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On a Fokker-Planck equation arising in
population dynamics.

Thierry GOUDON and Mazen SAAD

Abstract

This paper is devoted to a Fokker-Planck equation arising in
population dynamics. For general non negative initial data up €
L*(2), we prove the existence of a weak non negative and mass-
preserving solution belonging to L(0,T; W14(Q)) forall 1 < ¢ <
4

3

1 Introduction

In [10], Jager and Segel proposed an integro-differential equation of
Boltzmann type as a model describing the evolution of certain prop-
erties in populations of social organisms. In such a model, encounters
between individuals produce some change on a character of these indi-
viduals called dominance and represented by a variable z € (0,1). The
Boltzmann like collision operator describes this dynamic of interaction
according to various physical rules. The model of Jager and Segel is
studied and extended to various realistic situations in biology by Bel-
lomo et al. in [1], [2], [3]. Moreover, reproducing ideas well known in the
context of gas dynamics (see [8] and the references therein), when as-
suming that encounters between organisms only produce small changes
in the state of the individuals, the following Fokker-Planck model is also
derived in [10]
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0w = 0, {M(u;t,x)u+ 8;(D(u;t,z)u)} in (0,T) X (0,1) (1.1)
Up=o = uo in (0,1) ’
with a null flux boundary condition
M(u)u + 0-(D(u)u) =0 on z € {0,1}. (1.2)

Equation (1.1) is nonlinear since the coefficients M and D depends on
the unknown u as follows

M(u;t,z) = /01 m(z,y)u(t, y)dy

1 (1.3)
Dlwit,) = [ d(a,p)u(t,)dy
where m and d are regular functions defined on (0,1) x (0,1). The
unknown u(t,z) has the meaning of a density of individuals having,
at the time ¢ > 0, the character called "dominance” z € (0,1). The
boundary condition (1.2) is related to the fact that one expects the
following preservation of the total density

/01 u(t,z)dz = /01 uo(z)dz. . (1.4)

The interested reader may find discussions on models describing cell
growth close to those studied here, in particular linearized version of
(1.1-1.3) where the coefficients N and D do not depend on the unknown
u, in [19], [9] ; we also mention the recent works [12], [11].

The difficulty of the problem is two-fold. First, non linearities are given
by global terms, involving the values of the unknown in all space, and
not in a pointwise setting. Next, it is physically natural to consider
non negative initial data up in L?, without additional regularity. The
approach we adopt is rather close to that introduced by Boccardo and
Gallouet in [5] to deal with elliptic and parabolic equations with inte-
grable initial data and source term. Consult also for recent developments
on these questions [7], [15], [4]. Note that one dimensional (linear) par-
abolic problems with a L! source term are easily solved by classical
variational techniques, [7] ; however, these techniques break down, even
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in the simple monodimensional case, when initial data lie in L!. The
quoted papers deal with equations involving classical Leray-Lions opera-
tors : possible nonlinearities concern the derivative of the unknown, and,
moreover, these operators present monotonicity property with respect to
the gradient variable essential to the proofs of existence (and uniqueness
in some appropriate sense...) of solutions. In [13], existence and unique-
ness of renormalized solution is proved for a linear parabolic equation
containing a first order term with a given free-divergence coefficient.

In this paper, we establish the existence of a non negative and ”mass-
preserving” weak solution of (1.1-1.3) for general non negative and inte-
grable data. Let us denote 2 = (0,1) and Q = (0,T) x Q. In the sequel,
we write simply » = u(t, z), M(u) = M(u;t,z), D(uv) = D(u;t,z) when
no confusion can arise and we adopt the notation N(u) to designate
M (u) 4+ 0;D(u). Our main result is the following

Theorem 1. Let up € L}(Q) be non negative. We assume that

{ 0<8<d(z,y) <3 (1.5)

| m(z,y) I + l a:cd(x’y) |S Cm,d

holds. Let M(u), D(u) be defined by (1.3). Then, there ezists a non
negative solution u € L1(0,T; W19(Q)), with 1 < ¢ < %, of (1.1-1.8), in
the following weak sense

