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Some results about blow-up and global
existence to a semilinear degenerate heat
equation.

Jacques GIACOMONI

Abstract

In this paper, we are dealing with the following degenerate
parabolic problem :

P) diu — |z)?Au=g(u) in R* x B,
L u(t,z)=0in R* x 9By ; u(0,2) =up > 0

where By = {z € RY ; ||z|| = 1} and g is nonlinear.

We are interested in analizying such. questions as local and
global existence, blow-up in finite time and convergence to a sta-
tionary solution for solutions of (7).

First, we give some examples of nonlinearities ¢ where the blow
up in Lz(]—i—%) N L*(B;) occurs. In a second part of this work,

we present two cases of global existence of solutions to () which
converge in L*°(Bj) to a stationary solution of (P;) when ¢t = oo.

1 Introduction

In this work, we study the following problem :

(P) du — |z[?Au = g(u) in Rt x B,
Y u(t,z)= 0in RY x 0B, ; u(0,2) = ug > 0,

where g is nonlinear and B is the unit ball in RV.
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First, using Hille-Yosida theory, we prove for all ug € L*®(B;) N
L2(|%|’%)1 and g € WL (RY), the local existence and the uniqueness of

oc

the solution u(t) = S(t)ug of (P;), where S(t) is the semigroup associated
to (P;). Then, we are interested in the behaviour of the solution u(t)
as t increases. Precisely, under different assumptions of ¢ and ug, we
give on one hand, some examples of blow-up in finite time and on the
other hand, some examples of global existence of solutions to (F#;) which
converge to a stationary solution of (F;).

Throughout this work, we keep in mind the results of [7] and [8]
which deal with the stationary problem (P) :

—|z|?Au = g(u) in By
(P){ we BB/} 5030

Precisely, in [7], the authors prove the nonexistence of nontrivial solu-
tions to (P) in the case where g satisfies the following assumptions :

(GS1) A - (852)2 4+ lim 9(s) > 0.

s—400 8§
(GS2) Vs >0, G(s) < Lo,

Otherwise, in [8], the authors give some results about the existence of
nontrivial solutions of (P) in the case where g is sublinear. They treat
three cases :

1. g{u) ~ Au+uP —u?f where 1< p< g
2. g(u) ~ Au — uP where p>1and A > (N_L,—z)z
3. g(u) ~ u*+ Auwhere0<a<1land A< (%)2

It is worth noting that in all cases, an unbounded connected branch of
positive solutions in either Hj(B;) or L*(B;) exists and in the second
and third case, there is uniqueness of the nontrivial solution in H}(B;).
Then, it is very natural to see in which cases the nonexistence of non-
trivial solutions of (P) implies the blow-up in finite time for solutions of
(P:) and when the uniqueness of the solution of (P) implies the conver-
gence to a stationary solution for solutions to (P;) when t — +o00. In
this work, we prove some results in these directions.
So, the outline of the present paper is as follows :

1L2(ﬁ7 = {u/ fB; H;—dz < oo}
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1. Local existence of solutions to (7;) in Rt x L* N L2(]%Ty).

2. Some examples of blow up in finite time for solutions to (F;)

(a) The case g(0) =0
(b) The case g(0) >0

3. Two examples of existence of global solutions and convergence to
a stationary solution.

Precisely, in Section 2, we apply Hille-Yosida theory in L°°ﬂL2(]%f7). In

Section 3, we start adapting a classical spectral method (see for instance
[4]) to prove the blow-up in finite time when g satisfies :

(B1) g is convex and positive in R*.

(B2) (X52)2 < lim ——(;-2——-/\<+oo.

s—o0t

(B3) There exists so > 0 such that < 400

so giai—/\s

Next, we use a well known ”energy method” (see for instance [4]). For
this, we assume the following hypothesis :

(B4) A = l lim, g) < 400 and there exists a > 0, C' > 0 such that

h(s ) g(s) — As > Cs>*! forall s > 0.

(B5) There exists € > 0 such that (2+¢) [ h(t)dt < sh(s), Vs> 0.

Then, we prove that if uo satisfies [p W—;"-E - Ip, Glz"" < 0, where
G(s) = J, 9(t) dt, the solution u(t) to (P;) blows up in finite time. Fi-
nally, we conclude the section with the case g(0) > 0. Precisely, we apply
a method from [3] which links directly the blow-up and the nonexistence
of stationary solutions. For this, we assume :

(B6) g(0) >0, g € C'(][0,+00[), convex and increasing.

(B7) There exists zo > 0 such that [F*° —%5— < oo.

Zo
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Then, for any ug > 0, the solution u(t) = S(t)ug blows up in finite time.

In Section 4, we give some results concerning the existence of global
solutions to (). First, proving the radial symmetry of the solution to
(P;) when ug is radially symmetric, we exhibit the heat kernel of —|z|2A
in H}(B;). Then, using a method due to Fujita, we prove the existence
of a global solution of (P;) for small initial data when g(t) ~ At + ¢?,
p > 1 and A < 0. Moreover, we prove that u(t) converges to 0 in L*°(B;)
with an exponentional decay when t — +o0.

