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Cyclic branched coverings of 2-bridge knots.

Alberto CAVICCHIOLI, Beatrice RUINI, Fulvia SPAGGIARI

Abstract

In this paper we study the connections between cyclic presen-
tations of groups and the fundamental group of cyclic branched
coverings of 2-bridge knots. Then we show that the topology of
these manifolds (and knots) arises, in a natural way, from the al-
gebraic properties of such presentations.

1 Cyclic Presentations

Several authors have recently remarked that cyclic presentations of groups
are very interesting from a topological point of view. Connections be-
tween these types of presentations and the topology of cyclic branched
coverings of knots and links can be found in (4], {5], (12], [13], [13]. (18],
(19, {22]. [26], and [28]. The purpose of this paper is to study the cyelic
branched coverings of (hyperbolic) 2-bridge knots. We show that these
manifolds can be encoded by cyclically presented groups arising from
Heegaard diagrams with a rotational symmetry (and so they correspond
also to spines {14] of the considered manifolds). To state our main re-
sult, we recall some definitions on cvelic presentations of groups, and
refer to [20] for a more detailed discussion on the topic. Let fy, be the
free group on free generators zp, ..., zn, and let 8 denote the auto-
morphism of F, defined by setting 8(z;) = z;4; (where the indices are
taken mod n). For any reduced word w in Fy, let us consider the factor
group G (w) = F,/R, where R is the normal closure in £y of the set
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{w,@(w),...,6" "(w)}. A group G is said to have a cyclic presentation
if G is isomorphic to Gp{(w) for some w and n. Of course, § induces an
automorphism of G, (w) which determines an action of the cyclic group
Z,=<8:0"=12>on Gy(w). The split extension group of G,{w) by
Z,, admits a 2-generator presentation of type

Hy(v)=<8,z:6" =1, v{d,z}=1>,

where

v(8,z) = wiz, 8 '26,.. ., g=(n=1)zgn-1 ).
The polynomial associated with G, {w) is defined to be

i

fu(t) = ait’,

=1
where a; is the exponent sum of z; in w.
The following questions are natural here:

1) Does G\, (w) correspond to a spine (or a Heegaard diagram) of a
closed orientable 3-manifold M, (w)? (If so, then the presentation is also
called geometric);

2} Which of the manifolds M, (w) admit a hyperbolic structure?;

3) Are the manifolds M, (w) homeomorphic to the cyclic branched
coverings of some (hyperbolic} knots or links? In the first case, does
fuw(t) coincide (up to sign) with the Alexander polynomial of the knot?

We treat these questions for the cyclic branched coverings of 2-bridge
knots (here we are principally interested in hyperbolic case, and refer to
(4] for 2-bridge torus knots). A 2-bridge knot is determined by a pair of
coprime integers (o, ) satisfying 0 < # < «, and o odd. Following [16],
let us denote by /3 the 2-bridge knot determined by {«, 3). Two such
knots o/ and o'/f’ belong to the same knot type if and only if o = o'
and B*! = ' (mod «). The knot group of a/B has the 2-generator
presentation

< u, v uwle, f) = wla, v >,

where
w(oy B) = v u -yt tpta-2yte-t
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and ¢; is the sign (£1) of i3 reduced mod 2« in the interval (—o, &). If
B > 1and 8 # o -1, then /8 is hyperbolic, i.e. its complement in
the 3-sphere §% admits a complete hyperbolic structure of finite volume.
The conditions § > 1 and # # a — 1 mean that «/f is not a torus
knot (see [31]). Let O(a/B;n) be the orbifold whose underlying space is
83, and its singular set is o/ with branch index n > 1. The geometric
structures of the orbifolds O(a/3; n) are well-known [31] {see also [7] and
[16]). Finding a geometric structure for O(a/3; n) immediately implies
that the n-fold cyclic covering M, (a/f8) of the 3-sphere branched over
a/f has a structure modelled on the same geometry [7].

Theorem 1.1. Assume 8 > 1 and § # a — 1. The manifolds M,(a/5)
are hyperbolic when a =5 andn > 4 or a # 5-and n > 3. Furthermore,
M, (a/B) is homeomorphic to the lens space L(a, ) for any «, while
M3(5/3) (i.e. the 3-fold cyclic branched covering over the figure eight
knot) is Euclidean.

Observe that all the results obtained in this paper on geometrical
structures of the considered 3-manifolds are consequences of Theorem
1.1. Thus such results can be considered as remarks from other propo-
sitions proved here.

The following answers affirmatively the questions above for 2-bridge
knots.

Theorem 1.2. The fundamental group of M,.(a/3) admits a cyclic pre-
sentation Gy(a/B) arising from a Heegaard diagram with an n-rotational
symmelry (and whence it corresponds to a spine of the manifold). The
split extension group Hy{a/B) of Gn(a/B) is isomorphic to the funda-
mental group of O(a/B;n). Furthermore, the polynomial associated with
Gala/B) coincides (up to sign) with the Alezander polynomial of of3.

