtain $u \in BMO(\Omega)$, we impose a suitable uniform L_A condition for |Du|.

1 Introduction

In a recent paper Fusco-Lions-Sbordone ([FLS]) gave imbeddings of Orlicz-Sobolev spaces $W^{1,A}(\Omega)$, Ω a cube in \mathbb{R}^N , in Orlicz spaces with exponential growth, when the Young function A is of type $A(t) = t^N \log^{-\sigma}(e+t)$. If $\sigma=0$, the space $W^{1,A}(\Omega)$ reduces to $W^{1,N}(\Omega)$ and it is well-known that such space is imbedded in $BMO(\Omega)$. If $\sigma=1$ there are some counterexamples (see [GISS]) showing that $W^{1,A}(\Omega)$ is not imbedded in $BMO(\Omega)$.

In this paper first we show, adapting an example appeared in [GISS], that for any Young function A(t) which growths essentially less than t^N , the space $W^{1,A}(\Omega)$ is not imbedded in $BMO(\Omega)$. Such a result has been recently proved, in a different way, in a paper by Cianchi-Pick [CP]. Moreover, if we require that, in some sense, the gradient of a function u is in $L_A(\Omega, \mathbb{R}^N)$ uniformly with respect to the cubes contained in Ω , then

¹⁹⁹¹ Mathematics Subject Classification: 46E30, 46E35.

^{*}This work has been partially performed as a part of a National Research Project supported by M.U.R.S.T.

Servicio Publicaciones Univ. Complutense. Madrid, 1998.

we get the imbedding in $BMO(\Omega)$, even if the Young function A(t) has a growth essentially less than t^N . Namely, let us introduce the *uniform Orlicz spaces*

$$f \in \mathcal{U}_A(\Omega, \mathbb{R}^N) \iff |f|_{\mathcal{U}_A(\Omega, \mathbb{R}^N)} = \sup_{Q \in \Omega} |Q|^{\frac{1}{N}} ||f||_{L_A(Q)} < +\infty$$

where the supremum is extended to all cubes Q contained in Ω with sides parallel to the coordinate axis. If $A(t) = t^N$, then $\mathcal{U}_A(\Omega, \mathbb{R}^n)$ reduces to $L^N(\Omega, \mathbb{R}^N)$; if $A(t) = \frac{t^N}{\log^{\sigma}(e+t)}$, $\sigma > 0$, then $\mathcal{U}_A(\Omega, \mathbb{R}^N)$ contains $L^N(\Omega, \mathbb{R}^N)$. We show that for such A if $\nabla u \in \mathcal{U}_A(\Omega, \mathbb{R}^N)$ then $u \in BMO(\Omega)$ (see Corollary 3.4) and, more generally, following [IS], if we introduce the space

$$f \in \mathcal{U}^{N)}_{\sigma}(\Omega, I\!\!R^N) \Longleftrightarrow \sup_{Q \subset \Omega} \mid Q \mid^{\frac{1}{N}} \sup_{0 < \epsilon \le 1} \left(\epsilon^{\sigma} \oint_{Q} \mid f \mid^{N - \epsilon} dx \right)^{\frac{1}{N - \epsilon}} < + \infty$$

we have that $\mathcal{U}_A(\Omega, \mathbb{R}^N) \subset \mathcal{U}_{\sigma}^{N)}(\Omega, \mathbb{R}^N)$ (see Proposition 3.2) and, if $\nabla u \in \mathcal{U}_{\sigma}^{N)}(\Omega, \mathbb{R}^N)$, then $u \in BMO(\Omega)$ (see Theorem 3.3).

Finally, following [FLS], we will prove also some imbedding results in Orlicz spaces for the Riesz Potential Operator in the critical case (see Theorem 3.5).

2 Notation and Preliminary results

Let us fix notation and recall basic concepts. For our purposes, a Young function will be any nonnegative, even, convex function $\Phi: \mathbb{R}^1 \to \mathbb{R}^1$ such that Φ is (strictly) increasing on $[0,\infty)$, and $\lim_{t\to 0} \Phi(t)/t = 0$, $\lim_{t\to \infty} \Phi(t)/t = \infty$.