Finally, assuming the following hypothesis :

(G3) s— ﬂsﬁ is continuous and strictly decreasing,
(G4) o) *2he o

(G5) lim 9—(:) =A> (ﬂ;—2)2,

s—0t

we show that for any up > 0 satisfying ug € L>® N Lz(]%f;) y uollze <

F71(0) and ug # f~1(0) where f(t) := 9—(t-tl , the solution u(t) of (P,) is
global and converges to the unique nontrivial stationary solution of (F;)
in L®(By) N H(By).

2 Local existence

Throughout this section, we assume that ¢ € W,U°(R). Our goal is to
study the local existence of a solution to (P;). Precisely, we show that
we can apply Hille-Yosida theory in L®(B;) N L2(T%ZF)‘ Consequently,

for every ug € L™ an(I%f{), the uniqueness of solutions of (P;) follows.
First, we remark :

Proposition 2.1. Let A = —|z|>A. Then, A is a self adjoint mazimal
monotone operator in Lz(]%fg). Moreover, D(A) = {u € Lz(]%f;)/u €
H5(B1) and |z]?Au € L*(2%)}.

Proof. For this, notice that for every u € D(A) and A > 0 :

_ 2 2 _ 2 2
o= XA wl gy = 0l gy + 2NV il

+ |,\|2/B1 |:1:|2|Aul2 > ||“”§,2(ﬁ,-)
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T

which implies that A is dissipative in L2( ]i“r;) Then, it suffices to show
that A is maximal. Taking f € Lz(fﬁ%), we consider the following
minimization problem :

Iy - uegllf;Bx)g(u)
Iul2

(z lz+/\|Vu| )da:-—/ fu

Bl_l_z_lz

where &(u /

By Cauchy-Schwarz’s inequality,

) 1 |u|?
I, > inf
* = e Hi (B 2 Bl(lafl2

2, ul? 1
wavup) e = ([ Eyr([ B> —oo

B, |z|?  |z)?

then, considering a minimizing sequence {u,},.jv C Hg(B1)N L2(ﬁ—’|7),

it follows that ||u,|| HinL?(:42) < C. And by standard compactness argu-
I=|

ments, there exists u € H3(B1)N Lz(l-%l%) such that up to subsequences :

U, - u weaklyin H&(Bl),un — u weakly in L2(ia':§)
n—00 n—00 ||

and
ftn noeo [ fu
B le2 B, |x|2

Therefore, I is achieved by u and the proof is complete.

We deduce immediatly the following corollary :

Corollary 2.2. A is mazimal monotone in L>°(B;) N Lz(ﬁ-‘l"y). More-
over, D(A) = {u € HY(B) N L®/|z|*Au € Lz(]g-“l%) N L*®}.

Proof. Let f € L2(]%’|”7) N L™ and A > 0. By Proposition 2.1, there
exists u € HiN LZ(T%T’) such that

u—Mz|°Au= fin B (2.1)

329
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Thus, it suffices to show that u € L°(B;). Multiplying (2.1)
by (v — || fllz~)*, we obtain :

(u= 1| £ ) *?
[, s +A/ | V= £ llz)*
__/ _ “ f” ”f"L"° <0

which yields (u—|| f]lL=»)* = 0and u < ”f”Loo. By the same arguments,
we show that u > —||f||ze. This ends the proof of Corollary 2.2.

Remark. For N > 3, L*(B,;) C Lz(]%’[’,-). And in this case, to prove
Corollary 2.2, it suffices to show the maximality of A in L.

Now, we apply Hille-Yosida theory (see [15]) and we deduce the
following proposition :

Proposition 2.3. Let ug € L®(B;,) N L2(ﬁ-|%). Then, there ezists a
unique solution u(t) = S(t)uo to (P;) in a mazimal interval [0, T[,T > 0
such that

() u() € CO(l0, T[, L=(By) N L)) N C'(10, 1, L*(%)).
(#) Forallt in}0,T[, u(t) € H}(B;)N LN L2(]-i-“!%) and |z|?Au(t) €
L (i&).
(#3) If uo > 0, then u(t) > 0 for allt > 0.

(iv) Ifuo € L®(B1)N L*({%) satisfies |z|2Aug € L®(By)N L* (%),
then u(t) € C*([0, T, L (B1) N L*(%).

Proof. By Proposition 2.1, Corollary 2.2 and since g € Wlo’coo we can
apply Theorems 3.7 and 3.9 of [4]. This proves assertions (i), (ii) and
(iv). Now, let us prove assertion (iii). For every Ty < T, we multiply
the equation in (P;) by g—_r}:“%: and integrate by parts to obtain for every

t € [O,TQ] :

14 [ jop B [l
- dr = — \v4 — < C(T
2dt o, 1alr T e,V fo T S O Jp T
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which implies by Gronwall’s lemma that v~ = 0. This completes the
proof of Proposition 2.3.