The fact about the polynomials can be seen in general as follows.
Suppose G, (w) encodes the n-fold cyclic covering M, (K) of the 3-sphere
branched over a knot K. Let X = X (/) be the infinite cyclic cover of
K. If Z[t,t71] denotes the ring of (finite) Laurent polynomials with
integer coefficients, then the module H|(X} is the quotient of Z[t,¢™!]
by the ideal generated by the Alexander polynomial Ay (t) of K (see for
example [27}). So the module H,(M, (K)) is the quotient of Z[t,¢t™!] by
the tdeal gencrated by Ay (t) and t" — 1. But from [20] there is also a
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module isomorphisin between the abelianized of G5, (w) and the quotient
of Z[t,t™!] by the ideal generated by the polynomial f,(¢), associated
with Gp(w), and t* — 1. So f,(t) coincides (up to conjugation) with
A (t), as required. In any case, we shall prove this directly for 2-bridge
knots.

2 RR-systems

To prove that the group presentations, considered in the paper, are
all geometric, we use the representation theory of closed orientable 3-
manifolds by RR-systems, due to Osborne and Stevens ([23], [24], [25].
and [30]). So we first recall some definitions and a basic result of the
theory {for more details sce the quoted papers). A RR-system (rail-
road system) is a simple planar graph-like object defined as follows.
Let D be a regular hexagon in Euclidean plane E2. For each pair of
opposite faces construct a finite set (possibly empty) of parallel line
segments, called tracks, through D with endpoints an these opposite
faces. Any pair of opposite faces in the hexagon £ is called a station. Let
{D;:i=1,....,n} be aset of disjoint regular hexagonsin £%. A routeis
an arc whose interior lies in the complement of U; 12; in 2. and connects
endpoints of tracks. A RE-system is the union in 2 C 8?2 = 2+ =
{(the 2-sphere) of a finite set of disjoint routes in the complement of U; D;
in §% such that each endpoint of every track intersects exactly one route
in oune of its endpoints. A R7-system gives rise Lo a family of group
presentations in the following way. The generators z;, for i = 1,...,n,
are tn one-to-one correspondence with the hexagons D, and hence D,
can be labelled by z;. In cach D; we start at some vertex of d13; and
proceed clockwise (according 1o an orientation of §%) along an edge.
This edge corresponds to a station labelled by an integer (. Orient
the tracks corresponding to this station so that the positive direction is
toward the above edge. Label the stations corresponding to the second
and third edges of D; encountered by integers &y and £; +4;, respectively,
and orient the tracks of these stations toward the corresponding edges.
To illustrate the labelling of the stations we have depicted a simple RR-
system with two hexagons in Figure 1. For each hexagon we have of
course three stations corresponding to the three pairs of opposite faces
in it. S0 moving clockwise aloug the boundary of the hexagon [ in
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Figure 1 (i = 1,2) we label its stations by the integers {;, ki and £; 4+ k.
Now we construcl a set (possibly empty) of o; parallel oriented line
scgments (tracks) with heads on the station labelled ¢; and ends (tails)
on the opposite face of D; (we have oy = ap = 1 in Figure 1). Next
we construct a set (possibly empty) of 3; parallel oriented line segments
with lieads on the station labelled k; and tails on the opposite side of D,
(we have §; = 1 and 3, = 0 in Figure 1). Similarly, we construct a set
(possibly empty) of 3; tracks with heads on the station labelled ; + k;
and tails on the opposite side of D; {we have y; = 1 and v, = 2 in Figure
1). Now we explain how to obtain the group presentation corresponding
to a given RR-system. Beginning at some point on some route we write
a word on generators x; as follows. As we enter in each hexagon D; we
give the label of the station as exponent of z; with sign +1 (resp. —1)
if our direction of travel agrees with (resp. opposes to) the orientation
of the tracks. When we have completed our travels on routes, we obtain
the relations of the group presentations induced by the RR-system. The
group presentation induced by the RR-system shown in Figure 1 has two
generators zy and zp (which correspond to the hexagons D and D).
and two relations z€'+k‘ :rg? =1 and I‘;‘zg2+k2a:’;‘ :rg?"'k2 = 1. To obtain
these relations we proceed as follows. We trace out a simple closed curve
by following a track through the hexagon Dy, then along an arc {route)
connecting the head of this track to a track in the hexagon [J);. Next
we follow the route connecting this last track with another one in [},
and continue until we return to the starting point (i.e. the tail of the
first track considered in D). This closed curve determines a relation
of the group presentation in the following way. As we travel along the
closed curve, we record a syllabe :r:i‘ if we travel from tail to head along
a track of the statjion labelled £, in the hexagon Dy. Next we follow the
closed curve along a route until we reach a track in the hexagon Dy, If
we follow along this track from tail to head, then we record the syllabe
1‘_,? {or “Lé’ or 3:232"""2} according to the label of the station. If we travel
along a track from head to tail, then we record the syllabe with a minus
sign preceding the exponent. We continue in this way until we return to
the starting point. Beginning to the starting point labelled -4 {resp. 3)
in Figure 1 and travel along a closed curve we write the word .7:';‘“‘ .1';"
(resp. .Tf’.'.f“"? .r"l"':xr.';-’+k2) as claimed.
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Figure 1: An example of RRE—system

The following is a fundamental result in the theory of RR-systems:

Theorem 2.1. Let R be a RR-system with n hexagons whose stations
are labelled by integers &;, k;, and {; + ki, and let dr be a group pre-
sentation induced by R. If (£, k) =1 for any i = 1,...,n, then ®p
corresponds to a spine of a closed orientable 3-manifold M—i.e. M\
(open 3-cell) collapses onto the canonical cell complexr of dimension 2
given by the presentation 5.