Let Ω be a bounded open set in \mathbb{R}^N . The Orlicz space $L_{\Phi}(\Omega)$ is defined to be the smallest vector space containing the set of all measurable functions f defined on Ω such that $\Phi(|f|) \in L^1(\Omega)$. It may be checked that $L_{\Phi}(\Omega)$ is a Banach space with respect to the norm

$$\|f\|_{\Phi} = \inf \left\{ \lambda > 0 : \oint\limits_{\Omega} \Phi\left(rac{\mid f\mid}{\lambda}
ight) dx \leq 1
ight\}$$

where the symbol \int_{Ω} stands for $\frac{1}{|\Omega|}\int_{\Omega}$. A special case is $\Phi(t)=\frac{t^p}{p}$ $(p\geq 1)$, in which $L_{\Phi}(\Omega)$ reduces to $L^p(\Omega)$. If $\Phi(t)=\frac{t^p}{\log^{\sigma}(e+t)}$ $(p>1,\sigma\geq 0)$ then the corresponding Orlicz space will be denoted by $L^p\log^{-\sigma}L(\Omega)$. Following [IS], we will consider also a space larger than $L^p\log^{-\sigma}L(\Omega)$, namely $L^p_{\sigma}(\Omega)$ $(p>1,\sigma\geq 0)$, defined as the Banach space of all measurable functions on Ω such that

$$||f||_{L^{p)}_{\sigma}} = \sup_{0 < \epsilon \le 1} \left(\epsilon^{\sigma} \oint_{\Omega} |f|^{p-\epsilon} dx \right)^{\frac{1}{p-\epsilon}} < +\infty.$$

Following [G], the closure of $L^{\infty}(\Omega)$ in $L^{p}_{\sigma}(\Omega)$ will be denoted by $\Sigma^{p}_{\sigma}(\Omega)$ (by $\Sigma^{p}(\Omega)$ if $\sigma = 1$), and it is characterized as the space of all measurable functions on Ω such that

$$\lim_{\epsilon \to 0} \left(\epsilon^{\sigma} \oint_{\Omega} |f|^{p-\epsilon} dx \right)^{\frac{1}{p-\epsilon}} = 0.$$

In [FLS] it is proved the following extension of Trudinger's imbedding theorem ([T]) for $W_0^{1,N}(\Omega)$ functions:

Theorem 2.1. If $u \in W_0^{1,1}(\Omega)$ is such that $|Du| \in L_{\sigma}^{N}(\Omega)$ for some $\sigma \geq 0$, then there exist $c_1 = c_1(N,\sigma)$, $c_2 = c_2(N,\sigma)$ such that

$$\int\limits_{\Omega} \exp\left(\left(\frac{\mid u\mid}{c_1\|Du\|_{L^{N)}_{\sigma}}\mid\Omega\mid^{\frac{1}{N}}}\right)^{\frac{N}{N-1+\sigma}}\right)dx \leq c_2$$

We remark that if Ω is convex, then an inequality of the same type is true also for functions $u \in W^{1,1}(\Omega)$, provided |u| is replaced by $|u - \int_{\Omega} u dx|$. In fact, giving a closer look to the proof of Theorem 2.1, the assumption $u \in W_0^{1,1}(\Omega)$ has been used only to write the inequality

$$|u(x)| \leq C(N) \int_{\Omega} |Du| |x-y|^{1-N} dy$$

If $u \in W^{1,1}(\Omega)$ and Ω is convex, replacing |u| by $|u - \int_{\Omega} u dx|$, this inequality is true with the constant in the right hand side depending only on N and the shape of Ω , but independently on the measure of Ω ([GT]). In the proof of Theorem 3.3 we will use such inequality with Ω replaced by a cube, therefore the constants will depend only on N.