/()t/(2u8t¢dzds+/ﬂuo¢(0, )dx

—_—/pr(t, .)dx+/0t/Q(N(u)u+D(u)a,,u)axqbda:ds - (1.6)

for ¢ € C°(0,T;Wh9'(Q)) with 8,6 € C°(0,T; LY (). Moreover, u
satisfies (1.4).
Remark 1. Note that all terms in (1.6) make sense since, by definition

(1.3), the coefficients N (u) and D(u) belong to L*(Q) as soon as u lies
in L*°(0,T; L'(R2)). Furthermore, we shall show that the function of the

time variable U : t — | u¢dz is continuous on (0, T).
Q

Remark 2. It is worth pointing out the gain in regularity of the ob-
tained solution, while the data only lie in L. This fact is not surprising
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in view of the parabolic nature of the equation, but is still lacking in the
theory of the more complicated Fokker-Planck equations of gas dynam-
ics.

Remark 3. We restrict ourselves to the case of the one dimensional
problem with its physical interpretation due to [10] ; note however that
a part of our results extends to greater dimensions where, for instance,
equation (1.1-1.3) arises when we treat numerically the Fokker-Planck
equation of gas dynamics, restricting the velocities to bounded values.

This work is divided into three steps. In Section 2, we are concerned with
problem (1.1-1.3) assuming that the data are regular, say uo € L?(%).
In Section 3, we discuss essential estimates, depending only on the L!
norm of the data, on the obtained solutions. Finally, in Section 4, we
pass to the physically natural framework of integrable data, proving the
existence of a weak solution.

2 Problem with L? data

This Section is devoted to (1.1-1.3) with regular data. First, we recall
some well known facts about the linear problem, with given coefficients
M and D and uy € L?(Q). Next, still for regular data, we use the
Schauder fixed point theorem to solve the nonlinear problem. For such
data, existence and uniqueness of a non negative solution are proved.

2.1 Linear problem with L% data

We are concerned with equation (1.1-1.2) where the coefficients M and
D are given and assumed to satisfy

0<d< D(t,z)<d
sup | 8, D(t,z) | +sup | M(t, ) |< Cum,p- (2.1)
t,x t,x

To make our exposition self-contained and to fix some notation, we
briefly proceed with the study of this classical problem.

Let u be a solution of (1.1-1.2) and let A > 0 to be choosen later. We
set v(t,z) = e~*u(t,z). Then, for a regular test function ¢ defined on
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Q, v satisfies

;t/ vode = —/\/ védz —/ Nvd,.pdz —/ Dovdpdz  (2.2)

where N stands for M + 8, D. We denote by —a(t, v, ¢) the right hand
side of (2.2). Basic properties of a(t,-,) are obtained as consequences
of (2.1). Indeed, on the one hand, we have

I a(t v, ¢) |< A ” v |IL2(ﬂ)I| ¢ “LZ(Q) +CMD ” v ”L2(Q)” ax¢ ”Lz({l)

421185 ll2 0 | 858 20

S (A +CM1D +E) H v ”Hl(ﬂ.)” ¢ ”Hl(ﬂ) (2'3)
and, on the other hand

alt, $,¢) = A /Q Sdz + /ﬂ Nédpddz + /Q D(@.4)%de.  (24)

Thus, the Cauchy-Schwarz inequality yields

| [, N60.0dz 1< Cot 1| 6 lyny | 26 N5

Cm.p ”¢Hﬂ@
STy ( H ”m¢”ﬁm

where p > 0 is to be determined. One deduces that
a(t,$,¢) > d || 8:9 |}

L2 ()
CMD NCMﬁ
A1, ~ 2L g2, MR a0,
MCM D CMD
> (- 22y | 4 ||,,1(m FA—d-EDy g, L (29)
Let us fix p so that P
#Cm,D
>
d-—=235>0
holds and, then, we choose A satisfying
Aod—SMD _ 55,

2p

357
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In all what follows, we denote by A a constant, depending on d,d and
Cwm,p, which satisfies this last inequality. Finally, the bilinear form
a(t,-,-) defined on H(Q2) x H(Q) satisfies

| a(t,9,8) IS C 10 llu oy 1 6 I e
alt,5,0) > £l o112, +AlSI2, >%ls?

