
REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 17-45

ISSN 1139-1138

ON THE STRUCTURE OF LINKED 3-FOLDS∗

Aldo BIANCOFIORE and Maria Lucia FANIA

Abstract

The structure of 3-folds in P6 which are generally linked via a
complete intersection (f1, f2, f3) to 3-folds in P6 of degree d ≤ 5 is
determined.

We also give three new examples of smooth 3-folds in P6 of
degree 11 and genus 9. These examples are obtained via liaison.
The first two are 3-folds linked via a complete intersection (2, 3, 3)
to 3-folds in P6 of degree 7: (i) the hyperquadric fibration over P1

and (ii) the scroll over P2. The third example is Pfaffian linked to
a 3-dimensional quadric in P6.

1 Introduction

Submanifolds of PN of codimension 3 are object of study of various
authors. If N ≥ 10 we are in the Hartshorne’s range, that is, every
codimension 3 submanifold of PN with N ≥ 10 is conjectured to be a
complete intersection. Hence of particular interest are those contained
in PN with N = 6, 7, 8, 9. We will concentrate on N = 6.

This paper grew out as an attempt to determine the structure of
linked 3-folds in P6, as well as, to construct new examples of smooth
3-folds in P6 of degree 11.

The reason for being interested in such 3-folds is on the one hand
the paper by the first author and Besana [8], where one had to deal with
the effectiveness of the lists given in there. On the other hand we know
that the construction of examples plays a major role in classification
problems.

The main tool for determining the structure of linked 3-folds is a
combination of formulas for the blow up of Chern classes, [18], and
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adjunction theoretic methods, [19], [6]. As a byproduct we also get an
alternative way to determine the structure of some smooth 3-folds in P6

of degree 9 and 10, see 3.6, 3.7. These two manifolds were obtained in
[10], [11] with different methods.

In the second part of the paper we give new examples of 3-folds in
P6. In fact with the help of the computer algebra system Macaulay
we construct smooth 3-folds in P6 of degree 11 and genus 9. These
examples are obtained via liaison. The first two are linked via a complete
intersection (2, 3, 3) to 3-folds in P6 of degree 7: (i) the hyperquadric
fibration over P1 and (ii) the scroll over P2.

The third example is a 3-fold which is Pfaffian linked to a
3-dimensional quadric in P6.

Since Bertini-type criterion could not be applied in such cases we had
to use the computer algebra system Macaulay to prove the smoothness
of our examples.

The paper is structured as follows. In section 2. we fix our notation
and give preliminary results that will be needed later on in the paper.
Section 3. is devoted to study the structure of the linked 3-folds.

In the last section we construct new examples of 3-folds in P6 of
degree 11.

We would like to thank Giorgio Ottaviani for valuable e-mail corre-
spondence.

2 Notations and Preliminaries

Throughout this article, unless otherwise specified, X denotes a smooth
connected projective 3-fold in P6 defined over the complex field C. Its
structure sheaf is denoted by OX . For any coherent sheaf = on X, hi(=)
is the complex dimension of H i(X,=) and χ(OX) =

∑
i(−1)ihi(OX).

The following notation is used:
X, smooth 3-fold in P6;
H ∈ |OP6(1)|;
K = class of canonical bundle of X;
ci(X) = Chern classes of X;
TX = tangent bundle of X;
NX/P = normal bundle of X in P;
IX = ideal sheaf of X.
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For the convenience of the reader we recall the following theorem
which will be used throughout the paper. We state it only for 3-folds
since those are what we are interested in.

Theorem 2.1. ([14], [19]) Let X̃ be a complex projective manifold of
dimension 3 and let L̃ be a very ample line bundle over X̃. Assume that
κ(KX̃ + 2L̃) = 3 and let (Y, L) be the first reduction of (X̃, L̃). Then
KY + L is nef and big unless either:

i) (Y,L) ∼= (P 3,OP3(3));

ii) (Y,L) ∼= (Q,OQ(2)), where Q is a hyperquadric in P4;

iii) there is a surjective morphism φ : Y −→ Z onto a smooth curve
Z, whose general fibre is (P2,OP2(2)) and 2K+3L ≈ φ∗L for some
ample line bundle L on Z;

iv) (Y,L) is a Fano variety of coindex 3;

v) (Y,L) is a Del Pezzo fibration over a smooth curve Z and K+L
≈ ψ∗L for some ample line bundle L on Z;

vi) (Y,L) is a conic bundle over a surface Z and K+L ≈ ψ∗L for some
ample line bundle L on Z.