In [FLS] it is proved also that if $u \in W_0^{1,1}(\Omega)$ and $|Du| \in \Sigma^N(\Omega)$ then $u \in exp(\Omega)$, that is the closure of $L^{\infty}(\Omega)$ in the Banach space

$$EXP(\Omega) = \left\{ f \in L^1(\Omega) : \exists \lambda > 0 \text{ such that } \oint_{\Omega} exp\left(\frac{\mid f\mid}{\lambda}\right) dx < \infty \right\}.$$

More generally, we will denote by $exp_{\alpha}(\Omega)$, $\alpha > 0$, the closure of $L^{\infty}(\Omega)$ in $EXP_{\alpha}(\Omega)$, the Orlicz space generated by the function $\Phi(t) = \exp(t^{\alpha}) - 1$.

Finally, let us recall that $BMO(\Omega)$ is defined (see [S] for instance) as the space of the measurable functions u such that

$$||u||_{BMO} = \sup_{Q \subset \Omega} \int_{Q} |u - u_Q| dx < +\infty$$

where the supremum is taken over all cubes Q with sides parallel to the coordinate axes, and u_Q stands for $\int_Q u dx$. We would get an equivalent

definition of $BMO(\Omega)$ if we replace the family of all cubes by the family of all balls. It is possible to prove (see [KJF] for instance) that if Ω is a cube then $BMO(\Omega)$ functions can be characterized by the following property:

$$\exists \lambda > 0 : \sup_{Q \in \Omega} \int_{Q} \exp\left(\frac{|u - u_Q|}{\lambda}\right) dx < +\infty.$$

3 The main results

Let us recall that by Moser's inequality ([M]) $W^{1,N}(\Omega)$ functions are $\exp_{\frac{n}{n-1}}(\Omega)$ functions, and if $|Du| \in L^N \log^{-\sigma} L(\Omega)$ then $u \in \exp_{\frac{n}{n-1}+\sigma}(\Omega)$

We now study imbeddings in $BMO(\Omega)$. While $W^{1,N}(\Omega)$ functions are $BMO(\Omega)$ functions, if A(t) is a Young function with a growth essen-

tially less than t^N , then the Orlicz-Sobolev space $W^{1,A}(\Omega)$ is not imbedded in $BMO(\Omega)$. In fact we have the following example (see [GISS] for the case $A(t) = t^N \log^{-\sigma}(e+t)$):

Example 3.1. Let Ω be a bounded open set in \mathbb{R}^N , and let A be a Young function of the type $A(t) = t^N \varphi(t)$, $\varphi(+\infty) = 0$. Then there exists a measurable function u such that $|Du| \in L_A(\Omega)$ and $u \notin BMO(\Omega)$.

Let $\{a_j\}_{j\in \mathbb{N}}$ be such that

$$\sum_{j} a_j^N j^{-2} < +\infty \tag{3.1}$$

$$\lim_{j} a_{j} = +\infty \tag{3.2}$$

and let $\{r_j\}_{j\in \mathbb{N}}$ be such that

$$\sum_{j} r_{j} < +\infty \tag{3.3}$$

$$\varphi(t) \le \frac{1}{j^2 \log 2} \qquad \forall t > \frac{a_j}{r_j}, \quad \forall j \in \mathbb{N}$$
(3.4)

Let us note that by (3.3) we can find a sequence of points $x_j \in \Omega$ such that the balls $B(x_j, r_j)$ are pairwise disjoint and contained in Ω (at least for j large enough). Let us define

$$h_j(x) = a_j h\left(rac{x-x_j}{r_j}
ight) \quad orall x \in \Omega, \quad orall j \in I\!\!N$$

where

$$h(x) = \begin{cases} 0 & \text{if } |x| \ge 1\\ -\log|x| & \text{if } \frac{1}{2} \le |x| \le 1 \quad \forall x \in \mathbb{R}^n\\ \log 2 & \text{if } |x| \le \frac{1}{2} \end{cases}$$

and let $u = \sum_{j} h_{j}$. Notice that $u(x) = h_{j}(x)$ if $|x - x_{j}| < r_{j}$. Hence, we have

$$||u||_{BMO} \ge \int_{B_j} |h_j - (h_j)_{B_j}| dx = a_j \int_{B_j} |h - (h)_B| dx \quad \forall j \in IN$$

where B is the unit ball of \mathbb{R}^n , and therefore, by (3.2), $u \notin BMO(\Omega)$.