Let us consider, for example, the RR-system depicted in Figure 2.
One can easily verify that it induces a cyclically presented group with
three generators z;, and three relations (indices mod 3) i

& Liviym k|+1 ~&iy1 fu}-‘z m
(z m|+,) it (31+1 T2
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If (¢;,k;) =1 foranyi=1,...,n, then Theorem 2.1 implies that these
presentations are geometric, and so correspond to spines of closed ori-
entable 3-manifolds.

/
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\
\\\
g _/

Figure 2: A RR—system inducing the Kim-Vesnin groups (case
n=3, m=2L;=1k=¢g¢==Il)
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3 The Kim-Vesnin Groups

We start with.two interesting families of cyclically presented groups, due
to Kim and Vesnin [19}, which include the Fibonacci groups [12] [15] [22]
and the Sieradski groups [5], respectively. These groups were proved to
encode the cyclic branched coverings of the 2-bridge knots (4mf+1)/2¢
by using Dehn surgery on a certain chain of linked circles. We now
present a simple alternative proof of the main theorem of [19]. It is
immediate to sce that our algebraic method works in general to study
any cyclic branched covering of a 2-bridge knot by a cyclically presented
group.

Let us consider the cyclically presented groups G(m,#;¢) with n
generators x;, and n relations (¢ = £1)

(a:i_c:cfH Tei = (z;fla:fu)m {indices mod n).

Iigure 2 shows that these presentations are geometric (set ¢; = ¢
and k; = e for any i = 1, ..., n). Here we have depicted the casc n = 3
and m = 2, but one can easily obtain the general RR-system (with n
generators) as follows. Take n hexagons Dy, ..., D, cyclically ordered
in the plane, and label their stations by integers ¢;, k;, and €;+k;, for any
i=1,...,n. Then repeat the pictures of tracks and routes so that the
resulting graph admits a rotational symmetry of order n (in fact, this
symmetry is induced by the automorphism 8 of the group presentation
sending the generator z; to €1, where the indices are taken modulo »).

The following is the main result of [19]:

Theorem 3.1. The cyclically presented group G (m, £,¢) is isomorphic
to the fundamental group of the n-fold cyclic covering M, ((4mf+€)/2()
of the 3-spherc branched over the 2-bridge knot (4l + ¢)/2¢, where
¢ = x1. The polynomial associated with G,(m, C; ¢} is the Alezander
polynomial

A e(t) = mlt? — (2me€ + )t + mé

of (Aml+ c)/2L. The manifolds M, ((4mé+ ¢)/2€) are hyperbolic for all
n2>3ym>2o0rl>2 and M,(5/2) are hyperbolic for all n > .
In these cases, G, (m, € €) are hyperbolic groups (hence infinite) which
eneode the corresponding manifolds.
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Proof. For convenience, assume ¢ = +1 (the other case is analogous),
and simply denote Gn{m, ¢ ¢) by G,(m,£). Let us consider the split
extension group H,(m, &) of G,(m,€) by Z,, =< 8 : 8" =1 >, 8 being
the automorphism of F,, given by #(z;) = ;41 (indices mod n}. Then
H.(m, €} has a finite presentation with generators # and z, and relations
g* =1 and v(f,z) = 1, where

v(f, ) = w(z,07'z0,60"2z6%)
= (07227626 " 20y (z 0" ' 2'O)m 0
= (67292 0y™ (20~ " 2°0) ™6 2.

Setting = = (A, we get the new presentation
Hoy(m, &) =<8, A: 6™ =1,

(B72(ATT7Y 00N ™ (A0 1YL (AN )07 0N > .

The second relation can he simplified as follows:

o2 (AT YN ™ = AT O (e (e ™
and whence

(BTN N ™ = AT e (AT (a0 ™.
This relation can be written in the form wf = A~ 'w, where

w = (8~1(A"1eH)egeN)
= [0, (82"

(here we have set [8, (BA)F] = 671 (A71071)(0(82)¢). Therefore the split

extension group H,(v) has the presentation
H,(v)=<8,A:0"=2A"=1, wl= Alw > .