As a consequence of Hille-Yosida Theory, we have the following al-
ternative for u(t) = S(t)uo :

Corollary 2.4. Ifup € L2( d YNL*, then, either T = T(||uollp(a)) =
400 and the solution u(-) = S( Juo is global, or T' < +oo and the
solution blows up in finite time which means that

@)l + u(t) | ot = +oo

Proof. See [4].
Remarks. If g = 0and up € H'NL>®N L2(]%“|%) then u(t) = S(t)uo
is global and satisfies :

lu®)]® . _(x=2ype, o
/Bl i < U ol g (2:2)

The proof is based upon Hardy’s inequality. First, observe that since
g = 0, (P) is linear. Therefore, u(t) = S(t)uo is global. Moreover,

multiplying (P;) by u(t)e(yz;z)% and integrating by parts, we have :

d fu=|? RN (N—2)2/ lu™|* T2 (N=2y2
de=2{—— T ) dy — 2
dt /131 |z[? 2 B, |of?

/ |Vu|2e('2;2)2tda; <0
B

by Hardy’s inequality. Thus, integrating on [0, t], we deduce (2.2).
Now, we deal with the behaviour of the solution to (7). In the next
section, we give some examples of blow-up in finite time of solutions to

(F).
3 Blow up in finite time in L2(I ) 0 L

Throughout this section, we assume that g belongs to W,oc yg € LN
L*(%) and G(s) = [g g(t) d



332 Jacques Giacomoni

3.1 Main results

We consider three classes of functions g. First, we adapt a classical
“spectral method” (see for instance [4]). Precisely, we prove the following
theorem :

Theorem 3.1.Assuming N > 3 and

(B1) g is convez and positive in R,
N-2y2 ) .= fim 90)
(B2) ((59)* < A= sl_l)r(r)x+ " < 400,

(B3) There exists sg > 0 such that st°° ﬁ% < oo where h(s) = g(s) —
As.

Then, for any up > 0 in L™ N LQ(]%I%), u(t) = S(t)up satisfies: AT €
R* such that

. fu(t)]? .
= 1 t o =
Jm_ [, M=o andm Ju()i = o0

The second blow-up case is based upon an “energy method” (see for
instance [4]).

[V ?
2

Theorem 3.2. Assume that ug satisfies (*) fg - I, Glzu" <0
and that g has the following properties :

(B4) A := lim @ € IR and there ezxists a > 0, C > 0 such that

—0+

h(s) =g(s) — As > Cs**! for all s > 0,

(B5) There exists € > 0 such that for all s > 0, (2+4¢)H(s) < sh(s)
where H(t) = [} h(s) ds.

i o P
Then, wu(t) = S(t)uop satisfies: 3IT >0 such that tll&}_ B, |22
+00.

Remarks.

1. f g(s) = As+ sP with A > (#)2 and p > 1, (B1), (B2) and
(B3) are satisfied.
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2. If g(s) = A s+ s with p > 1, (B4) and (B5) are satisfied.

3. Let ¢ € L® N H}. Then, by (B4), there exists M > 0, large
enough, such that uo = M ¢ satisfies (*).

4. If up > 0 is a radially decreasing nontrivial subsolution of (P)
and belongs to H3(B;) N L, then, a simple computation based
upon a "Pohozaev’s equality type” shows that (*) is satisfied for
N > 2. Indeed, multiplying ~|z|*Auo < g(uo) by 1z - V uo and
integrating by parts, we obtain :

B N -2 2 1 %2 3 G (uo)
( ) )/;1|VUOI D) aBllanldSZ(Q N)/l lez

B

which implies :

IVU()P / G(’U.()) 1 / aU() 2
- < - —1“ds< 0
/51 2 5, 22 = 2(N —2) Jog, 15, 1 ds <

Finz?,lly, we deal with the case ¢(0) > 0. In this case, we adapt a
method from [3]. And we use the results of nonexistence of solutions to
the problem (P).

Theorem 3.3. Assume that N > 3 and the following assumptions on
g:

(B6) g > 0 is convez, increasing and belongs to C* ([0, +o0|),

(B7) There ezists sy > 0 such that [T -g%f; < 00.

30
Then, for all ug > 0 in L”ﬂLZ(%“’F) and nontrivial, u(t) = S(t)uo blows
up in finite time in L™ and in Lz(l%l%).
Remarks.
1. It is worth noting that in Theorems 3.1 and 3.3, no additional
assumption is required for ug. Here, the nonexistence of weak

nontrivial solutions of the stationary problem (P) implies the blow-
up in finite time for any initial data in L N L%( ]%Tg)

2. The assumptions (B3) and (B7) prevent the existence of unbounded
global solutions (i.e. which blow up when ¢ — 00).
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Now, we prove Theorem 3.1:

Proof of Theorem 3.1. Let us consider . the eigenfunction associated
with the first eigenvalue A! of —(|z|? + |¢|>)A in H}(B;) such that
I, 15 = 1 (for this, notice that N > 3 implies that Lz(]ifg) C Ll( )).

