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A summability condition on the gradient
ensuring BMO.

Alberto FIORENZA*

Abstract
It is well-known that if u € W11(R2), @ C R" satisfies | Du |€
LY (), then u belongs to BMO(RQ), the John-Nirenberg Space.
We prove that this is no more true if | Du | belongs to an Orlicz
space L4(Q2) when the N-function A(t) increases less than ¢tV . In
order to obtain u € BMO(f2), we impose a suitable uniform L4
condition for | Du |.

1 Introduction

In a recent paper Fusco-Lions-Sbordone ([FLS}) gave imbeddings of
Orlicz-Sobolev spaces W14(Q), Q a cube in RY_ in Orlicz spaces with
exponential growth, when the Young function A is of type A(t) =
tVlog~? (e + t). If o0 = 0, the space W14(Q) reduces to W (Q) and
it is well-known that such space is imbedded in BMO(R). If 0 = 1
there are some counterexamples (see [GISS]) showing that W14(Q) is
not imbedded in BMO().

In this paper first we show, adapting an example appeared in [GISS],
that for any Young function A(t) which growths essentially less than ¢V,
the space W14(Q) is not imbedded in BMO(R). Such a result has been
recently proved, in a different way, in a paper by Cianchi-Pick [CP].
Moreover, if we require that, in some sense, the gradient of a function
u is in Ly(Q, RN) uniformly with respect to the cubes contained in Q,
then
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we get the imbedding in BMO(f2), even if the Young function A(t) has
a growth essentially less than ¢V. Namely, let us introduce the uniform
Orlicz spaces

S EUNRBY) = [y, )= 3B 1 Q@ IV 1S ) < +o0

)

where the supremum is extended to all cubes @Q contained in Q with

sides parallel to the coordinate axis. If A(t) = tV, then Us (R, R")
. N

reduces to LN (Q, RN); if A(t) = log"te+t)’ o > 0, then Uy (Q, RY)

contains LY (€, RV). We show that for such A if Vu € Us (2, B") then
u € BMO(R) (see Corollary 3.4) and, more generally, following [IS], if
we introduce the space

fEUN)(QBN)(E)supIQlN sup, ][|f|N‘d:c < 400

we have that U, (Q, RY) C Uiv)(ﬂ, RYN) (see Proposition 3.2) and, if

Vu € L(év)(Q, RN), then u € BMO(Q) (see Theorem 3.3).

Finally, following [FLS], we will prove also some imbedding results
in Orlicz spaces for the Riesz Potential Operator in the critical case (see
Theorem 3.5).

2 Notation and Preliminary results

Let us fix notation and recall basic concepts. For our purposes, a Young
function will be any nonnegative, even, convex function ® : R &
R! such that @ is (strictly) increasing on [0, 0c0), and 11_% ®(t)/t = 0,
il—l—»rgo ®(t)/t =00

Let Q be a bounded open set in R"Y. The Orlicz space Lg(Q) is de-
fined to be the smallest vector space containing the set of all measurable

functions f defined on 2 such that ®(] f |) € L!(Q). It may be checked
that Ly () is a Banach space with respect to the norm

”f||<1>=inf{)\>0:(]z[<1><l—§l)dzg1}



A summability condition on the gradient. .. 315

where the symbol f stands for / . A special case is ®(t) =
Q Q

1
Q]
» ,
il (p > 1), in which Lg(Q) reduces to LP(Q). I &() =
P 1

log? (e +t)
denoted by L?log™? L(§2). Following [IS], we will consider also a space
larger than L? log=? L(R), namely L2(Q) (p > 1,0 > 0), defined as the
Banach space of all measurable functions on € such that

(p > 1,0 > 0) then the corresponding Orlicz space will be

1
p—e
Ifll p = sup (66][ | f1P~° dx) < +o00.
e 0<e<1 3

Following [G], the closure of L*°({) in ? () will be denoted by X2 ()
(by £P(R2) if 0 = 1), and it is characterized as the space of all measurable
functions on 2 such that

1
p—e
: o p—e —
zx_%(eflﬂ dm) =0.
Q
In [FLS] it is proved the following extension of Trudinger’s imbedding

theorem ([T]) for W2 () functions:

Theorem 2.1. If u € Wy (Q) is such that | Du |€ Lf,v)(Q) for some
o > 0, then there ezist ¢y = ¢1(N,0), c3 = ca(N, ) such that

| ul et
][exp T dz < cg
Q CIIIDu”LLV) l Q |N

We remark that if Q is convex, then an inequality of the same type
is true also for functions u € W1!(Q), provided |u| is replaced by

|lu ~ ][ udz|. In fact, giving a closer look to the proof of Theorem 2.1,
Q
the assumption u € W(} 'I(Q) 'has been used only to write the inequality

@) 1<CM) [ 1Dulla -y "N dy
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If u € Wh(Q) and Q is convex, replacing |u| by |u ——][ udz|, this
Q

inequality is true with the constant in the right hand side depending
only on N and the shape of Q, but independently on the measure of
([GT}). In the proof of Theorem 3.3 we will use such inequality with
replaced by a cube, therefore the constants will depend only on N.

In [FLS] it is proved also that if v € Wy''(Q) and | Du |€ =N(Q)
then u € ezp(f?), that is the closure of L>°(2) in the Banach space

EXP(Q) = {f € L}(Q) : 3X > 0 such that 7[6:1:1) (%) dz < oo} .
Q

More generally, we will denote by ezp,(?), a > 0, the closure of
L>®(Q) in EX P,(2), the Orlicz space generated by the function ®(t) =
exp(t*) — 1.

Finally, let us recall that BMO(S) is defined (see [S] for instance)
as the space of the measurable functions u such that

HMBM0=&mflu—mﬂdm<+w
QCa ' _

where the supremum is taken over all cubes @ with sides parallel to the

coordinate axes, and ug stands for ][ udz. We would get an equivalent

Q
definition of BMO(R2) if we replace the family of all cubes by the family
of all balls. It is possible to prove (see [KJF] for instance) that if Q is
a cube then BMO(Q) functions can be characterized by the following
property:

dA > 0 : sup 4 exp (M> dz < +o0.
Qcay A

3 The main results

Let us recall that by Moser’s inequality ([M]) WV (Q) functions are
ezp_n_(€) functions, and if | Du |€ LV log™ L(f) then u € ezp_=n__(Q)

n—14o
We now study imbeddings in BMO(2). While WV (Q) functions
are BMO(R) functions, if A(t) is a Young function with a growth essen-
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tially less than t"V, then the Orlicz-Sobolev space W14(£) is not imbed-
ded in BMO(Q). In fact we have the following example (see [GISS] for
the case A(t) =tV log™" (e + t)):

Example 3.1. Let 2 be a bounded open set in RY, and let A be a Young
function of the type A(t) = tVN(t), ¢(+00) = 0. Then there ezists a
measurable function u such that | Du |€ L4(R2) and u § BMO(Q).

Let {a;},. v be such that
Y el < oo (3.1)
J

lima; = 400 (3.2)
3

and let {r;}.. py be such that

er < 400 (3.3)
J
1 a; .
e(t) < 7iog2 vt > r—j, VielN (3.4)

Let us note that by (3.3) we can find a sequence of points z; € Q such
that the balls B(z;, r;) are pairwise disjoint and contained in 2 (at least
for j large enough). Let us define

hj(z):ajh(x;xj) VzeQ, VjeN
i
where
0 if |:c|2]
hz)=¢ —log|z| ifi<|z|<1 VzeR"
log 2 if IxIS%

and let w = )", h;. Notice that u(z) = h;(z) if | z — z; |< r;.
Hence, we have

uu||BMo>][|h B,;dx_a,][m R)g|dz Vi€ N

where B is the unit ball of R", and therefore, by (3.2), v ¢ BMO(Q).
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On the other hand
]—’—[a'. if 2 <|z—a;|<r;
|Dhj|S{z_m’ 2= 1=

0 iflz—a:j|§-r21

and therefore, by (3.4),

/ A( Dhi iz < / A(I-wf—fxﬂ)dz

le=z;1<r; Y <lz—z,)<r,
s
= NwN/A (2_]_) pNldp
A p
2
75
1 /a
- o (%)
7 RAVY
L
2
Ty
1 1
< N N/_.__.__
< Noway' [ 2 5ioga®
3
T2
1
= N(.u]vcz;-vj—2

where wy denotes the measure of the unit ball in R", from which, sum-
ming over j and using (3.1), we get | Du |€ L4(€).