Hi()

(2.6)

Hl(Q) L2(q)

These properties allows us to apply general results in [14] (Theorem 4.1,
p. 257), [17] and we obtain

Proposition 1. We assume that (2.1) is fulfilled. Let up € L*(Q).
Then, there ezists a unique v € C°(0,T; L%()) N L%(0,T; H(Q)) with
O € L%(0,T; (HY(RQ))") satisfying, for all ¢ € H(Q)

{ (000, 8) 0 r + 0(t,0,0) = 0

2.7
UIt:O = Uop- ( )

Since we shall consider non negative and integrable data, the following
corollary is useful.

Corollary 1. Let ug > 0 in L2(Q2) and v be the solution of (2.7) given
by Proposition 1. We set u(t,z) = e*v(t,z). Then, u is non negative
and satisfies

/ud:c::/ updz (2.8)
Q Q

Proof. Let us denote u— = max(0, —u). One recalls, see [6] or {18]
(Part 3, p. 2) that for v € H!(Q2), we have u_ € H(Q) and

_ ) Ozu ifu<0
‘9‘"(“")—{ 0 if u>0.

Plugging ¢ = v_ in (2.7), it follows that

1d
5%/9 (v_)?dz = —a(t,v_,v_) < 0
by (2.6). Since the datum ug is non negative, we deduce that v_ = 0.

Moreover, taking the test function ¢ = 1, we get % / vdz = - / vdzx.
Q Q

Hence, it follows that [ vdz = e™** / updz which clearly leads to the
Q Q
conservation law (2.8).
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2.2 Fixed point step

This section is devoted to the nonlinear problem (1.1-1.3), with coeffi-
cients M, D depending on the unknown u as in (1.3). However, we still
consider a non negative initial datum uo belonging to L%(2). Let us
introduce the following convex bounded subset in L*°(0, T'; L%())

C = {g € L*(0,T; L¥(Q)),g > 0, / gdz = / vodz
9] Q

and “ g(t’ ') “L2(Q)S e)\t " Uo ”L2(n)}' (2'9)

We denote by T (up, -) the mapping
T(uo,):gE€EC—r u (2.10)

where u is a solution of (1.1-1.2) with coefficients M = M(g) and D =
D(g). We shall show that this mapping has a fixed point in C, assuming
that the datum wug lies in L2.

From now on, the regular functions m and d, involved in (1.3), are
required to satisfy (1.5). Therefore, for g given in C, the coefficients

M(g), D(g) satisfy (2.1) with d = Q/ ugdz, d = 3/ updz and Cy,p =
Q Q

Cmd f ugdz. Note, however, that the technical restriction (1.5) seems
Q

unphysical in view of most of the models proposed in [10].

Proposition 2. Let up > 0 in L%(Q2). We assume that (1.5) holds.
Then, there ezists a unique solution u of (1.1-1.83) satisfying

<C < Ch

” u ”LOO(O,T;LZ(Q))— ug 1 ” u ”L2(0,T;H1(ﬂ))—

where C,, depends on (1.5) and on || ug ||

L2(q)’

Proof. Keeping the notation of Section 2, we set v(t,z) = 7 (uo, g).
First of all, we remark that, by Proposition 1 and Corollary 1, 7 (uo, -)
is well defined on C and, obviously,

T (u0,C) C C. (2.11)
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Indeed, choosing ¢ = v as test function in (2.7), we get

1d d 1d [, B
55 1l +5 1012 < 57 [ e taltom) =0 212)

by (2.6). Thus, v is bounded in L>(0,T;L?(Q)) N L2(0,T; H'(R)), the
bound depending on the norm of ug in L2. First, we show the uniqueness
and next, we will turn to the existence part of Proposition 2 by applying
the Schauder fixed point theorem.

Uniqueness.
For i € {1,2}, let v; € C satisfy for ¢ € H'(R),

(6{0,, ¢> _a: t s g,y ¢) U, Jt=0 = Ug

where a;(t, -, ) stands for the right hand side of (2.2) with coefficients
M = M(w;), D = D(u;) ; precisely

a;(t,vi,$) = /\/ v,¢dx+/ e to; v,+D(e t;) 8, v,) d.¢pdx.
We still denote N = M + 3,D and we set w = vy — v;. Take ¢ = w

as test function in the equation satisfied by v;. Then, substracting the
obtained relations gives

2dt/ | w|? de+ay(t, w, w) = /{;(N(e’\tw)vlazw+D(e”w)(?xvlazw)dz.