It is easy to prove that A} — (2:2)2 when € — 0. Therefore, by (B2)
there ex1sts € > 0 small enough such that A! < A. Thus, multiplying
(P,) by % iy e obtain :

4 [ ut)ve ul®) P _ [ g(u(®)?
i Jo, "+ o e o e

Since g is convex (which implies that f is convex), by Jensen’s inequality,
we have :

i Tz 0 [ e

From which it follows :

d #(t) ds _ M’i
= (/0 h(s)) >1 where ¢(t) = /Bl BE (3.1)

Integrating (3.1), one has 0¢(t) h‘f’) > t+ C which together with (B3)
implies that ¢(-) blows up in finite time. Finally, noting that for N > 3,
the injection L>®° < L2(]%|’%) is continuous, the proof of Theorem 3.1 is

complete.

Next, we give the proof of Theorem 3.2:

Proof of Theorem 3.2. Suppose that the solution u(t) = S(t)uo
is global. Let us consider E(t) = } [p, |Vu(t)®> - [p, Qﬁéﬂ Then,
multiplying (F;) by ]';‘f; and integrating by parts, we obtain :

/B1 % = “5%/ [Vu(t))? + /1 G?ZI(:)) = —%(E(t))

Thus, E(t) is decreasing and E(t) < E(0) < 0. Now, multiplying the
equation in (P;) by % and integrating by parts :

u(t)|? u
4 / | O _ litl)Zl = / IVu()® + / g("fi)l)z © (3.2)
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By using (B5), and taking H (s) = [; h{t) dt, we prove that :

1d [ |u@)]? |lu(t)|?
s fo, T 2 7 ITHOP 5 al?
> —2B(t)+e / -—-—Hl(;‘l(t))
> —2E(0)+¢ / H("(t) (3.3)

2
(t)2| = 400. Then, by (33) :

Thus, (3.3) and (*) imply that lim /
t—o00 B,

l_‘_i_/. [u(t)|? > e/‘; H(u(t)) >Ce |u(t)[2*e ZCC( [ lu(t)]z)ﬂ?ﬁ

2dt Jp, |=? CJeP B, [=? |=|?

Taking #(t) = [p, l"; '2, we have :

29(0) > 2Co0) F* (3.4)
Integrating (3.4) on [to,t], we obtain :

1 1
sF  aeE 2T

which contradicts that u(-) is a global solution of (). This completes
the proof of Theorem 3.2.

Finally, we prove Theorem 3.3. Here, we use an approach from [3] :
the nonexistence of stationary weak solutions implies the nonexistence
of global, bounded solution of (F;) for every uo > 0.

First, we adapt the definition of a weak stationary solution of (F;)
from [3] :

Definition 3.1. A weak stationary solution of (P;) is a function u €
L'(By) such that $58(z) € L'(By) (where 6(z) = dist(z,0By)) and

V¢ e C*(By) —/B uAfd:c:/B %}Edw
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Then, we have the following result :

Proposition 3.4. Assume that g satisfies (B6) and (B7). Then, there
is no weak stationary solution of (P;). Proof .

We apply a method from [3]. Precisely, for all # such that 0 < 5 < 1,
we define :

—|z|2Au= (1 - u) in By
R oYY,

Asin [3], we define h(u) = [ 25 h(w) = t2-h(u) and ®(u) = h~1(h(u)).

0 g s)?
It is easy to prove the following assertions (see [3]) :

(i) ®(0)=0and 0 < ®(u) < u.
(i) @ is increasing and concave. Moreover, ®'(u) < 1.

(i) ® € L° and ®(u) satisfies :

Ve e CH(BY) / (AB(u)) € > (1 - )/B Q(Tz(lv;))é

which means that ®(u) is a “weak supersolution” of (P,).

Forall ¢ € CZ(B,), let us consider the following iterative scheme :

- fBl un41AE = (1 - 1) fBl %’Zr_zg in By
uwp=®(u), u € HYB)

Then, noting that ®(u) € L% implies that for N > 3, ﬂ]%%ll e !
and by the fact that 0 is a strict subsolution to (P,), we prove, by the
maximun principle, that in L*, {u,},>; is a decreasing sequence of
weak supersolutions of (F;) and u, < ®(u). Thus, v, = n]_l_’rgo u, € L™
is a weak solution of (P,). Now, consider for all ¢ in ]0, 1[, the following
problem :

{2

As in [1], we prove the existence of a minimal solution of (P, ), vy,
such that v, < v, < ®(u).
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Putting we () := v (e z), for ¢ € By, we have :

—(|w|2 + 1A wey = (1 - n)g(wey) in B%
’wcm Z 0, we," E H(l)(Bl)

As above, we can show that € — w,, is increasing in L*°. Passing to

the limit € — 0, it is easy to prove that w := liII(l) w, satisfies ||w||pe <
e—

|logllL= and is the minimal non trivial solution of the following problem :

{—(|x|2+ NAw=(1-n)g(w) in RY
w>0

Therefore, w(z) = lellﬁz * ]}g-%_)i where Cy = (N — 2)|on-1| and
|on—1| the surface area of the unit sphere. Thus,

Cn g(w) )
0) = / > £
w0 = o TP 2 2 et )

1
/m [+ ez~ +°

This contradicts the boundedness of w and the proof of Proposition 3.4
is now complete.