Lemma 2.2. ([4] §1) Let X be a smooth 3-fold embedded by |L| in PN .
We have the following:

a) c2(X) · L = e(S)−KS · LS = 12χ(OS)−KS ·KS + 2(1− g) + d

b) K ·K ·L = KS ·KS − 2KS ·LS +LS ·LS = KS ·KS +4(1− g)+3d

c) K · L · L = KS · LS − d = 2(g − 1− d).

The following facts about blowing up Chern classes are known, see
[18], [12] for details.

Let P be a smooth projective variety, X a subvariety of P of codi-
mension r. Let P̃ be the blow up of P along X, and let E ∼= P(N∗) the
exceptional divisor, where N denotes the normal bundle of X in P .
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Let ξ be the tautological line bundle of E. Denote c(TX) with c(X).
We have the following blow up diagram.

X -
i
P

E

g
?

-j P̃

f
?

For the reader’s convenience we recall the following theorem due to
Porteous ([18], Theorem 2) which relates the Chern classes of P with
those of P̃ , the blow up of P along a smooth subvariety X of codimen-
sion r. The notation used will be that in ([12], Theorem 15.4).

Theorem 2.3. ([18]) With the above notation we have

c(P̃ )− f∗c(P ) = j∗(g∗c(X) · α) (1)

where

α =
1
ξ

[ r∑
i=0

g∗cr−i(N)− (1− ξ) sumr
i=0(1 + ξ)ig∗cr−i(N)

]

For our purpose we need only to know the degree 1, 2 and 3 terms
in (1). They are:

c1(P̃ )− f∗c1(P ) = j∗(1− r) = (1− r)[E] (2)

c2(P̃ )− f∗c2(P ) = −j∗
[
(r − 1)g∗c1(X) +

r(r − 3)
2

ξ

+(r − 2)g∗c1(N)
]

(3)

c3(P̃ )− f∗c3(P ) = −j∗
[
(r − 1)g∗c2(X) (4)

+(r − 2)g∗c1(X)g∗c1(N)

+
(r − 1)(r − 4)

2
ξg∗c1(N) +

r(r − 3)
2

ξg∗c1(X)

+
r(r − 1)(r − 5)

6
ξ2 + (r − 3)g∗c2(N)

]
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For the terms of degree 1 and 2 we refer to ([12], Example 15.4.3).

We also recall the following proposition which is a Bertini-type cri-
terion for varieties which are generally linked via complete intersections.

Proposition 2.4. ([17], Proposition pg.423) Let X ⊂ P be a smooth
subvariety of dimension n in a projective N-fold P defined by the ideal
IX . Suppose that Li ∈ Pic(P ) are line bundles such that Li ⊗ IX is
globally generated for each i = 1,...N-n, and let X ′ be linked to X via a

general section s ∈ H0(P,
N−n⊕
i=1

Li ⊗ IX). If n < 4, then X ′ is smooth.

3 On the structure of some linked 3-folds in P6

Okonek in ([17], Examples 1 through 5) has constructed 3-folds X ′ ⊂ P6

which are generally linked via complete intersections (s) of multidegree
d to simple known examples of 3-folds in P6 of degree d ≤ 5. The aim
of this section is to determine the structure of such 3-folds.

This will be accomplished by combining formulas for the blow up of
Chern classes and adjunction theoretic methods.

We will treat just one case for each of the tables giving in ([17],
Examples 1 through 5) being the remaining cases analogous to the ones
considered.

We start with the case in which the known 3-fold X is P3 ⊂ P6

and the multidegree of the complete intersection is (2, 2, 3). Thus the
Li ∈ Pic(P ) we are considering are L1, L2 = 2H,L3 = 3H. We will see
that the following proposition holds.

Proposition 3.1. Let P3, X ′ ⊂ P6 be linked via a complete intersec-
tion (2,2,3). Then X ′ is a conic bundle over P2 with d = 11, g =
10, χ(OX′) = 1, χ(OS′) = 4,K2

S′ = 2, e(X ′) = −48.

The proof will be done in several steps. We fix at first some notation.

Notation. Going through the proof in ([17], Proposition pg.423), one
sees that X ′ is gotten as follows. Let f : P̃ −→ P be the blow up of
P along X and denote the restriction of f to the exceptional divisor
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E by g. The sections si ∈ H0(P,Li ⊗ IX) correspond to sections s̃i ∈
H0(P̃ ,OP̃ (−E) ⊗ f∗Li). Let X̃ be the complete intersection X̃ = (s̃),
where s̃ = (s̃1, s̃2, s̃3). Note that (s) = (s1, s2, s3) = X ∪ X ′, with
X ′ = f(X̃) and that X̃ is isomorphic to X ′.