The added relation A™ = 1 is an immediate consequence of the other
two relations in the group presentation. We have included it to give a
better understanding of the fact that H, (v} is the fundamental group of
a well-precised orbifold. Now we prove this claim. Becanse

W= 9‘-1 ,\52 e )\':'Im(—29'-4m(—l ’\‘--‘lm[‘

391
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where the exponent ¢; is the sign (£1) of 2i€ reduced mod 8mé+2in the
interval (—4mf — 1,4mé+ 1), the word w corresponds to the 2-bridge
knot (4mf + 1)/2¢. In particular, the group < 6, A : wd = A~ tw >
is isomorphic to the knot group of (4mé 4 1)/2¢, and the generator #
corresponds to a meridian of the knot. Comparing above presentations of
H, (v} and of the knot group, we see that H,(v) is the fundamental group
(in the sense of [11]) of the orbifold O({4mf-+1)/2¢; n) whose underlying
space is the 3-sphere and whose singular set is the 2-bridge knot (4m# +
1)/2¢ with branch index equal to n. This orbifold is hyperbolic for any
n>3ifm > 2o0r > 2, and O(5/2;n) is hyperbolic for any n > 4.
Furthermore, O((4mf+1)/2¢; 2) is spherical, and ©(5/2; 3) is Euclidean.
Hence the orbifold group H, (v) is infinite when it is hyperbolic. The
fact that the group G,(m, ) is a normal subgroup of H,(v) of index n
implies that G,(m, £) is infinite for any n > 3if m > 2 or £ > 2, and for
anyn>4ifm=£=1.

As shown in Figure 3, the orbifold O = O{(4mf — 1)/2¢;n) has a
rotational symmetry of order 2 such that its fixed point set is disjoint
from the 2-bridge knot (4mf—1)/2¢. Factorizing by this symmetry yields
an orbifold with underlying space 8° and singular set the 2-component
link L(m,£), depicted in Figure 3, with branch indices 2 and n on its
components (which are equivalent). Let us denote this orbifold by @ =
O(L(m,£);2,n). Let X = X({4mf ~ 1)/2¢) be the universal covering
space of M, = M,((4mf — 1)/2¢). The fundamental groups G(m, ¢),
[(m,£), and Q(m,€) of M,,, O, and Of, respectively, act on X. We
have a covering diagram

M, 15020,

which corresponds to the subgroup embeddings G{(m, £}al’(m, £)<Q(m, £).
To obtain Q2(m, £) we can use a Wirtinger presentation of the link group
of L(m,£) which has two generators a and b (correspending to the arcs
with the same labels in Figure 3), and one relator between them. Ac-
cording to [11], 2(m, ¢) admits the group presentation obtained from
that of the link group by adding relations a? = ® = 1. Let us consider
the natural epimorphism v from Q(m, ¢) to Z; & Z,,. By construction of
the 2-fold covering @ — Oy, the loop a lifts to a trivial loop in ['{m, £)
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Figure 3: The orbifelds O((4m!l — 1}/2{;n) and O(L(m,{); 2, n) (case
m=23and | =2)
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while & lifts to a loop which generates a cyclic subgroup of order n.
This implies that T'(m, £) = %~(Z,)}. Tor the (2n)-fold cyclic covering
My — O, both loops a and blift to trivial loops in G(m, €), so G(m, €} =
Ker. Setting A(m, €) = ¥ ~!(Z,), we have immediately the sequence of
normal subgroups G(m, €} a A(m, £) aQ(m, {}. Since A(m, ) acts on X
by isometries, it defines an orbifold X/A. Then there is also a covering
diagram
M, 25 X/A 25 0.

The second covering is cyclic and it is branched over the component with
index n of the singular set of Q. It is evident from Figure 3 that there
is an involution of L{m,£) which changes the two components. There-
fore the singular set of O is equivalent to the link diagram obtained
from that in Figure 3 exchanging the branch indices. Of course, the map
X/A — Oy is a cyclic covering of 82 branched over an unknotted circle.
Since the component with branch index 2 is just the closed 3-strings
braid Jlﬂ l‘lm {see for example [2]}, it lifts in X/A to the n-periodic

closed 3- strmgs braid (01/8 1/m) . Thus the orbifold X/A has under-

lying space §* and singular sct (alle

X/A=0((0," o™ 2).

Summarizing, we have proved the following result (the statement for
the 2-bridge knot (4mf+ 1)/2¢ derives in the same way by substituting
£ with —¢£):

™™ with branch index 2, i.e

Proposition 3.2. There is a commutative diagram of cyclic branched
coverings (¢ = *1)

M ((Aml+€)/20) M. ((4ml+ ¢)/20)
21 in
O((U;‘/ﬂcr;/m)”; 2) O((dmef +¢)/2€;n)
ol 12
O(L(m,el);2,n) ——— o  O(L(m,cl);2,n)

Furthermore, eanch manifold M, ((dm+ €)/28) has Heegaard genus < 2.