Proof of Theorem 3.3. First, note that by the maximum principle,
it suffices to prove Theorem 3.3 in the case up = 0 (note that since
g is increasing, up < wo = Vt > 0, S(t)uo < S(t)wo). Moreover,
g(0) > 0= u; > 0 for t small. Then, for 6 > 0 small,

u(t +8) = S(t +8)0 = S(t) 0 S(6)0 > S(t)0 = u(t) and u; >0, V¢t > 0

Now, taking ¢ € C2(B), multiplying the equation in (P;) by Tﬁ’ and
integrating by parts, we obtain :

d [ u(t)d _ [ 9(u@®)¢
./ B /131 ulg = By (3.5)

dt Jp, |z]? |z|?




338 Jacques Giacomoni

Therefore, choosing ¢ = 1. (defined in the proof of Theorem 3.1) we
have :

d /lu(t)zbe ol /B wpe [ g(ut)te

dt Jg, |zf? el H1el? e Je)?

Thus,

1,500 (-0

which provides the following alternative :

1. either there exists M > 0 such that fp %, B, “;¢‘ <M
forallt > 0, or

2 fo, e oo

Let us suppose that the second case holds. Then, by Jensen’s inequality,
we have for t large enough :

d u(t)ye _ 1 g(u(t))¢c 1 u(t) e
EZ/B e 22 s, P -59(/31 |x|2)

Hence,

1) ds S 1 u(t)¥e
/0 () 2t+C’ where f(t) = /31 ———Ix|2

which contradicts (B7). And u(t) = S{t)0 blows up in finite time.
Finally, suppose that the first case occurs. And let { denote the
unique solution of the following problem :

~(|z]>)A¢=1 in B,
CE 0 in c’)B1

For N > 3, it is easy to prove that ( € W%P(B,) for all p < %{ which

by Hardy’s inequality and by Sobolev’s embedding implies that { €
L2(]%T7) N H{§(By). Hence, there exists {(u},cpv C €§°(Bi) such that :

AGEsAC and ¢ e (3.6)
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Choosing ¢ := (, in (3.5) and integrating in [t,t 4+ 1], we have :

[/;;l Ul(:lgn ]:+l + /t+l ds/ (s)(—AG)

= /t s A 9(u(3))6n (3.7)

|z|?

Passing to the limit n — oo, we obtain by (3.6) :

w(s)ln noco [ B(8)C
Lo = L e

Moreover, by Lebesgue theorem and by (3.6) :
/t+l ds g(u(s))én n—+qo /t+l ds g(u(s))¢
Bl Bl

|2 |=[?

and

t+1 - t+1
/ ds / (=AG) =25 / ds / (-AQ)
Bl Bl

Therefore,

[ [ or-ac= [, B2

Now, since u; > 0,

/B1 %(l%) < /t+1 /Bl ulislf _ t+1 dS/Bl w(6)(=A0)

_ [y [ @) u(s)¢ 1!
B /t B, a2 [/Bl lz2 1,
g(u(t+1))¢

B, l|zf?

< <M

Therefore, by monotone convergence, there exists w € Ll(]%:ff) such
that u(t) “215° win Ll(ﬁ’y). It implies that for all ¢ € CZ(B,) :

fal ul(ztl)f ad /B Tk f " /B u(s)(~A¢) =% w(—A¢) and
[af, e

339
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(For this, note that [!*!ds I5, i@é%&? <2 Jp, i < +00). Therefore,
for all ¢ € C%(By) :

_/ wAg= [ 909
B, B, |:1:|2

which contradicts the nonexistence of weak stationary solutions to (F).
This completes the proof of Theorem 3.3.

Remarks. Consider ¢ € C! convex , increasing function satisfy-

N2
ing lim 9(s) > <N2 2) , (B7) and for all s > 0, 19—2(31 > G(s) =

s—0t S
Jo 9(t)dt . Then, we can apply the previous method. Precisely, for all

up > 0, u(-) = S(-)up blows up in finite time in Lz(ﬁ-fg).
It suffices to modify the proof of Theorem 3.3 as follows :

1. 0 is replaced by €¢. which is a subsolution of (P) and €@ < ug,
for € small enough.

2. The nonexistence of stationary solutions of (P;) is provided by the
results from [7].

4 Global existence of solutions to (F;) and
convergence to a stationary solution

4.1 Main results

In this section, we give two examples of global existence of solutions
to (FP;) which converge to a stationary solution when ¢ — oco. In each
case, we obtain an exponential control of the convergence either in L™
or in H}(B;). Here, it is worth to underline that the convergence to a
stationary solution is related to the uniqueness of the solution to (P).
First, we prove the following :

Theorem 4.1. Assume that N > 2 and the following hypothesis :

(G1) lim @:A«),

s—0t
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(G2) There ezists € > 0, such that |g(s) — As| < Cls|'*e.