Being X ′ isomorphic to X̃ we can work with X̃ over which some of
the computations are easy to handle.

Lemma 3.2. Let X̃ be as above and let L̃ = f∗(H)|X̃ . Then degX̃ =

11, g(L̃) = 10, χ(OX̃) = 1, e(X̃) = −48, χ(OS̃) = 4,K2
S̃

= 2, where S̃ is
a smooth member of |L̃|.

Proof. Consider the following short exact sequence

0 −→ TX̃ −→ TP̃ |X̃ −→ NX̃/P̃ −→ 0 (5)

where TX̃ and NX̃/P̃ denote, respectively, the tangent bundle of X̃ and

the normal bundle of X̃ in P̃ . Using (5) we get that

ct(X̃) =
ct(P̃ )

ct(NX̃/P̃ )
(6)

Note that the terms of degree 1, 2 and 3 in (6) are respectively

c1(X̃) = c1(P̃ )|X̃ − c1(NX̃/P̃ ) (7)

c2(X̃) = c2(P̃ )|X̃ − c1(P̃ )|X̃ c1(X̃) + c1(X̃)2 − c2(NX̃/P̃ ) (8)

c3(X̃) = c3(P̃ )|X̃ − c2(P̃ )|X̃ c1(X̃) + c1(P̃ )|X̃ c1(X̃)2 (9)

−c1(P̃ )|X̃ c2(X̃)− c1(X̃)3 + 2c1(X̃)c2(X̃)− c3(NX̃/P̃ )

Moreover if in (1) we let P = P6, X = P3, that is r = 3, and
N = NP 3/P 6 , we see that (2), (3) and (4) become, respectively,

c1(P̃ ) = 7f∗H − 2E (10)
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c2(P̃ ) = 21f∗H2 − j∗(2g∗c1(P3) + g∗c1(N)) (11)
= 21f∗H2 − j∗(11g∗i∗H) = 21f∗H2 − 11(f∗H) · E

c3(P̃ ) = 35f∗H3 − j∗(2g∗c2(P3) + g∗c1(N)g∗c1(P3)− ξg∗c1(N) (12)
−2ξ2) = f∗(35H3)− j∗(g∗i∗(24H) + g∗i∗(3H)j∗E − 2j∗(E2))

= 35f∗H3 − 24(f∗H2) · E − 3(f∗H) · E2 + 2E3

In order to write down explicitly c1(X̃), c2(X̃) and c3(X̃) we need
to know c1(NX̃/P̃ ), c2(NX̃/P̃ ), c3(NX̃/P̃ ). Since X̃ = Z(s̃), with s̃i ∈
H0(P̃ ,OP̃ (−E)⊗ f∗Li), where L1, L2 = 2H,L3 = 3H we see that

NX̃/P̃ = ((2f∗H ⊗ [−E])⊕ (2f∗H ⊗ [−E])⊕ (3f∗H ⊗ [−E]))|X̃ (13)

Hence
c1(NX̃/P̃ ) = (7f∗H − 3E)|X̃ ,
c2(NX̃/P̃ ) = (16f∗H2 − 14f∗H · E + 3E2)|X̃ ,
c3(NX̃/P̃ ) = (12f∗H3 − 16f∗H2 · E + 7f∗H · E2 − E3)|X̃ .

Plugging the above relations in (7), (8), (9) we get that

c1(X̃) = E|X̃ (14)

c2(X̃) = (5f∗H2 − 4f∗H · E)|X̃ (15)

c3(X̃) = (−12f∗H3 + 19f∗H2 · E − 8f∗H · E2)|X̃ (16)

By the Riemann Roch theorem we have

χ(OX̃) =
1
24
c1(X̃)c2(X̃) =

5
2
f∗H5 · E − 16

3
f∗H4 · E2 (17)

+
33
8
f∗H3 · E3 − 11

8
f∗H2 · E4 +

1
6
f∗H · E5

To get the explicit value of χ(OX̃) we write down the multiplication
table in E ∼= P(N∗).
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In the cohomology ring of E ∼= P(N∗) the following Wu-Chern equa-
tion holds