Since the rational number (dmé — 1)/2€ can be expressed by the
continued fraction
dml — 1 1

=2-14 ———-
20 +1+__, 1’
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the corresponding 2-bridge knot admits the Conway normal forin C'(2(—
1. 1,2m — 1), and hence it has the same knot type as the pretzel knot
P(—1,20 ~ 1,2m — 1) (see for example Theorem 2.3.1 of [17]). By {21},
p. 57, a Seifert matrix for such a knot is

1/2 Vi1 W12 = C £
Vo) Uzg E—1 m+4£-1 )

We can now apply the procedure described in [10] to determine the
homology characters of the cyclic branched coverings of our knots {4ml—
1}/2¢. Since det V = m{, and

w = g.cd.(vry,vi2+va1, v22)
= gecd ({281, m+L-1)=1,

the homology groups of M, ((4m{+ €)/2¢) can be completely computed
{from [10} {for € = | see the remark above).

Proposition 3.3. Let M, = M,((dmf + €)/2¢) be the n-fold cyclic
covering of the 3-sphere branched over the 2-bridge knot (4ml + €)/2€,
where ¢ = 1. Then the first integral homology group of My s

v = | Diameraan DL, o even
Hl(nfn) - { Z|b,‘|@'z|b n ()dd

I'll

where

4y =ty =1, Gppz = @4y + emla,

hh=1, by=142eml, buyy=byyy +emlb,.
4 Study of more cyclic presentations

Let us consider the cyclically presented groups GL(k), & > 3, with »
generators x;, and n relations (indices mod n)

| k=1

=2 e - s . :
(H TipokanTid2h-2j-1 )ﬂf,- = H Tip2k—2j-1Ti42k=25-2-
J=1 =1

These presentations correspond Lo spines of closed orientable 3-manifolds:
in fact, they arise from the RR-system depicted in Figure | (case n =4
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and k = 3). One can easily obtain the general case taking » hexagons
(which correspond to generators z;) cyclically ordered in the plane, and
preserving the rotational n-symmetry of the graph.

e N\
\
{ (——‘ﬂ/—————\ _<_1 ,
1 ::\\ ::\\
= N = T
"/ NI

VAT

717
777

Figure 4: A RR—system inducing the cyclically presented group G (k)
(case k =3 and n=4)
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The split extension group Hl{k} of GL(k) has a presentation with
generators @ and z (8 being the automorphism defined in Section 1}, and
relations 8™ = 1 and v(#, z) = 1. The second relation is equivalent to

k-1
(H 9—2k+23I—?g?k—236-2k+23+l 2:921:-23-! ).’L'_l
i=1

k-1
_ H -2kt 2i+1 =2 g2k=25=1 g—2k+25+2 , g2k~2j~2

i=1

hence
(z~2028)* 1z~ = B(z24z6)*" 10",

Setting = = 8A, we get the new presentation

HMk)=<8,1:0" =1,
(AT187IATIAG) T IAT = (AT AT 9N >

The second relation can be written in the form wA~! = w, where
w=(A"'97IATloNg) L

In particular, we obtain the relation A™ = 1 as a direct consequence of
the relations in the group presentation H!(k}. Because

w = (/\—l)qecg ... fiek—8 (A—l)'-ek—'rgtek—s’

where the exponent ¢; is the sign (£1) of #(2k - 2) reduced mod 12k — 10
in the interval (—6k + 5,6k — 5), the word w corresponds to the 2-
bridge knot (6k — 5)/(2k — 2}, which is (2k + 1)3, £ > 3 according
to notation of Rolfsen’s book [27] (compare also [2]). So the group
< @, A :wh ™! = fw >, where w is as above, is the knot group of (2k+1)3,
and the generator 4 corresponds to a meridian of the knot. So Hl(k) is
the fundamental group of the orbifold O((2k + 1)a; n). Therefore, the
cyclically presented group G(k) corresponds to a spine of the n-fold
cyclic covering M} (k) of the 3-sphere branched over (2k 4 1)3.
The polynomial f,,(t) associated with GL(k) is

2k-3

K243 (-1t + 2,
=1
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which coincides with the Alexander polynomial of {2k + 1);.

Let us consider the cyclically presented groups G2(k), k > 2, with n
generators z; and n relations (indices mod n)

k k-1
-2 _ . 2 —1
H Tig2k—2540%; L op 07 = (H $t+2k—2JIi+2k—2j—l )zi
1=1 =0

As above, these presentations are all geometric because it is immediate to
construct a RfZ-system inducing them. Hence there are closed orientable
3-manifolds M2(k) whose fundamental groups are isomorphic to G2 (%).
The split extension group H2(k) of G% (k) has generators @ and « related
by relations 8™ = 1 and

k
H 6—2k+2j—l$g‘2k—2j+l 6—2k+2jm—292k—2_7
Jj=1
k—1
— (H 9—-2k+2j1_821:—2j9-2k+2j+1 I—292k-—2j- 1 ):E_] )
i=0

which is equivalent to

(0712207 e ) (0282 72)  hzp e = 1
Let A be such that z = #A. Then the last relation becomes

(A0 IATIT Y I~ AT (OAAT IO AT Y laaga T 0 = 1,
or cquivalently
(O IATHEAATTET AT 00 0 = AT (0TI AT (AAOAT T AT YA ).
Thus it can be written in the form wé = A~ 1w, where
w= 0" AT BABNT 9T AT g