Then, for ug such that |lug||L~ small enough, u(-) = S(-)uo is global and
there ezists C > 0 such that ||Ju(t)||L~ < Ce*t for all t > 0.
In the second part of the section, we prove the following theorem :

Theorem 4.2. Assume that N > 3 and g satisfies the following as-
sumptions :

(G3) s — “’—(fl is continuous and strictly decreasing,
(G4) 82 *24° oo,
(Gs) €225 x> (M52,

Then, for any up such that 0 < ug < f~1(0) and up # f~1(0), with
f(s) == ﬂsﬁ, u(t) = S(t)uo is global and converges to the unique non-
trivial solution of (P), wy, when t — oo. Moreover, if we suppose,
in addition, that —g is strictly convez, there ezists K > 0 such that
llu(t) — wall g,y < Ce™ forallt > 0.

We start by proving a proposition which provides the heat kernel of
—|z|?A :

Proposition 4.3. Consider u = T(t)ug € L®(By) N Lz(ﬁ%) solution
of - :

u; — |z|?Au=Au in By
u(t,z) =0 in R x 8B, , u(0,z) = uo

where ug is radial. Then, u(t) is radial and if v(t,s) = u(t,z) with
s = —In|z| and Ay = (X52)?, then,

2
e s—(An-Nt-LE

v(t,s) =

(47rt)% * v(0,s).

Proof. First, we remark that the radial symmetry of u follows from the
uniqueness of the solution to (). Then, to compute the heat kernel of
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N-2

—|z|2A, we use a method from [7]. Indeed, put w(t,s) := e~ "7 *v(t,s).
We show that w satisfies :
() w; — wes = (A= An)w in B x (0,+00)

v w(t,0)=0 , w(t,s) 250 , w(0,s)= v(O,s)e"N;Z’
Taking w(t, —s) = —w(¢, s) for all s > 0, we have that (P,) is satisfied
in R* x R. And we can apply Fourier transform. Indeed, for N > 2,
w(t, -) belongs to L2(R) (for N > 2, it is obvious since v € L* and for
N =2, it suffices to remark that [p {%Fr <00 = [P wlds < ).

A simple computation shows that ®(t, z) = woe(I2"+On=1)  yg
ing inverse Fourier transform, one has :

8 2 —" 2
e~ On=2)e-LL Ry

and v(t,s) = vp *

w(t,s) = wo *

(4t)2 (4mt)3

This completes the proof of Proposition 4.3.

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Here, we apply a method from [4]. First,
remark that by the maximum principle, it suffices to prove Theorem 4.1
when ug is radially symmetric. Then, by Proposition 4.3, T'(t)uo is
radially symmetric and

2
52— -1

IT()uollpe = Jvo*

1
(4nt)? Loo

2
eMto-Ow-Ne- 5

IA

llvoll oo (4.1)

(4w t)%

L1

|2
Now, using Laplace transform f(y) := ff:; v dz, we show that

- o2
e+~ =
etV (47rt)z. Therefore, by (4.1), [IT(t)uollze < €*!||luollze. Now,

we apply a method from [4]. First, we define ©(:) such that ©(z) =
—e-l(-’:\—[z”" — z with C defined in (G2) and & > 0 satisfy

min©(z)+6<0, 6(8)+5>0 and O'(6) <0
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Let us choose ug € L* N L2(]%|‘”7) such that ||ugl|e~ < 4. Then, u =
S(t)uo satisfies :

t
lu@llze < NT(@)uollLe + C/O ANu(s) I < €6
t
+ €N [ e (e (o))" ds

Putting ¢(t) = supe >*||u(s)||r~ which is an increasing function, we

have :

t
80 5+ [ $H (e ds <5+ a0
0
If u=inf{z > 0/0(x)+8 <0} >4, it is easy to prove that ¢(t) < p
for all ¢t € [0,T[, where T' is defined in Proposition 2.3. Moreover,
|lu(®)||z= < e*p, which implies that u is global and T = oco. This
completes the proof of Theorem 4.1.

Remarks.

1. If p €]1,+o0[, the function g : s — sP satisfies the hypothesis
of Theorem 4.1. Therefore, Theorems 3.1 and 4.1 show that the
behaviour of the solution of (P;) depends on the initial data.

2. It is worth noticing that for N = 2, we obtain almost a complete
description of the behaviour of solutions of (F;). Precisely, Ay =
(E2:2)2 = 0 is the “blow-up critical parameter” (see [13]) which
means that for A < Ay, there exists global solutions of (F;) for
small initial data and if A > An then for all up Z 0, u(t) = S(t)uo
blows up in finite time. However, we do not know what happens
in the case A = Ay. Moreover, since the heat kernel of —|z|2A
does not vanish at the boundary, we cannot apply a method due
to Fujita (see [9]) which would furnish the answer. For N > 3, we
suspect that Ay still remains the critical blow-up parameter.