]

We remark that if | Du | belongs to some suitable spaces containing

LY (Q) (for instance, weak— L™ (Q)) then it is known that u € BMO(Q).

Now we introduce some new spaces having this property, which represent

a variant of the classical Orlicz spaces. Namely, we consider the functions
f € L4(R2) such that

1
AQ= Su P < 400
| Flnaa= 509 1@ ¥ Ifl.co

If A(t) =tP, then | f |p,4,q reduces to the classical norm in L? spaces. If
N

p= N and A(t) = ] (N > 1,0 > 0) then | f |,,4,0 is a norm

t
log7(e+t
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defining a Banach space and it is different from || f||z ,(q). The following
result hold:
tN

Proposition 3.2. Let A(t) = W

(N>1,0>0). If

1
su P < 400
sup 1 Q17 | fllLa(@)

then .
N—¢

sup | Q |¥ fflfW*dz«<+w
QCN 2

0<e<1

Proof. Let f € L4(Q), f > T, where A(T,) = 1. By using the
elementary inequality

(e+t)*<e+t® (0<e<1,t>0)

we obtain
e _ loglled S)]_ SN _log(etf)
fe log”(e+ f) ~ fe log?(e+f)
. N

< Com—s—F0nt
= log’(e+f)
for some C, > 0, therefore

i .
_ f
su e"][ N-c gy < C'.,][ ———dz
e\ T S g e )

If we drop the condition f > T,, applying the previous estimate to
max(| f |,T,) we get

o N-—¢ max ' fl Ta)
ﬁilff'“ 4z fog@+muun,»ﬂ

(*][ 44D,
log’ (e +f T
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for some D, > 0.

Replacing f by Mo’ the right hand side is majorized by a con-
A

stant depending only on o, a,rlxd independent of ¢}, therefore the assertion
follows multiplying by | @ |V ||fl|z (@) and taking the supremum over
all cubes @ contained in €2.

Theorem 3.3. If u € WH1(Q), Q cube in RN (N > 1), is such that
| Du | verifies the condition

1

N—¢
| Du e UM (Q, RV) < sup | Q |¥ sup e"][ | DuN=¢dz |=
Qca 0<e<1
Q
Mu,o’ < +w1 (3.5)

for some 0 > 0, then u € BMO(Q).

Proof. Without loss of generality we can assume 0 < o < 1. Let us
fix Q C Q and let us apply Theorem 2.1 with Q replaced by @, and u
replaced by u — ug. We have

N
| u—ug [\
e <
fexp (( 1Moy dz <

Q@

| u—ug | i
%exp @ ; dz < ¢3(N,0),
5 cil| Dulipm | Q |¥

from which
/exp le—uwl), . _
clMu,o

Q
| u—ugq | / | u—uq |
exp| ———— | dz + exp| ———— ldz
./ P ( ClMu,a P ClMu,a
Sl >1 b
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iTe o
/exp ((‘Z;Muq——') ' ) dx+/exp(1)dz
Q 1My .0 Q
c2(N,0) | Q| +e| Q|

and therefore

IA

IN

sup 4 exp luzuql dz < +o00.
QCQQ C}Mu,a

Since 2 is a cube, then u € BMO(R).

We prove now the following
N

Corollary 3.4. Let A(t) = W

+00, then u € BMO(R).

Proof. For any Q C Q we have ||f||z,(@) < +00 and therefore (see
[BFS] lemma 3; see also [G])

(N >1,0>0). If|] Du|n,a0<

¥
lim e”][ | Du [N dz =0
€0+
Q
from which

1
N—¢

sup e"][ | Du |N—¢ dz <400 VQ CS.
Q

0<e<1

We have

1
N=¢

0<e<1

sup | Q |% sup e"][ | Du [N-¢ de
QcCQ < 3

IA

1 o
sup | Q [N sup e¥-<¢(N,o)||DullL ,q)
QC 0<e<1

IA

1
¢(N,o0) su v ||D
( )QC% | Q|7 || DullL,(q)
= ¢(N,0)| Du|an< +o0
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and therefore by Theorem 3.3 the assertion follows. n

By Corollary 3.4, the function f of Example 3.1 is such that
| Df |n,a0= +o0o. This fact could be also verified directly, by proving
that

P
N—¢

| B; [¥ Sup 6][ | Dhj |N~¢ da =c¢(N)a; Vj€N.
€
- B, .