One can now verify that such w coincides with the word

g4 (/\*1)'-2 . (/\—i}'-m.——q g-ok—3 ()\—l)fnk—21
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Figure 5: A RR—system inducing the cyclically presented group (3 (k)

(case n = 4)
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where ¢; is the sign of i(2k) reduced mod 12k ~ 2 in the interval (—~6k +
1,6k — 1). This means that w corresponds to the 2-bridge knot (6k —
1}/2k, k > 2, which is (2k + 2); in Rolfsen’s notation. So the cyclically
presented groups G2 (k), k > 2, encode the n-fold cyclic coverings M2 (k)
of the 3-sphere branched over (2 ++ 2),.
The polynomial f,(t) associated with G2 (k) is
2k-3 -
2F 43> (-1 +1
=1
which coincides with the Alexander polynomial of (2 + 2),.
Let G2(k), k > 4, be the group cyclically presented by generators
Z1, ..., T, and n relations (indices mod n)

—k42 k=1, —k+2_k=2_ —k+1_k—2_—k+1

k=2 __
it1 Fig2 T T = 1.

z i+d TigaTiga Tipo Ty I

These presentations are geometric since they are induced by the RR-
system shown in Figure 5 (case n = 4). One can easily obtain the general
case taking n hexagons (which correspond to generators z;) cyclically
ordered in the plane, and preserving the rotational n-symmetry of the
graph.
The split extension H3(k) of G3(k) is presented by generators § and
z, and relations 8" = 1 and
(67 'z ~*+20) (6722 1 0%) (022~ F Y267 (9 1k 20ty (032 R 6%
(G—ZIk—'ZeZ)(s—lz—k-i—lg)zk—? — l,
which is equivalent to
B—lm—k+29_l mk—lg—lx—k-l-?g—l zk—*ng—k+l 9$k~29$—k+16$k-—-2 = 1.
Setting z = 8A~! yields a new presentation for H3(k) with generators #
and A, and relations " = 1 and
9—1 (Agnl)k~28-1 (9/\—1)1:—19—1 (,\6‘1)""29‘1 (9/\—1)&—29(/\9—1 )k—lg
(OATNE2e(00 ) e = 1L
Since this relation is equivalent to
(/\9—1 )k—-'ZB-l (GA_I)k_lH_I (/\B—l)k—ZB—l (9)\—1)&—1)\
— 9()\9_1 )k—‘)g—l (B/\—[)k—la—l (/\B_l)k—QH_l (BA—I)k-—-I:
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it can be written in the form wA = 6w, where

- (Ae-—l)k—Ze—l (HA_I)k-lB_] (Ae—l)k—29—l (HA-l)k—l
— (/\Hul)k_2,\_l(9/\_l)k_2f\/\_]9_l (AB—I )k—?A—l (6)\‘1)"‘2)\,\"0“ g
([(6A"1)¥"2, A)A~1671)2

(here we have set [(6A~1)*=2 A] = (A0~ - 2X"1(gA"1)F—2)). In par-
ticular, we obtain the relation A" = 1 as a direct consequence of the
relations in the group presentation H2(k). One can now verify that the
group < 8, A: wA = 6w >, where w is as above, is just the group of the
2-bridge knot (8% — 13)/(2k — 3), & > 4, which is denoted by {2k}, in

the appendix table of [27].
The polynomial associated with G3 (k) is

(k—2)t* — (2 — 32 + (2k = 3)% = (2k - 3)t 4+ k — 2,

which is the Alexander polynomial of (2k)4.

Let Gi(k), k > 4, be the cyclically presented group with n generators
z;, and n relations (indices mod n})

=kl _ k=2 =kl k=1 —k+2 _k=1_—k+2_ k-1 _
Tl Tipa%ies TipaTihs Tl oz =L

One can proceed as above to show that these presentations are geometric,
and to construct a presentation for the split extension H2(k) of type

<A =A"=1, wA=40w>,
where

w o= ((OATHEIATI AT )%

= ([(A0~ )41 AJA1e )%,
Since this word corresponds to the 2-bridge knot (2k + 1}4, & > 4,
the cyclically presented group Gi(k) encodes the n-fold cyclic covering

M (k) of the 3-sphere branched over such a knot.
The polynomial associated with G3(k) is

(k=1 — 2k = 3)2 + (26 = 3)t* - (2k - 3}t + k- 1,

which is the Alexander polynomial of (2k + 1)4, & > 4.
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Let us consider the cyclically presented group G2(k), k > 4, with n
generators z;, and n relations (indices nod n)

2k-5
Y | . -1 2 -1 )
(L] =i it eTim i e Tis 4
=0
k-8
( z; &T ) T; ezt T P )
L R R A R L BT e e Il AN ORI
=0
| =1
Tiz .y =1

These presentations are all geometric; in fact, it is not difficult to
construct a IRf-system inducing them. As above, we have proved that
G2 (k) encodes the n-fold cyclic covering M2 (k) of the 3-sphere branched
over the 2-bridge knot (2k)g.