(2.13)
By using (2.6) and Young’s inequality, we estimate as follows

23 10 P det w12, <l NE0) il 00l 8210l
11 D) ol 8ot Ny 0| 00 g

% || w ”Hun) '2"(” N(eMw) “ L (9) o ”L”(m

At
+ | D) (2wl 01 12, ) - (2.14)
However, by the definition (1.3) of N and D, we note that
” N(eAtw) ”L"o(ﬂ)S ceAt ” w ”LZ(Q)’ ” D(e/\t'(l)) "L°°(Q)S ceAt “ w ”LZ(Q)

(2.15)
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holds a.e. (0,7'), where ¢ depends on (1.5). It follows from (2.14) and
(2.15) that z(t) =|| w(t, ") ”fﬂ(n) satisfies

#(t) < b(0)=(0) (2.16)

where b(t) stands for 2"‘;“ Il v1(¢,-) ||Hl( " We conclude by Gronwall’s
lemma that z(t) = 0, i.e. v; = vs.

Ezistence. '

We have seen that T (up,C) C C and v(t,z) = e~ **T(uo,g) for g € C
is bounded in L%(0,T; H*(R)). In view of the equation satisfied by v,
we also note that ;v is bounded in L2(0,7T; (H'(R2))’). Hence, classical
compactness lemma [16], [18] implies that v belongs to a compact set in
L%(0,T; L?()). Let g, be a sequence in C. Extracting a subsequence if
necessary, v, = e~ T (up, g,) converges in L2(Q). It remains to prove
that 7 (uo, -) is continuous in L%(Q). Let g, — g in L%(Q), with g,, € C.
Then, it is clear that the coefficients N, = N(g,), D, = D(g,) converge
to N = N(g), D = D(g) respectively in L?(0,T; L>°(2)) since

” Nn ~N ”Loo(g)s ¢ ” 9g—9n ”L2(Q)’

” Dn -D ”Loo(n)s c ” 9= gn ||L2(ﬂ)

holds a.e. (0,T) with ¢ depending on (1.5). We consider the associ-
ated sequence v, = e~ M7 (ug, g,) and v = e~ T (ug, g). We follow the
uniqueness proof to obtain

1 on =) s < 22 [ 1 (0 = 9)(6) I, 1 006) 2 - (200

Possibly at the cost of extracting a subsequence, we can assume that
a.e. (0,T), ga(t,") = g(t,-) in L%(Q). Then, applying Lebesgue’s the-
orem, we can assert from (2.17), that v, converges to v for a.e. ¢ in
L%*(Q) and, thus, in L%(Q). Since v is the unique solution of the linear
problem associated to g, the whole sequence v,, actually converges to v
in L?(Q). We finally apply the Schauder fixed point theorem to deduce
the existence of a fixed point v = T (ug, %) in C.
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3 Estimates

We establish in this Section a set of estimates only depending on the L!
norm of the initial data %y on the solutions obtained in Proposition 2.
We follow arguments in [5] to prove the following claim.

Lemma 1. We assume that (1.5) holds. Let v be as in Proposition 2.
We set B, = {(t,z) € Q,n <|v(t,z) |< n+ 1}. Then, one has

/B | 80 |? dzdt < Co + Ci /Q vPdadt (3.1)

where Cy, Cy only depend on || uo || and §.

Li(n)
Before we detail the proof, let us give the statement of the following
fundamental consequence of Lemma 1.

Proposition 3. Let v € L2(0,T; H()) satisfy (3.1) and assume that

sup || v(t,") llLy@y< k. Let 1 < q < § and &5 < s. Then, there
t€(0,T) !
ezists a constant K which depends on k,Cy,Cy such that

/ | 8,0 |7 dzdt < K,
| v |2 dzdt < K, (3.2)
Q
<K.