On the other hand

$$\mid Dh_j \mid \leq \left\{ egin{array}{ll} rac{a_j}{\mid x-x_j \mid} & ext{if } rac{r_j}{2} \leq \mid x-x_j \mid \leq r_j \\ 0 & ext{if } \mid x-x_j \mid \leq rac{r_j}{2} \end{array}
ight.$$

and therefore, by (3.4),

$$\int_{|x-x_{j}| \leq r_{j}} A(|Dh_{j}|) dx \leq \int_{\frac{r_{j}}{2} \leq |x-x_{j}| \leq r_{j}} A\left(\frac{a_{j}}{|x-x_{j}|}\right) dx$$

$$= N\omega_{N} \int_{\frac{r_{j}}{2}}^{r_{j}} A\left(\frac{a_{j}}{\rho}\right) \rho^{N-1} d\rho$$

$$= N\omega_{N} a_{j}^{N} \int_{\frac{r_{j}}{2}}^{r_{j}} \frac{1}{\rho} \varphi\left(\frac{a_{j}}{\rho}\right) d\rho$$

$$\leq N\omega_{N} a_{j}^{N} \int_{\frac{r_{j}}{2}}^{r_{j}} \frac{1}{\rho} \cdot \frac{1}{j^{2} \log 2} d\rho$$

$$= N\omega_{N} a_{j}^{N} \frac{1}{j^{2}}$$

where ω_N denotes the measure of the unit ball in \mathbb{R}^n , from which, summing over j and using (3.1), we get $|Du| \in L_A(\Omega)$.

We remark that if |Du| belongs to some suitable spaces containing $L^N(\Omega)$ (for instance, $weak-L^N(\Omega)$) then it is known that $u \in BMO(\Omega)$. Now we introduce some new spaces having this property, which represent a variant of the classical Orlicz spaces. Namely, we consider the functions $f \in L_A(\Omega)$ such that

$$|f|_{p,A,\Omega} = \sup_{Q \in \Omega} |Q|^{\frac{1}{p}} ||f||_{L_A(Q)} < +\infty$$

If $A(t) = t^p$, then $|f|_{p,A,\Omega}$ reduces to the classical norm in L^p spaces. If p = N and $A(t) = \frac{t^N}{\log^{\sigma}(e+t)}$ $(N > 1, \sigma > 0)$ then $|f|_{p,A,\Omega}$ is a norm

defining a Banach space and it is different from $||f||_{L_A(\Omega)}$. The following result hold:

Proposition 3.2. Let
$$A(t)=\frac{t^N}{\log^{\sigma}(e+t)}$$
 $(N>1,\sigma>0)$. If
$$\sup_{Q \in \Omega} |Q|^{\frac{1}{p}} ||f||_{L_A(Q)} < +\infty$$

then

$$\sup_{\substack{Q \subset \Omega \\ 0 < \epsilon \le 1}} |Q|^{\frac{1}{N}} \left(\epsilon^{\sigma} \int_{Q} |f|^{N - \epsilon} dx \right)^{\frac{1}{N - \epsilon}} < +\infty$$

Proof. Let $f \in L_A(\Omega)$, $f \geq T_{\sigma}$ where $A(T_{\sigma}) = 1$. By using the elementary inequality

$$(e+t)^{\varepsilon} < e+t^{\varepsilon} \quad (0 < \varepsilon < 1, t \ge 0)$$

we obtain

$$\varepsilon^{\sigma} f^{N-\varepsilon} = \frac{\log^{\sigma}[(e+f)^{\varepsilon}]}{f^{\varepsilon}} \frac{f^{N}}{\log^{\sigma}(e+f)} \leq \frac{\log^{\sigma}(e+f^{\varepsilon})}{f^{\varepsilon}} \frac{f^{N}}{\log^{\sigma}(e+f)}$$
$$\leq C_{\sigma} \frac{f^{N}}{\log^{\sigma}(e+f)}$$

for some $C_{\sigma} > 0$, therefore

$$\sup_{0<\epsilon\leq 1}\left(\epsilon^{\sigma}\int\limits_{Q}\mid f\mid^{N-\epsilon}\,dx\right)^{\frac{1}{N-\epsilon}}\leq C_{\sigma}\int\limits_{Q}\frac{f^{N}}{\log^{\sigma}(e+f)}dx$$