The polynomial associated with G2 (k) is

2k—-6
UK 6L T Y (-1 -6+ 2,
=2

which is the Alexander polynomial of (2k)g.

Finally, let G8(k), & > 2, be the cyclicallv presented group with n
generators z;, and n relations (indices mod n)

o=l =1 =1 =Tk, 1k
Tit i Tiga(Tia i Tips) (TipatipaTiyy)
s -1 .,.-1 ke .—1 ko
TigaTig2 (T3 Tie) (2 Tisn) " = 1
One can again verify that these presentations are geometric, and that
they encode the cyclic coverings M2(k) of the 3-sphere branched over
the 2-bridge knots (12k45)/(Gk+1). Further, the polynomial associated
with GE(k) is the Alexander polynomial of such a knot, i.c.

(k41— B+ 1)+ (kD — Bk + Dt + A+ 1

Summarizing, we have proved the following

Theorem 4.1. The cyclically presented groups G'(k), defined in this
seclion, correspond to spines of the n-fold cyclic coverings ML (k) of the
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3-sphere branched over the 2-bridge knots specified above. The split ez-
tension group Hi(k) of Gi (k) is isomorphic to the fundamental group
of the orbifold with underlying space the 3-sphere and singular set the
correspondent 2-bridge knot with branch indez n. The polynomial associ-
ated with Gi (k) is the Alezander polynomial of that knot. The manifolds
M (k) are hyperbolic for all n > 3. In thesc cases, the groups Gi (k) are
hyperbolic (hence infinite), i.e. they are isomorphic to properly discon-
tinuous cocompact groups of isomeltries which ect withoul fized points on
the hyperbolic 3-space.

5 Quotients

The pairwise identification of {oppositely oriented) boundary faces of
a triangulated 3-ball is another standard method for constructing (ori-
entable) closed 3-manifolds. Classical examples are given by the Poincaré
homology sphere and the Weber-Seifert manifold (see for example [29]
and [31]). More recently, many authors have studied interesting classes
of closed 3-manifolds obtained as quotients of triangulated 3-balls (see
references). Of course, not every pairing of boundary faces of a triangu-
lated 3-ball Q yields a closed 3-manifold. The resulting quotient complex
K triangulates a closed pseudomanifold M. The troublesome points of
M may be only the vertices of K arising from those of 2Q. [n fact,
they have regular neighborhoods that are cones over closed (possibly
non spherical) surfaces.

The following criterion is well-known [29}:

Theorem 5.1. Suppose @ a triangulated 3-ball endowed with a pairing
of (oppositely oriented) boundary faces. Let M be the closed (orientable)
3-dimensional pseudomanifold obtained from @ by identifying the 2-cell
pairs on the boundary of Q. Then M is a manifold if and only if its
Iuler characteristic vanishes.

Let us consider a triangulated polyhedron £, (k). & > 2, which real-
izes the tessellation of the boundary of a 3-ball shown in Figure 6 (cases
A =3 and b = 4). [t consists of 2n quadrilaterals, 2n (28)-gons, dn+2kn
edges, and 2kn + 2 vertices. The n quadrilaterals in the northern hemi-
sphere (resp. in the equatorial zone) are labelled by I (resp. 7)) for any
i =1,....n. The n (2k)-gons in the southern hemisphere (resp. in the
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equatorial zone) are labelled by E; (resp. £} forany i = 1,...,n. The
labelling of the edges and their orientations are as depicted in Figure 6.

Oy
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. Y1 z
“ea E‘ +
T3 1 Y2 F2
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£
¥2
2
F
 a —
i z

a

z
-~
-es 3 J 9
B b2 Fy |z ni{ M
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E ¥

¢
5

Figure 6: The polyhedral 3-ball F,(k) and the pairing of its boundary

faces (cases k =3 and & = 4)

Of course, to each face there corresponds precisely one distinct face
with the opposite orientation. ldentifying /7 with F/ and E; with F! for
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any 1 yields a 3-dimensional complex K, (k) which triangulates a closed
orientable pseudomanifold M, (k). By construction, K,(k) consists of
two vertices, 2n + 1 edges (denoted by z;, 1, and z in Figure 6), n
quadrilaterals, n (2k)-gons, and one 3-cell. After the identification, the
two equivalence classes of vertices can be represented by the north and
south poles, respectively. Since the Euler characteristic of M, (k) van-
ishes, Theorem 5.1 implies that M, (k) is a closed orientable 3-manifold.
Deforming the edge z to a point, we get a cellular decomposition of
M, (k) with only one vertex, and 2n 1-cells (loops with that vertex as
their base point), denoted again z; and y;. This permits to determine a
finite presentation of the fundamental group G, (k) of Mp (k). There are
2n generators z; and y; related by n relations of type (indices mod n)

iz =1,
and n relations of type

1 vk—
y£$i+2(yiyi+l|) '= 1,

arising from the quadrilaterals F; = F and from the (2k)-gons E; = EY,
respectively. Substituting y = xl-__[_llz,- in the relations of the second
type, we get a cyclic presentation for G, (k) with n generators z;, and n
relations (indices mod n)