Let us note also that the BMO function u(z) = log | z | (| z |[< 1)
verifies the condition (3.5), and is such that u ¢ L, | Du |¢ LV.
We remark that by using the same arguments to prove Theorem 2.1

it is possible to give an alternative proof of a well-known result by Adams
[A] (see Corollary 4.2) about the Riesz Potential Operator defined by

I%f = /Q |z -y I%'N f(y)dy.

Theorem 3.5. Let1 < p < 400, 0 > 0.If f € Lg)(Q), then Iy f €
P
EXPF{TE(Q)

Proof. Let us start again from the inequality

p—ec— b, Jownd
p—c

[N e 1
Mxfllg < g7 -qe-wy™ - |7 W fllp-c Yg2p, VO<e<I

We have

p—e—1 1 p—e—1

< L = 1 Jo- S
<l xflly < g7 -qi oy [ Q] fllp—e

IA

p—e—1 1 p—e~1

= L
< T g oy Q5 Sl

and therefore

1
€

In f
£l

—140
sup € ? ][ dz | <c(n)
0<e<1 2

from which the assertion follows.
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Corollary 3.6. Let 1 < p < +0o. There ezist constant co = co(N),
1 = c1(N, p) such that for any f € LP() the following inequality holds:

REZY = e <
SJf TP\ wll s T

Applying to the Theorem 3.5 the same density argument as in [CS)],

if a function f is in the closure of L*®(Q) of Lg)(Q) then the image of f
by the linear continuous operator Ix must be in the closure of L>(Q)

of EX P"{'T“ (2), therefore we have also the following
p—lt+o

Corollary 3.7. Let1 < p < 400, 0 > 0. If f € ZP(Q), then I%f €

e2p bz ()
We remark that, in the same way, as a corollary of Theorem 3.5, we

get that if f € LP(2), then In f € erp_r. ().
N -

References

[A] D.R. Adams, A sharp inequality of J. Moser for higher order deriv-
atives, Annals of Math. 128 (1988), 385-398.

[BFS] H. Brézis, N. Fusco and C. Sbordone, Integrability for the Ja-
cobian of orientation preserving mappings, J. Funct. Anal. 115
(1993), 425-431.

[CP] A. Cianchi and L. Pick, Sobolev embeddings into BMO, VMO,
and Ly, Preprint Centre de Recerca Matematica 350 (1997), 1-
24,

[CS] M. Carozza and C. Sbordone, The distance to L™ in some function
spaces and applications, Differential Integral Equations 10 (1997),
599-607.

[FLS] N. Fusco, P. L. Lions and C. Sbordone, Sobolev Imbedding Theo-
rems in Borderline Cases, Proc. Amer. Math. Soc. 124 (1996), no.
2, 561-565.

323



324 Alberto Fiorenza

[G] L. Greco, A Remark on the Equality detDu = DetDu, J. Diff. and
Int. Equations 6 (1993), 1089-1100.

[GISS] L. Greco, T. Iwaniec, C. Sbordone and B. Stroffolini, Degree For-
mulas for Maps with Nonintegrable Jacobian, Topological Methods
in Nonlinear Analysis 6 (1995), 81-95.

[GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential
Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New
York-Tokyo, 1983.

(IS} T. Iwaniec and C. Sbordone, On the Integrability of the Jacobian
under Minimal Hypotheses, Arch. Rational Mech. Anal. 119 (1992),
129-143.

[KJF] A. Kufner, O. John and S. Fucik, Function Spaces, Noordhoff
InternationalPublishing, Leyden, 1977.

[M] J. Moser, A Sharp form of an Inequality by N. Trudinger, Indiana
U. Math. J. 20 (1971), no. 11, 1077-1092.

[S] E. Stein, Harmonic Analysis, Princeton University Press, Prince-
ton, New Jersey, 1993.

[T] N.S. Trudinger, On Imbeddings into Orlicz Spaces and some Ap-
plications, J. Math. and Mech. 17 (1967), no.5, 473-483.

Alberto Fiorenza,

Dipartimento di Matematica e Applicazioni,
“R. Caccioppoli”,

Via Cintia,

80126 Napoli,

Italy

e-mail: fiorenzaOmatna2.dma.unima. it

Recibido: 14 de Abril de 1997
Revisado: 3 de Diciembre de 1997