If we drop the condition $f \geq T_{\sigma}$, applying the previous estimate to $\max(|f|, T_{\sigma})$ we get

$$\sup_{0<\epsilon \le 1} \left(\epsilon^{\sigma} \oint_{Q} |f|^{N-\epsilon} dx \right)^{\frac{1}{N-\epsilon}} \le C_{\sigma} \oint_{Q} \frac{\max(|f|, T_{\sigma})^{N}}{\log^{\sigma} (e + \max(|f|, T_{\sigma}))} dx$$

$$\le C_{\sigma} \oint_{Q} \frac{f^{N}}{\log^{\sigma} (e + f)} dx + D_{\sigma}$$

for some $D_{\sigma} \geq 0$.

Replacing f by $\frac{f}{\|f\|_{L_A(Q)}}$, the right hand side is majorized by a constant depending only on σ , and independent of Q, therefore the assertion follows multiplying by $\|Q\|^{\frac{1}{N}} \|f\|_{L_A(Q)}$ and taking the supremum over all cubes Q contained in Ω .

Theorem 3.3. If $u \in W^{1,1}(\Omega)$, Ω cube in \mathbb{R}^N (N > 1), is such that |Du| verifies the condition

$$|Du| \in \mathcal{U}_{\sigma}^{N}(\Omega, \mathbb{R}^{N}) \iff \sup_{Q \subset \Omega} |Q|^{\frac{1}{N}} \sup_{0 < \epsilon \le 1} \left(\epsilon^{\sigma} \oint_{Q} |Du|^{N-\epsilon} dx \right)^{\frac{1}{N-\epsilon}} =$$

$$M_{u,\sigma} < +\infty, \tag{3.5}$$

for some $\sigma > 0$, then $u \in BMO(\Omega)$.

Proof. Without loss of generality we can assume $0 < \sigma \le 1$. Let us fix $Q \subset \Omega$ and let us apply Theorem 2.1 with Ω replaced by Q, and u replaced by $u - u_Q$. We have

$$\begin{split} & \oint_{Q} \exp\left(\left(\frac{\mid u - u_{Q}\mid}{c_{1}M_{u,\sigma}}\right)^{\frac{N}{N-1+\sigma}}\right) dx \leq \\ & \oint_{Q} \exp\left(\left(\frac{\mid u - u_{Q}\mid}{c_{1}||Du||_{L_{\sigma}^{N)}}||Q||^{\frac{1}{N}}}\right)^{\frac{N}{N-1+\sigma}}\right) dx \leq c_{2}(N,\sigma), \end{split}$$

from which

$$\int_{Q} \exp\left(\frac{\mid u - u_{Q} \mid}{c_{1}M_{u,\sigma}}\right) dx = \int_{\substack{\mid u - u_{Q} \mid \\ c_{1}M_{u,\sigma}}} \exp\left(\frac{\mid u - u_{Q} \mid}{c_{1}M_{u,\sigma}}\right) dx + \int_{\substack{\mid u - u_{Q} \mid \\ c_{1}M_{u,\sigma}} \le 1} \exp\left(\frac{\mid u - u_{Q} \mid}{c_{1}M_{u,\sigma}}\right) dx$$

$$\leq \int_{Q} \exp\left(\left(\frac{\mid u - u_{Q}\mid}{c_{1}M_{u,\sigma}}\right)^{\frac{N}{N-1+\sigma}}\right) dx + \int_{Q} \exp(1) dx$$

$$\leq c_{2}(N,\sigma) \mid Q \mid +e \mid Q \mid$$

and therefore

$$\sup_{Q\subset\Omega}\int_Q\exp\left(\frac{\mid u-u_Q\mid}{c_1M_{u,\sigma}}\right)dx<+\infty.$$

Since Ω is a cube, then $u \in BMO(\Omega)$.

We prove now the following

Corollary 3.4. Let $A(t) = \frac{t^N}{\log^{\sigma}(e+t)}$ $(N > 1, \sigma > 0)$. If $|Du|_{N,A,\Omega} < +\infty$, then $u \in BMO(\Omega)$.