ξ3 + 3ξ2 · g∗i∗H + 3ξ · g∗i∗H2 + g∗i∗H3 = 0 (18)

Intersecting such equation with ξ · g∗i∗H, g∗i∗H2, ξ2, respectively
and noting that g∗i∗H5 = 0, ξ · g∗i∗H4 = 0, ξ2 · g∗i∗H3 = 1 we see that
the multiplication table is:

g∗i∗H5 = 0, ξ · g∗i∗H4 = 0, ξ2 · g∗i∗H3 = 1 (19)
ξ3 · g∗i∗H2 = −3, ξ4 · g∗i∗H = 6, ξ5 = −10

Since ξ = −E|E , the relations in (19) are equivalent to

g∗i∗H5 = 0, g∗i∗H4 · E|E = 0, g∗i∗H3 · E2
|E = 1 (20)

g∗i∗H2 · E3
|E = 3, g∗i∗H · E4

|E = 6, E5
|E = 10

Since (g∗i∗Hk) ·E5−k
|E = (f∗Hk) ·E6−k, 1 ≤ k ≤ 5, substituting these

values in (17) we get that χ(OX̃) = 1.

Let L̃ = (f∗H)|X̃ and let K̃ be the canonical bundle of X̃. Since X̃

is isomorphic to X ′ we will work over X̃.

Note that degX̃ = (f∗H)3 · (2f∗H − E)2 · (3f∗H − E) and e(X̃) =
c3(X̃). Thus using (20) it follows that degX̃ = 11 and e(X̃) = −48.

Again using (20), as well as (2), we get that g = 10,K2
S̃

= 2, χ(OS̃) =
4, where S̃ is a smooth member of |L̃|.

To determine the structure of (X̃, L̃) we will use adjuction theory.
Some preliminary results are needed.

Lemma 3.3. K̃ + 2L̃ is spanned by its global sections.

Proof. Note that K̃ + 2L̃ = (2f∗H − E)|X̃ . Moreover, being OP 6(2)⊗
IP 3 spanned by global sections it follows that 2f∗H − E is spanned by
its global sections and thus the same is true for its restriction to X̃.

24 REVISTA MATEMÁTICA COMPLUTENSE
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Let Φ : X̃ −→ PM be the adjunction map given by Γ(m(K̃+2L̃)) and
let Φ = s◦r be the Remmert Stein factorization of Φ, where r : X̃ −→ Y
has connected fibres and s : Y −→ PM is finite to one.

In the following lemma we prove that dimΦ(X̃) = 3.

Lemma 3.4. Let Φ : X̃ −→ PM be the adjunction map given by
Γ(K̃ + 2L̃). Then dimΦ(X̃) = 3.

Proof. Since K̃+2L̃ is nef it’s enough to check that (K̃+2L̃)3 > 0. But
(K̃ + 2L̃)3 = (2f∗H − E)3|X̃ = (2f∗H − E)5 · (3f∗H − E) = 96f∗H6 −
272(f∗H5) · E + 320(f∗H4) · E2 − 200(f∗H3) · E3 + 70(f∗H2) · E4 −
13(f∗H) · E5 + E6. Now use (20) to get that (K̃ + 2L̃)3 = 38.

Since dimΦ(X̃) = 3 we have that r : X̃ −→ Y is the blow up of a
smooth 3-fold Y in a finite number of points, say γ. The pair (Y, L) is
the first reduction of (X̃, L̃).

Our aim is to show that (Y, L) = (X̃, L̃) and that it is a conic bundle
over P 2.

Lemma 3.5. Let (Y,L) be as above. Then K+L is nef and not big,
where K = KY . Moreover (Y, L) = (X̃, L̃) and Y is a conic bundle over
P 2.

Proof. By [14], [19], K + L is nef and big unless:

i) (Y, L) ∼= (P3,OP3(3));

ii) (Y, L) ∼= (Q,OQ(2)), where Q is a hyperquadric in P4;

iii) there is a surjective morphism φ : Y −→ Z onto a smooth curve
Z, whose general fibre is (P2,OP2(2)) and 2K+3L ≈ φ∗L for some
ample line bundle L on Z;

iv) (Y, L) is a Fano variety of coindex 3;

v) (Y, L) is a Del Pezzo fibration ψ : Y −→ Z over a smooth curve Z
and K + L ≈ ψ∗L for some ample line bundle L on Z;

vi) (Y, L) is a conic bundle ψ : Y −→ Z over a surface Z and K+L ≈
ψ∗L for some ample line bundle L on Z.