Now, we give the proof of Theorem 4.2.

343
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Proof of Theorem 4.2.

Since there is a unique nontrivial solution to (P), it suffices to prove
Theorem 4.2 when wug is radially decreasing. In this case, S(t)up is
also radially decreasing. Indeed, choosing ¢ €]0,1[, we remark that
u(t, ex) := u(t) is solution to

P — |z]?Au = g(u) in Rt x B,
(Pe) u(t z)=0 in R* x 831 , (0 t) = ug(ex)

Since ug(€z) > wup(z), by the maximum principle, for any ¢ €]0,1],
ue(t) > S(t)uo which proves that S(t)uo is radially decreasing.
Now, as above we prove that :

ju(®)]? . g@t»uu
dLLllﬂz /'V OF+ o, " P

Moreover, E(u(t)) = 3 [p, [Vu(t)? - [, 9%1%11 satisfies

d
dt

Futhermore, multiplying the equation in (Pt) by L'f_—fr;—;}glﬁ we obtain :

L E(u(t)) <0 and E(u(t)) < E(uo). (4.2)

-1 2
% B () ~|£|2 ©") + /B, IV(u(t) - £ ()
- [ (CEF{CTONICES i)k NP
B, EE .

which implies that for all ¢ > 0, u(¢) < f~1(0) and therefore Us>o{u(t)}
is uniformly bounded in L*°(B;). By (4.2), for N > 3, it follows that :

|Vu(t)|? _ 1
/B1 5 S Blu) - G(f 1(0))/31|—wl3dz50

Therefore, Us>0{u(t)} is bounded in L>(B;) N H(B). Then, for any
sequence {t,} neN such that ¢, — 400, there is w € L®°(B1)NH}(B1)
(depending a priori on {t,}, . pv) satisfying

n OO0 . . d
u(tn) 2w in H&(Bl) , u(tn) "2 w in Lz(ﬁ)
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and

G(u(t,) "=° G(w) in LI(TZ%).

For this, notice that on one hand

fBll Mzw|2 /|u(tn wlp (/1|3’|2p

where p < & and + 7 =1 On the other hand, since Ugso{(t)} and
w are umformly bounded in L,

|G(u(ts) - G(w)]? [u(tn) — w?
/31 |$|2 s< B, |$l2

'UI"'

Let us show that

H}(B;
°—(—>)w when n — o0

u(ts)

For this, it suffices to prove that [ |Vu(t,)|? =3 [g |[Vw|%. Let us
prove that [p |Vu(t,)|* does not concentrate in & = 0. First, for any

§ < 1, multiplying the equation in (P;) by Fr(f} in Bs, we have :

ar wnp_ [ 2u® g(u(®))u(t)
dt]lzlsé lx12+/|x|ssw OF /Ixt =5 On u(t) do _/mss |2

Since u(t) is radially decreasing,

d |u/? g(u(t))u(t)
E/lessw+/|x|<slv ut)l < /|w|<6 |2 (*-3)

Integrating (4.3) in [¢,¢ + 1], we cbtam :

u(s)? t+1 41 1
+/ d f vu<c [ —
[/:vl<5 [z]? ] $ [Vu(s)] lel<6 |2 ]2

where C' is independent of ¢. Then, for all € > 0, there is §(¢) > 0 small
enough such that for all § <d(¢), we have :

i+1
o< [ /MS‘s IVu@) < e (4.4)
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To conclude the proof, suppose that g, IVw? < Jim / [Vu(t,)|?.
B

Then, by (4.2) E(w) < Ex = tl_l’r{.lo E(u(t)). However, by (4.41), it is easy

to prove that

/tt+1 ds /B‘ IVu(t, + 7)2 25 £t+1 /;1 IV(S(r)w)P? (4.5)

Indeed, by the boundedness of {u(t)}:>0 in L= N H§(By),
Il lzPA(S( + )uo)llaasy <l |"’|2A(T(t)“0)||u(ﬁ—71r)

t47
+ [ M1aPAT(+ 7 = 9 (u(e)la( gy d
from which it follows :

C
2
|1aPAS(+ Yol ggy < Flu@lee

T ds C
¢ [ —"—rliuoli= < 7
t (t4T1-5)2s2 T

(for this, using a method from [4] Lemma 3.10, we prove that

1
Il |m|2AT(t)uolle(|%lx,.) hS t—% |uo||Hg(B,)

and . )
T () uoll g s,y < t'flluOIILz(';%) < Ct™7||ug|| Lo

for N > 3)

Finally, (4.4) and the compactness of the embedding H?(6 < |z| <
1) = HY(4 < |z| < 1) imply (4.5). Now, using that E(-) is decreasing,
we have :

t+1
/ E(S(r)w) dr < E(w) < Eeo
i
which contradicts (4.5). Thus,

/B Vu(t) /B Vol
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and for any
t>0E(S(t)(w)) = E(w) = E.