Proof. For any $Q \subset \Omega$ we have $||f||_{L_A(Q)} < +\infty$ and therefore (see [BFS] lemma 3; see also [G])

$$\lim_{\epsilon \to 0+} \left(\epsilon^{\sigma} \int_{Q} |Du|^{N-\epsilon} dx \right)^{\frac{1}{N-\epsilon}} = 0$$

from which

$$\sup_{0<\epsilon\leq 1}\left(\epsilon^{\sigma}\int_{Q}\mid Du\mid^{N-\epsilon}dx\right)^{\frac{1}{N-\epsilon}}<+\infty\quad\forall Q\subset\Omega.$$

We have

$$\sup_{Q \subset \Omega} |Q|^{\frac{1}{N}} \sup_{0 < \epsilon \le 1} \qquad \left(\epsilon^{\sigma} \int_{Q} |Du|^{N-\epsilon} dx \right)^{\frac{1}{N-\epsilon}}$$

$$\leq \sup_{Q \subset \Omega} |Q|^{\frac{1}{N}} \sup_{0 < \epsilon \le 1} \epsilon^{\frac{\sigma}{N-\epsilon}} c(N,\sigma) ||Du||_{L_{A}(Q)}$$

$$\leq c(N,\sigma) \sup_{Q \subset \Omega} |Q|^{\frac{1}{N}} ||Du||_{L_{A}(Q)}$$

$$= c(N,\sigma) |Du|_{A,\Omega} < +\infty$$

and therefore by Theorem 3.3 the assertion follows.

By Corollary 3.4, the function f of Example 3.1 is such that $|Df|_{N,A,\Omega} = +\infty$. This fact could be also verified directly, by proving that

$$\mid B_j \mid^{\frac{1}{N}} \sup_{0 < \epsilon \le 1} \left(\epsilon \oint_{B_j} \mid Dh_j \mid^{N-\epsilon} dx \right)^{\frac{1}{N-\epsilon}} = c(N)a_j \quad \forall j \in \mathbb{N}.$$

Let us note also that the BMO function $u(x) = \log |x| (|x| \le 1)$ verifies the condition (3.5), and is such that $u \notin L^{\infty}$, $|Du| \notin L^{N}$.

We remark that by using the same arguments to prove Theorem 2.1 it is possible to give an alternative proof of a well-known result by Adams [A] (see Corollary 4.2) about the Riesz Potential Operator defined by

$$I_{rac{N}{p}}f=\int_{\Omega}\mid x-y\mid^{rac{N}{p}-N}f(y)dy.$$

Theorem 3.5. Let $1 , <math>\sigma > 0$. If $f \in L^{p)}_{\sigma}(\Omega)$, then $I_{\frac{N}{p}}f \in EXP_{\frac{p}{p-1+\sigma}}(\Omega)$

Proof. Let us start again from the inequality

$$||I_{\frac{N}{p}}f||_q \leq q^{\frac{p-\epsilon-1}{p-\epsilon}} \cdot q^{\frac{1}{q}} \cdot \omega_N^{\frac{p-\epsilon-1}{p-\epsilon}} \cdot |\Omega|^{\frac{1}{q}} \cdot ||f||_{p-\epsilon} \quad \forall q \geq p, \qquad \forall 0 < \epsilon \leq 1.$$

We have

$$\begin{split} \epsilon^{\frac{\sigma}{p-\epsilon}} \|I_{\frac{N}{p}} f\|_{q} & \leq q^{\frac{p-\epsilon-1}{p-\epsilon}} \cdot q^{\frac{1}{q}} \cdot \omega_{N}^{\frac{p-\epsilon-1}{p-\epsilon}} \cdot |\Omega|^{\frac{1}{q}} \cdot \epsilon^{\frac{\sigma}{p-\epsilon}} \|f\|_{p-\epsilon} \\ & \leq q^{\frac{p-\epsilon-1}{p-\epsilon}} \cdot q^{\frac{1}{q}} \cdot \omega_{N}^{\frac{p-\epsilon-1}{p-\epsilon}} \cdot |\Omega|^{\frac{1}{q}} \cdot \|f\|_{L_{\sigma}^{p}} \end{split}$$

and therefore

$$\sup_{0<\epsilon\leq 1}\epsilon^{\frac{p-1+\sigma}{p}}\left(\int\limits_{\Omega}\left|\frac{I_{\frac{N}{p}}f}{\|f\|_{p}}\right|^{\frac{1}{\epsilon}}dx\right)^{\epsilon}< c(n)$$

from which the assertion follows.