25 REVISTA MATEMÁTICA COMPLUTENSE
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We will show that case vi) is the only possible one.

Suppose that (Y, L) ∼= (P3,OP3(3)). Let S ∈ |L|. Note that χ(OS) =
χ(OS̃) = 4. On the other hand since L = OP3(3) it follows that
χ(OS) = 1, and this is impossible. Similarly we rule out the case
(Y, L) ∼= (Q,OQ(2)).

Suppose that (Y, L) is as in case iii). Reasoning as in ([4], Theorem
4.3, Case iii)) it follows that 4 divides 2g(L) − 2. This is impossible
being 2g(L)− 2 = 18.

Suppose that (Y, L) is as in case iv). Then K2
S = 0, with S ∈ |L|. On

the other hand K2
S = K2

S̃
+ γ, that is, 0 = K2

S̃
+ γ, which is impossible

since K2
S̃

= 2 and γ > 0.
Suppose that (Y, L) is as in case v). Reasoning as in ([4], Theorem

4.3, Case v)) it follows that

2g(L)− 2− d = f(pg(S) + q(S)− 1) (21)

where f = KF ·KF and F is a fibre of ψ. Since χ(OS) = 4, g(L) = 10
and d = 11 + γ we get

7− γ = 2f(q(S) + 1) ≥ 6(q(S) + 1)

Thus γ ≤ 1.
If γ = 1 then 3 = f(q(S) + 1) ≥ 3(q(S) + 1), thus q = 0 and hence

f = 3. By ([4], (4.2)) it follows that (Y, L) = (X̃, L̃), a contradiction
since γ = 1.

If γ = 0 then 7 = 2f(q(S) + 1), a contradiction.
Suppose that (Y, L) is as in case vi). Note that in this case (K+L)3 =

0. On the other hand, since

K3 = K̃3 − 8γ, K2L = K̃2L̃+ 4γ, (22)
KL2 = K̃L̃2 − 2γ, L3 = 11 + γ

we have that (K + L)3 = (K̃ + L̃)3 − γ = −γ since (K̃ + L̃)3 = (f∗H −
E)3(2f∗H−E)2(3f∗H−E) = 0. Thus γ = 0 and hence (X̃, L̃) = (Y, L).
Note that h0(X̃, K̃ + L̃) = χ(OS̃)− χ(OX̃) = 3.

Let ψ : X̃ −→ Z be the structural morphism and let K̃ + L̃ = ψ∗H
for an ample line bundle H on Z.
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Since 2 = K2
S̃

= 2H2 it follows that H2 = 1. Moreover, since
h0(Z,H) = h0(X̃, K̃ + L̃) = 3 it follows that ∆(Z,H) = 0. Hence
by [14] it follows that (Z,H) = (P 2,OP2(1)).
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Note that K+L is not big since (K+L)3 = (K̃+ L̃)3−γ = −γ ≤ 0.

Proof. (of Prop. 3.1) Combining 3.2, 3.3, 3.4, 3.5 it follows that X̃
and hence X ′ is a conic bundle over P2. The latter assertion being true
since X ′ is isomorphic to X̃.

We consider the case in which Q3 and X ′ ⊂ P6 are linked via a
complete intersection (2,2,3). The following proposition holds.

Proposition 3.6. Let Q3, X ′ ⊂ P6 be linked via a complete intersection
(2, 2, 3). Then X ′ is a Del Pezzo fibration over P1 with d = 10, g =
8, χ(OX′) = 1, χ(OS′) = 3,K2

S′ = 0, e(X ′) = −36.

Proof. Since the proof is similar to that of 3.1 we will only sketch it.
We have:

c1(X̃) = E|X̃ (23)

c2(X̃) = (5f∗H2 − 3(f∗H) · E)|X̃ (24)

c3(X̃) = (−12f∗H3 + (f∗H2) · E − 6(f∗H) · E2)|X̃ (25)

χ(OX̃) =
1
24
c1(X̃)c2(X̃) =

5
2
(f∗H5) · E − 29

6
(f∗H4) · E2 (26)

+
83
24

(f∗H3) · E3 − 13
12

(f∗H2) · E4 +
1
8
(f∗H) · E5

Computing the multiplication table in E ∼= P(N∗) and using the fact
that ξ = −E|E we get the following relations:

g∗i∗H5 = 0, g∗i∗H4 · E|E = 0, g∗i∗H3 · E2
|E = 1 (27)

g∗i∗H2 · E3
|E = 8, g∗i∗H · E4

|E = 22, E5
|E = 52

Substituting these values in (26) we get that χ(OX̃) = 1. Note that
degX̃ = (f∗H)3 · (2f∗H − E)2 · (3f∗H − E) and e(X̃) = c3(X̃). Thus
using (27) it follows that degX̃ = 10 and e(X̃) = −36.