“ v “LQ(O,T;L’(Q)) =

Remark 4. The case C| = 0, with a space dimension greater than 1,
appears in [5]. Taking into account the additional L? term, it seems that
our arguments break down when considering greater dimensions since
we are led to contradictory conditions on gq.

Proof of Lemma 1. Let us denote by X the characteristic function
of the set B, and by x|, ., the characteristic function of the set {(t,z) €
Q, such that | v(t,z) |> n}. As in [5], we introduce the following test
function

+1l ifv>n+1,

v—nifn<v<n+l,

¢n(v)= 0 2f lNS n,
v+n if —n—-1<v<-—n,
-1ifv<-n-1.
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We set

v-—n—-;- ifv>n+1,
%—nv»+"2—2 ifn<v<n+l1,
\Iln(v)= 0 lf |”|S 72,

%+rw+’;—2 if —-n-1<v<-n,
-v-n-}% ifv<-n-1

Let v € H'(Q). Since ¢, is Lipschitzian, ¢,(v) € H'(S2) and [18], [6]

v if (t,z) € By,
0 otherwise.

0z (o (v)) = {

Hence, we get
4 / ¥, (v)dz + a(t, v, ¢a(v)) = 0.
dt Jo

Then, assumption (1.5) leads to

d | 2
-Jt-/n‘lln(v)d:c+¢/ﬂlaxv| X3, 4z

+)\/n (W¥-nlv x5, dz + )\/‘;I V| Xppions1 82

Cum,p / 2 pCMm,D / 2
< === dz + ——— dz.
=9y QvXB,, T+ 2 nlaa:vl Xp, 0T
Remarking that the fourth term in the left hand side is non negative,
we proceed as in Section 2 to obtain

d d
4 /ﬂ ¥, (v)ds + 5 /ﬂ | 820 % X5, dz + A /n 02X, d

SA/nlleBnsz/\/vzdz.
Q ‘ Q

Since 0 < ¥, (s) < s, integrating with respect to t achieves the proof of
Lemma 1.
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Proof of Proposition 3. We seek an estimate in the space
L7(0, T, W'9(R)) where 1 < ¢ < %. To this end, we write

/ /lavlqdzdt Z/ | Ozv |7 dzdt + Z/ | Opv |7 dzdt
n=0 n=N

(3.3)
where N is an integer to be suitably determmed. In what follows, we
simply note C for various constants depending on &, Cy, Cy,¢q,T,| 2 |,...
neglecting the fact that the value of C' may change from a relation to
another. Similarly, writing C(N) or §( N), we emphasize the dependence
with respect to N with the meaning that C(N) is large and §(N) is small
as N goes to oo.

By using Holder’s inequality (with exponents 2>1land 5 ) and (3.1),

one has
q
/ | 8 |9 dedt < (/ | 8,0 |2 d:cdt)2 | B, |5
Bn B,
4 1 2—gq
<@ 40, 0 0) | Bal (3.4)
Thus, we get
N-1
2%[ |0e0 ¢ dads <N+ |0 1%, ). (359)
—
Let r > 0. It is obvious that
1 r
|Bn|§;/3"|v| dzdt
and it follows that
Z / | Oyv |7 dadt
n=N )
< C’ C’2 (L " dzdt =
@+ I Mgy 3 (i [ 191 02
. g
4 'l r2=q . 1 2
<@+ ) 10 e (z _g) (3.
n=NNn ¢
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by using Holder’s inequality. Note that the serie which appears in the
right hand side of (3 6) converges as soon as r——l > 1. In particular,

assuming 1 < ¢ < 3, we may choose r = 2. In thls case, let us write
(3.6) as follows

S [, 1001 dade < SO 1 ey + 119 W) B
n=N

where §(N) may be made arbitrarily small by choosing N large enough.
Then, our next aim is a bound on the L? norm of v.