Corollary 3.6. Let $1 . There exist constant <math>c_0 = c_0(N)$, $c_1 = c_1(N, p)$ such that for any $f \in L^p(\Omega)$ the following inequality holds:

$$\int\limits_{\Omega} \exp\left(\left(\frac{\mid I_{\frac{N}{p}}f\mid}{c_0\|f\|_p}\right)^{\frac{p}{p-1}}\right) dx \leq c_1$$

Applying to the Theorem 3.5 the same density argument as in [CS], if a function f is in the closure of $L^{\infty}(\Omega)$ of $L^{p)}_{\sigma}(\Omega)$ then the image of f by the linear continuous operator $I_{\frac{N}{p}}$ must be in the closure of $L^{\infty}(\Omega)$ of $EXP_{\frac{p}{p-1+\sigma}}(\Omega)$, therefore we have also the following

Corollary 3.7. Let $1 , <math>\sigma > 0$. If $f \in \Sigma^p_{\sigma}(\Omega)$, then $I_{\frac{N}{p}}f \in exp_{\frac{p}{p-1+\sigma}}(\Omega)$

We remark that, in the same way, as a corollary of Theorem 3.5, we get that if $f \in L^p(\Omega)$, then $I_{\frac{N}{p}} f \in exp_{\frac{p}{p-1}}(\Omega)$.

References

- [A] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of Math. 128 (1988), 385-398.
- [BFS] H. Brézis, N. Fusco and C. Sbordone, Integrability for the Jacobian of orientation preserving mappings, J. Funct. Anal. 115 (1993), 425-431.
- [CP] A. Cianchi and L. Pick, Sobolev embeddings into BMO, VMO, and L_{∞} , Preprint Centre de Recerca Matematica **350** (1997), 1-24.
- [CS] M. Carozza and C. Sbordone, The distance to L^{∞} in some function spaces and applications, Differential Integral Equations 10 (1997), 599-607.
- [FLS] N. Fusco, P. L. Lions and C. Sbordone, Sobolev Imbedding Theorems in Borderline Cases, Proc. Amer. Math. Soc. 124 (1996), no. 2, 561-565.

- [G] L. Greco, A Remark on the Equality detDu = DetDu, J. Diff. and Int. Equations 6 (1993), 1089-1100.
- [GISS] L. Greco, T. Iwaniec, C. Sbordone and B. Stroffolini, Degree Formulas for Maps with Nonintegrable Jacobian, Topological Methods in Nonlinear Analysis 6 (1995), 81-95.
- [GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
- [IS] T. Iwaniec and C. Sbordone, On the Integrability of the Jacobian under Minimal Hypotheses, Arch. Rational Mech. Anal. 119 (1992), 129-143.
- [KJF] A. Kufner, O. John and S. Fucik, Function Spaces, Noordhoff International Publishing, Leyden, 1977.
- [M] J. Moser, A Sharp form of an Inequality by N. Trudinger, Indiana U. Math. J. 20 (1971), no. 11, 1077-1092.
- [S] E. Stein, Harmonic Analysis, Princeton University Press, Princeton, New Jersey, 1993.
- [T] N. S. Trudinger, On Imbeddings into Orlicz Spaces and some Applications, J. Math. and Mech. 17 (1967), no.5, 473-483.

Alberto Fiorenza, Dipartimento di Matematica e Applicazioni, "R. Caccioppoli", Via Cintia, 80126 Napoli, Italy

e-mail: fiorenza@matna2.dma.unima.it

Recibido: 14 de Abril de 1997 Revisado: 3 de Diciembre de 1997