28 REVISTA MATEMÁTICA COMPLUTENSE
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Using again (27), as well as 2.2, we get that g = 8,K2
S̃

= 0, χ(OS̃) =
3, where S̃ is a smooth member of |L̃|.

We will now determine the structure of (X̃, L̃). Our aim is to show
that (Y, L) = (X̃, L̃) and that it is a Del Pezzo fibration over P1 of fibre
degree 4.

As in 3.3, 3.4 we see that K̃ + 2L̃ is spanned and big. Let (Y, L)
be the first reduction of (X̃, L̃). We will show that the adjoint bundle
K + L is nef and not big and that case vi) is the only possible one in
2.1.

The cases i), ii), iii) in 2.1 are ruled out as the corresponding ones
in 3.5.

Let (Y, L) be a Fano variety of coindex 3. Then K2
S = 0, with

S ∈ |L|. On the other hand K2
S = K2

S̃
+ γ. Thus γ = 0 being K2

S̃
= 0

and therefore (Y, L) = (X̃, L̃). By the adjunction formula it follows that
2g − 2 = (K + 2L)L2 = L3 = 11, which is clearly impossible.

Let (Y, L) be a conic bundle over a surface Z. Then (K + L)3 = 0.
On the other hand, by direct computation we see that (K + L)3 = −γ.
Hence γ = 0. Recall that, (see [2], (0.7.2)), K2

S ≥ 2. We also know that
K2

S = K2
S̃

+ γ and this is impossible since K2
S̃

= γ = 0.
Let (Y, L) be a Del Pezzo fibration over a smooth curve Z and K +

L ≈ ψ∗L for some ample line bundle L on Z. Reasoning as in ([4],
Theorem 4.3, Case v)) it follows that

2g(L)− 2− d = f(pg(S) + q(S)− 1) (28)

where f = KF ·KF and F is a fibre of ψ. Since χ(OS) = 3, g(L) = 8
and d = 10 + γ we get

4− γ = f(2q(S) + 1) ≥ 3(2q(S) + 1)

Thus γ ≤ 1.
If γ = 1 then 3 = f(2q(S) + 1) ≥ 3(2q(S) + 1), thus q = 0 and hence

f = 3. By ([4], (4.2)) it follows that (Y, L) = (X̃, L̃), a contradiction
since γ = 1.

If γ = 0 then 4 = f(2q(S) + 1), and thus f = 4, q = 0.
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In order to complete our proof we need to rule out the case in which
K + L is big. A direct computation shows that (K + L)3 = −γ ≤ 0.
Hence K + L is not big.

We now consider the case in which X = P1 × P2 ⊂ P6 and X ′ ⊂ P6

are linked via a complete intersection (2, 2, 3).

Proposition 3.7. Let P1×P2 ⊂ P6 and X ′ ⊂ P6 be linked via a complete
intersection (2,2,3). Then X ′ is gotten by blowing up a simple point on
a Fano manifold X ⊂ P7 which is the section of the Grassmannian
Gr(1, 4) ⊂ P9 by a linear subspace of a codimension two and a quadric,
d = 9, g = 6, χ(OX′) = 1, χ(OS′) = 2,K2

S′ = −1, e(X ′) = −14.

Proof. The proof is similar to that of 3.1. We will sketch it emphasizing
the parts in which they differ.

Let P1×P2 ⊂ P6 and let i be the inclusion map. Let i∗H = h1+h2 =
p∗1OP1(1) + p∗2OP2(1), where p1 and p2 are the projections on the first
and second factor, respectively. We have:

c1(X̃) = E|X̃ (29)

c2(X̃) = (5f∗H2 − 2f∗H · E − b2)|X̃ (30)

c3(X̃) =
[
− 12f∗H3 + 11(f∗H2) · E − 3(f∗H) · E2 (31)

+b1 · (f∗H − E) + b2 · (7f∗H − 3E)
]
|X̃

where b2 = j∗(g∗h2) and b1 = j∗(g∗h1)

χ(OX̃) =
1
24
c1(X̃)c2(X̃) =

5
2
(f∗H5) · E − 13

3
(f∗H4) · E2 (32)