This implies that w is a stationary solution of (P;.ug) and either w = 0,
or w = wy which is the nontrivial solution of (P).

Now, let us prove that u(t) =% w in L®(B;). By a bootstrap
argument (see [12]), it is easy to prove that for any é > 0,

Ju(t) = wllzoo(zizs =5 0 (4.6)
We consider ug := €9, which satisfies
|z)>Aup + g(ug) > 0 if € is small enough (4.7

We recall that 9 is the eigenfunction of —(|z|? + |€|?)A defined in the
proof of Theorem 3.1. Note that by (G5) and (G4), (4.7) is satisfied for
"¢ small enough. Then, ug is a strict subsolution of (P) and as above, it
implies that %S (t)uo > 0 for all ¢ > 0. Hence, u(-) is increasing. Hence,
w = v). Then, by Dini’s theorem and (4.6), we have for all § > 0 :
[lu(t) = wAllLooe125) = 0 (4.8)
Moreover, from [8] we know that wy(0) = f~'(0). Therefore, since
{u(t)}t>0 U {wr} are radially decreasing
limsup [jwy — u(t)||po(B;) < limsup ||u(t) — wrllpeo(jo)<s)
t—o0 t—oo
+ limsup [Ju(t) = wallzeo(s25)
= limsup |Ju(t) — wa||Leo(jz1<s) < £71(0)
t—o0

— lim lim u(¢,z)
t=+00 [z|+0

Thus, suppose that ¢y := tl_ip I]ilmou(t,:z:) < f71(0). Then, since u(t, )
o0 |z|—

is radially decreasing, for any zs such that |z| = & > 0, wi(zs) =
tl_i’m u(t, z5) < cx. This contradicts that wy, is continuous.
oG

Now, considering any ug such that 0 < ug < f~1(0) and up # f~1(0),
there exists ¢ > 0 small enough such that e, < ug. It implies that

S(t)(epe) < S(B)(uo) < F7(0) and [IS(t)uo — wallzee(m,) =F 0(4.9)
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To conclude the proof of Theorem 4.2, let us prove that if we suppose,
in addition, that —g is strictly convex, then, there exists K > 0 such
that ||u(t) — wallgy(s,) < C e Kt for all ¢t > 0. First, note that

wy, — u(t)|?
R R RO
_ / (g(wy) — 9("|(t|)))(wx-"(t))
B, x|

By (4.9), for t large enough, we have :

wy — u(t)|? - 2
o it A|$|2(t)| + 3 (-a- gl(;fj [, (s ,zl';“)) <0 (4.10)

where -'\il( ~A- 1}-"[’,&) is the first eigenvalue of (— —F‘l%l) in H}(B,).
Then, the strict convexity of —g implies (see [8])

A9 (w) _ 1 g(wy)
M(=a |z]? }> M4 Bk |2 wa wy )T

Thus, from (4.10), it is easy to prove that :

Using (4.10) and putting K =

o

, we have for all £ :
/B IV (wx — u(t))|? < Ce K (4.11)
1

This completes the proof of Theorem 4.2.

Remarks.

1. If g(s) := As — |s|~1s where A > (X32)2 and p > 1, then, g
satisfies the assumptions of Theorem 4.2.
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2. Suppose that —g is strictly convex and satisfies the assumptions
(G3) to (G5). Then, taking § > 0, (4.11) and a bootstrap argu-
ment show that for all £ > 0 :

lu(t) — wallLeo(j2)26) < C(8)e K,
However, we don’t know if that remains valid for § = 0.

3. The assumption (G5) and the second part of Assumption (G4)
suffice to prevent that u(t) = S(t)uo converges to 0 in L*™(B;)
when ¢t = 0o and when ug # 0.

Indeed, suppose that ||S(t)uollL=(B,) ‘2% 0. Then, adapting a
method from [14], we consider € small enough such that Al < A.
Then, multiplying the equation in (FP;) by ¢ :

d [ u(t)y. u(t) g{u(t)) .
Jo o+,

dt Jp, o2 g, [eP+1el? T B 2l

from which it follows for ¢ large enough :

d [ u(t)y. —)Q/ u®ve [ 9(ut))¥e

v

a Js, TaP o "o, Jal?
1, 1 u(t) . P
> 560-2 [ Yo (4.12)

Moreover, assumption (G5) implies that for € small enough, ¢'(0) =

(L'_'L\}ﬂ t—o00

A > Al. Thus, by (4.12), we have [p % >Ce 7 —F 400
which contradicts the uniform boundedness of {u(t)}:>o.

4. In [8], the authors show the existence and the uniqueness of the
solution, u., to the following pertubed problem :

p —|z|?Au = g(u) + € f(u) in By
(Fe) u € H}(By) , ©u>0

where g satisfies (G3) to (G5), f is a positive function in Rt and
belongs to C*(IR*) such that _l_gr_l f(s)+g(s)=—-ocand e >0

small enough. Moreover, A;(—A — iﬂﬁ%ﬁf—l(ﬁn) > 0. Then,
Theorem 4.2 holds for (F,).
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