—~ - - k—
Ii-}-llzi“’i-i-?(mi-i-ll“’imﬁ-llmi+2) t=1
The polynomial associated with this presentation is
Fu(t) = kt® = (2k = 1)t + k

which is again the Alexander polynomial of the 2-bridge knot (44 ~1)/2,
or equivalently (2k4 1), according to Rolfsen’s notation. In fact. we are
going to prove that M, (k) is just the n-fold cyclic covering of the 3-
sphere branched over {2k 4+ 1)2. In particular, G, (k) is isomorphic to
the group G.(k,1;—1} defined in Section 3. For this, we first observe
that the above presentations are all geometric since they arise from the
Heegaard diagrams depicted in Figure 7 (case & = 3: we have constructed
them directly from a suitable RR-system).
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Figure 7: An n—symmetric Heegaard diagram of M, (k) {casc k = 3)

These diagrams have an n-rotational svmmetry which reproduces
that of the polyhedron £,(k). Let 8 = 6, be the clockwise rotation
of 27 /n radians around the polar axis NS of the 3-ball (k). It is
evident that the pairwise identifications of the polvhedral schemata are
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invariant under #. Thus # induces an orientation preserving homeomor-
phism, denoted again 8, of M, (k). The fixed point set of @ consists of
the points arising from both the polar axis or the edge z. The quo-
tient space M, (k)/6 is homeomorphic to the 3-sphere M, (k) = §*. Of
course, the projection M, (k} = S%is an n-fold cyclic branched covering.
To determine the branch set it suffices to consider the 2-Told branched
covering My (k) — 8§ We use the equivalence between the represen-
tation theories of closed orientable 3-manifolds via Heegaard diagrams
and crystallizations (a special kind of colored graph), as proved in {3].
Colored graphs (resp. crystallizations) as a method of representation of
simplicial (resp. contracted) pscudocomplexes, and a way for studying
their topological properties from graph theory have been used by many
authors (for details see the survey papers (1], [6], [9], and their refer-
ences). By using an algorithm given in [8] we can immediately construct
a 2-symmetric crystallization [y(&) of Mq(k) which is equivalent to its
2-symmetric Heegaard diagram, discussed above. Figure 8 shows that
[2(k) admits an involutory automorphism y = 44 which interchanges 1-
colored (resp. 3-colored) edges by 2-colored (resp. 4-colored) edges (in
fact, v is induced by the rotation of # radians around the z-axis). By [8]
[y (k) represents the 2-fold covering of the 3-sphere branched over a knot
or link. Moreover, there is a simple algorithm, described also in 8], for
constructing the branch set of the covering. According to this algorithm,
the branch set of the covering M,(k) — §° is isomorphic to the arbit
graph ['2(£) /. As one can see from Figure 8 (case & = 3), this is just the
2-bridge knot (4k — 1)/2. The isomorphism (k) /9 =2 (4k ~ 1)/2 takes
orbits of cycles, alternatively colored 1 and 2 (resp. 3 and 4) in [y (k).
to the bridges (resp. arcs) of (dk — 1)/2. Observe that one can proceed,
as above, for constructing polyhedral schemata for all cyclic branched
coverings of a 2-bridge knot. In fact, it suffices to draw Heegaard di-
agrams of those manifolds {with a rotational symmetry) corresponding
to cyclic presentations of the fundamental group (for this, we can start,
for example, from a suitable RR-system). Then we simply apply the
procedure indicated in [15] to derive polyhedral 3-balls {(endowed with a
pairing of boundary faces) from those Heegaard diagrams.
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Figure 8: The 2—symmetric crystallization of Mz(k) and the 2—bridge
knot (2k + 1)2 (case k = 3)
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So we have proved

Theorem 5.2. With the above notation, the triangulated 3-ball P,(k),
k > 2, with the specified pairing of (oppositely oriented) boundary faces
represents the n-fold covering M, (k) of the 3-sphere branched over the
2-bridge knot (2k +1)3. The fundamental group G, (k) of M, (k) admits
a cyclic presentation (which is alternative with respect to that of Section
3) with n generators z;, and n relations (indices mod n)

-1 -1 1 k1
T Zitiv2 (T % Tige)" T = 1

Furthermore, this presentation arises from ¢ Heegaard diagram of M, (k)
with an n-rotational symmetry.

6 Appendix

The following table shows a partial output of a computer program which
generates cyclic presentations for the fundamental groups of the cyclic
branched coverings of any 2-bridge knot up to nine crossings (we possess
the results for 2-bridge knots with many more crossings but omit them
as the table becomes too long). The first column contains also Rolfsen’s
notation of the considered 2-bridge knot /. The second column gives
the word w which defines the cyclic group presentations encoding the
cyclic branched coverings of a/8. The third column contains the poly-
nomial fy(t) associated with the correspondent cyclic presentation (as
one can verify, it coincides with the Alexander polynomial of the knot
specified in the table).
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2—bridge the words the polynomials
knots w fu(t)
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