+
67
24

(f∗H3) · E3 − 1
2
b2(f∗H3) · E +

2
3
b2(f∗H2) · E2

−19
24

(f∗H2) · E4 − 7
24
b2(f∗H) · E3 +

1
12

(f∗H) · E5

− 1
24
b2E

4
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The multiplication table in E ∼= P(N∗) is computed as in the previous
cases. Moreover using the fact that ξ = −E|E we get the following
relations:

g∗i∗H5 = 0, g∗i∗H4 · E|E = 0, g∗i∗H3 · E2
|E = 3 (33)

g∗i∗H2 · E3
|E = 13, g∗i∗H · E4

|E = 37, E5
|E = 85

b2 · g∗i∗H4 = 0, b2 · E|E · g∗i∗H3 = 0, b2 · E2
|E · g

∗i∗H2 = 2

b2 · E3
|E · g

∗i∗H = 9, b2 · E4
|E = 27, b1 · E|E · g∗i∗H3 = 0

b1 · E2
|E · g

∗i∗H2 = 1, b1 · E3
|E · g

∗i∗H = 4, b1 · E4
|E = 10

Substituting these values in (32) we get that χ(OX̃) = 1. We also
have that degX̃ = (f∗H)3·(2f∗H−E)2·(3f∗H−E) = 9 and e(X̃) = −14.

Using (33) and (2.1) we get that g = 6,K2
S̃

= −1, χ(OS̃) = 2, where
S̃ is a smooth member of |L̃|.

We will now determine the structure of (X̃, L̃).

As in 3.3, 3.4 we see that K̃ + 2L̃ is spanned and big. Let (Y, L) be
the first reduction of (X̃, L̃).

Reasoning as in 3.5 we will show that the adjoint bundle K + L
is nef and not big. The cases i), ii), iii) in 2.1 are ruled out as the
corresponding ones in 3.5.

Let (Y, L) be a Del Pezzo fibration over a smooth curve Z and K +
L ≈ ψ∗L for some ample line bundle L on Z. By ([20], (0.5.1)) it follows
that degL = χ(OS)− 2χ(OY ) = 0, which is impossible since L is ample.

Let (Y, L) be a conic bundle over a surface Z. Then (K + L)3 = 0.
On the other hand, by direct computation we see that (K+L)3 = 1−γ.
Hence γ = 1. Recall that, (see [2], (0.7.2)), K2

S ≥ 2. We also know that
K2

S = K2
S̃

+ γ and this is impossible since K2
S̃

= −1, γ = 1.
Note that K+L cannot be big. If it was then, since (K+L)3 = 1−γ,

it would follow that γ = 0 and hence (Y, L) = (X̃, L̃). By ([3], (1.2)) we
have d2 ≥ 3. On the other hand d2 = K2

S̃
= −1, whence a contradiction.

Hence (Y, L) is a Fano variety of coindex 3 and thus K2
S = 0. More-

over since K2
S = K2

S̃
+ γ = −1 + γ it follows that γ = 1. Hence our

claim.
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We consider next the case in whichX = P1×P3∩P6 and X,X ′ ⊂ P6

are linked via a complete intersection (2, 2, 4).

Proposition 3.8. Let P1×P3∩P6 andX ′ ⊂ P6 be linked via a complete
intersection (2,2,4). Then X ′ is a conic bundle over Q2, d = 12, g =
12, χ(OX′) = 1, χ(OS′) = 5,K2

S′ = 4, e(X ′) = −62.

Proof. We will sketch the proof emphasizing the parts in which it differs
from that of 3.1.

Let P1 × P3 ∩ P6 ⊂ P6 and let i be the inclusion map. Let i∗H =
h1 + h2 = p∗1OP1(1) + p∗2OP3(1), where p1 and p2 are the projections on
the first and second factor, respectively. We have:

c1(X̃) = (−f∗H + E)|X̃ (34)

c2(X̃) = (9f∗H2 − 3(f∗H) · E − b2)|X̃ (35)

c3(X̃) =
[
− 33f∗H3 + 29(f∗H2) · E − 2(f∗H) · E2 (36)

+b1 · (8f∗H − 3E)− 2b2 · E − 18a1 − 12a2

]
|X̃

where a1 = j∗((g∗h1)·h2), a2 = j∗(g∗h2
2), b1 = j∗(g∗h1) and b2 = j∗(g∗h2)