Let s > 2. Weset r =2 =60+ (1- 6)s. One gets

foerars (eie) (ere) 2 (fra)™.
3.8

Assume now s > I3 > 2 > ¢. Integration of (3.8) with respect to ¢
gives

<Clvl (3.9)

” ”LZ((o T)xQ) — L0,T;L%(R)) *

Since W11(2) embeds continuously in L*(2), we are led to

T g
1o Wamaray S C [, ([ Q01 +1 00 D) at
<C (1 +/ | Ozv |7 dwdt) . (3.10)
Q

Combining (3.3) with (3.5) and (3.7) yields

/ | 8yv |? dzdt < C(N) (H' | v ”1.2((0 T)xn))

HV) (10 12, 0y + 10 W2 ) (3.11)
so that, by (3.9), (3.10) becomes

” ”L‘I(o T;L%(Q)) — < C(N) (1+ ” v “L¢1(0 T; L*’ﬂ)))

365
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S(N q (2-0)§ 3.12
+ ( ) “ v IILq(o,T;LSﬂ)) + ” v ”Lq(O,T;L’ﬂ)) . ( . )
Therefore, by using the Young inequality, it follows that
1
10 W ooy S C) + G+ 26O N0 ey (313)

holds. We may choose N large enough so that 1 — 26(N) > 0 which
gives the last bound of (3.2). The other bounds of Proposition 3 are
deduced as consequences of (3.9), (3.11) and (3.13).

4 End of proof of Theorem 1

In this section we achieve the proof of Theorem 1. Let ug > 0, with
up € L'(R) be an initial datum for problem (1.1-1.3). We approach this
datum by regular functions

{ uge € C(RQ), uge > 0

4.1
1 50, 110y <l 0 1y - 1)

Proposition 2 ensures existence and uniqueness of a solution u, of (1.1-
1.3) with ug . as initial datum. Moreover, Proposition 3 provides some
bounds on u., depending only on || u || ,. Summarizing, we construct
an associated sequence

ue bounded in L(0, T; W™(Q)), 1< g < g (4.2)

Furthermore, in view of the equation satisfied by u,,
dyue 15 bounded in L9(0,T; LY(Q)) + LI(0, T; W~19(Q)). (4.3)

Therefore, by applying compactness lemma in [16], one deduces that u,
is compact in L?((0,T) x ). Hence, possibly at the cost of extracting
a subsequence, we can assume that

ue — u strongly in L((0,T) x Q) and a.e. t, z,
0 <uc<h(t,z)e L1((0,T) x Q) ae.t,z, (4.4)
Oz ue — Oyu weakly in L1((0,T) x Q).
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Next, let us claim that we can obtam, by construction, additional prop-
erties on the sequence u, = e*v,. The following statement is derived
from Proposition 3.

Lemma 2. We have

lim {sup ve(t, z)dz} = 0. (4.5)

k=00 et Ju. >k
Proof. Proposition 3 shows that, for all ¢, n,
/ | 8,v. | dadt < K. (4.6)
By

We introduce the following truncation
s if |s|<k,
Ti(s)=< k if s>k, 4.7
—k ifs < —k,

and we define the primitive of T} which vanishes on 0 as follows

_[ 2 1si<h,
Sk(s) = {kzlsl-— if |s|>k. (48)

Let k € IN fixed. By (4.6), (Tk(ve)), is bounded in L%(0,T; H'())
since, clearly, | Tx(v.) |< k and

/ | 0, (Teve) |? dedt = Z / | 8,0, 2 dedt < kK. (4.9)

n=0

Thus, by using the continuity of the functions T} and (4.4), we deduce
that the following convergences

{ Ti(ve) = Tr(v) stronglyin LI((0,T) x Q) and a.e. t, z,

3z (Tk(ve)) = 0-(Tk(v)) weakly in L2((0,T) x Q) (4.10)

hold as ¢ goes to 0. Note in particular that Tk(v) belongs to
L*0,T; H}()).

».<x Stand for the characteristic function of the set

Let x
B.; = {(t,z) such that 0 < v.(t,z) < k}.

367
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By plugging ¢ = Ti(v.) € L?(0,T; H'(Q)) as test function in (2.7), it
follows that

d
- /Q S(ve)dz = —au(t, vs,Tk(ve))

= _as(t’xu;<kvg’xv¢<k Ak‘/‘ vexv >kdx <-z “ u¢<k Ve ”Hl(ﬂ)
(4.11)
Integration of (4.11) on (0,¢) yields

) |
S S0 + 5 1 X I o S [l Seluoc)de.  (4.12)

Let M > 0. We remark that Si(s) < M? + ksyx,,,,, for s > 0. Then,
we deduce from (4.12) that

1 JEX Vo) < M 4 o odo (4.13)
kJo kiVUs =Tk w0, >M 0,eGL. .

Since ug,. converges in L!(2), M may be chosen so that

sup ug,dz
>0 Jug, e >M

is arbitrarily small which allows us to claim that

hm {sup fSk(ve)dw(t)} 0. (4.14)

—+00 5,

From (4.12), we also note that
Jim {sup 7 1 Xee e 172 g 7y} = O (4.15)

Finally, combining (4.13) with Si(s) > kxl_’|>k1%[ ends the proof of
Lemma 2.

Corollary 2. There ezists a subsequence such that for all t € (0,T),
ue(t, ) converges weakly to u(t,-) in L'(Q). Moreover, let ¢ € W' (Q),
then the function of time

t—s U(t) = /ﬂ ult, 2)$(z)de
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is continuous on (0,T).

Proof. Let 1 < ¢ < 4 and ¢ € W' (Q). Weset U,(t) = / ue(t, z)o(z)dx
Q

Our proof starts with the observation of the following remarkable equicon-
tinuity property

sup | Ue(t) — Ue(s) IS Cll 8, 01t = 517 (4.16)
with o > 0 depending on ¢. Indeed, by the definition of u., one has

| U(8) - Un(s) |=| / t /ﬂ (N (we)ue + D(ue)0yu.)duddzdr |

< Cu 1001, ((/:/ngdzd‘r)% + (‘/:/Q | Bzue |2 da:dr’) %) .

Let ¢ < p < 3. By Proposition 3, u. is bounded in L?(0,T; W'?(Q).
Hence, Holder’s inequality yields

| Ue(t) = Ue(s) |[< Coo K | £ — s |

witha = % -1s0.

S -

We turn to the proof of Corollary 2. Since u.(t) is bounded in L1(Q)
uniformly in ¢,e, we observe by Lemma 2, that u.(t) lies in a weakly
compact set K of L1(Q) for all t,e. Then, the diagonal process allows
us to assume that u.(f) — u(f) in L!(2) for all rational time . We
shall show that this convergence actually holds for all time ¢t € (0,7T).
Indeed, assume that for a non rational ¢, u.(t) does not weakly converge
in L'(2). Then, for some regular test function ¢, we can extract two
subsequences from U, (t) with different limits, while

[Ue(t) - Ue(®) ISC [t -E |

holds by (4.16) where { is a rational close to t. Thus, we are clearly led
to a contradiction since U, () converges as € goes to 0. The continuity of
U(t) for regular ¢ is a immediate consequence of this weak L! compact-
ness property and of (4.16). Observe also that the conservation law (1.4)
follows from Corollary 2. ]
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Finally, we wish to pass to the limit ¢ — 0 in the weak formulation
satisfied by u,, namely

/t/ ueat¢dxds+/ u9,e$(0, -)dz =

oJa a (4.17)
/ued)(t, -)dx-i—/ / (N (ue)ue + D(ue)0pu. )0, pdzds
Q 0 JQ

where ¢ € C°(0,T; W''(Q)) with d;¢ € C°(0,T;LY(R)). There is
no difficulty to deal with the left hand side term. In the right hand
side, first, we use Corollary 2, and, next, we observe that N(u.) and
D(u.) converge a.e. to N(u) and D(u) respectively and remain uni-
formly bounded in L*°((0,T) x ). Thus, by the Lebesgue theorem,
D(u.)0,¢ and D(u.)8,¢ converge stongly in L (@) while u, and 9,u.
are weakly convergent in L9(Q). These arguments allow us to pass to
the limit in the last integral of the right hand side. This proves that u
is a weak solution of the Fokker-Planck equation (1.1- 1.3) in the sense
that

/9 ud(t, -)dz + /0 /9 (N (w)u + D(u)d,u)d,ddeds

holds.
[ ]

Remark 6. The regularity of the obtained solution permits us to make

more precise the sense in which the boundary condition (1.2) holds. We
have (M + 3,D)u+ Dd;u=0in W-19(0,T) at z € {0,1}.
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