χ(OX̃) =
1
24
c1(X̃)c2(X̃) = −6f∗H6 +

31
2

(f∗H5) · E (37)

+
2
3
b2 · (f∗H4)− 3

2
b2 · (f∗H3) · E +

55
8

(f∗H3) · E3

+
7
6
b2(f∗H2) · E2 − 3

2
(f∗H2) · E4 − 3

8
b2 · (f∗H) · E3

−15(f∗H4) · E2 +
1
8
(f∗H) · E5 +

1
24
b2 · E4

Computing the multiplication table in E ∼= P(N∗) and using the fact
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that ξ = −E|E we get the following relations :

g∗i∗H5 = 0, g∗i∗H4 · E|E = 0, g∗i∗H3 · E2
|E = 4 (38)

g∗i∗H2 · E3
|E = 18, g∗i∗H · E4

|E = 52, E5
|E = 120

b2 · g∗i∗H4 = 0, b2 · E|E · g∗i∗H3 = 0, b2 · E2
|E · g

∗i∗H2 = 6

b2 · E3
|E · g

∗i∗H = 28, b2 · E4
|E = 84, b1 · g∗i∗H4 = 0

b1 · E|E · g∗i∗H3 = 0, b1 · E2
|E · g

∗i∗H2 = 1, b1 · E3
|E · g

∗i∗H = 4

b1 · E4
|E = 10, a1 · g∗i∗H3 = 0, a1 · E3

|E = 4

a1 · E2
|E · g

∗i∗H = 1, a1 · E|E · g∗i∗H2 = 0, a2 · g∗i∗H3 = 0

a2 · E3
|E = 10, a2 · E2

|E · g
∗i∗H = 2, a2 · E|E · g∗i∗H2 = 0,

Substituting these values in (37) we see that χ(OX̃) = 1. We also
have that degX̃ = (f∗H)3 · (2f∗H −E)2 · (4f∗H −E) = 12 and e(X̃) =
−62.

Using (38) and (2.2) we get that g = 12,K2
S̃

= 4, χ(OS̃) = 5, where
S̃ is a smooth member of |L̃|.

We now determine the structure of (X̃, L̃).

As in 3.3, 3.4 we see that K̃ + 2L̃ is spanned and big. Let (Y, L) be
the first reduction of (X̃, L̃). We will show that K + L is nef and not
big and that in 2.1 the only possible case is vi), that is (Y, L) is a conic
bundle over a smooth surface. If the pair (Y, L) is either one of the cases
i), ii), iii), iv) in 2.1 then the same reasoning as the corresponding ones
in 3.5 rules it out.

The case in which (Y, L) is a Del Pezzo fibration over a smooth curve
Z is ruled out as the corresponding one in 3.6.

Let (Y, L) be a conic fibration over a surface Z. By [7], Z is smooth.
Note that in this case (K + L)3 = 0. On the other hand, since

K3 = K̃3 − 8γ, K2L = K̃2L̃+ 4γ, (39)
KL2 = K̃L̃2 − 2γ, L3 = 12 + γ

we have that (K + L)3 = (K̃ + L̃)3 − γ = −γ since (K̃ + L̃)3 = (f∗H −
E)3(2f∗H −E)2(4f∗H −E) = 0. Thus γ=0 and hence (X̃, L̃) = (Y, L).
Note that h0(X̃, K̃ + L̃) = χ(OS̃)− χ(OX̃) = 4, see ([2], (1.2)).

33 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 17-45



aldo biancofiore and maria lucia fania On the structure of linked . . .

Let ψ : X̃ −→ Z the structural morphism and let K̃ + L̃ = ψ∗H
for an ample line bundle H on Z. Since 4 = K2

S̃
= 2H2 it follows that

H2 = 2. Moreover, since h0(Z,H) = h0(X̃, K̃ + L̃) = 4 it follows that
∆(Z,H) = 0. Hence by [14] it follows that (Z,H) = (Q2,OQ2(1)).

In order to complete our proof we need to rule out the case in which
K + L is big. A direct computation shows that (K + L)3 = −γ ≤ 0.
Hence our claim follows.

Before considering the next case we recall that a polarized pair
(X̃, L̃), where X̃ is a 3-dimensional manifold, is said to be of log-general
type if KX̃ + L̃ is nef and big.

We consider now the case in which X = G(1, 4)∩P6 and X,X ′ ⊂ P6

are linked via a complete intersection (2, 3, 3). The following proposition
holds.

Proposition 3.9. Let G(1, 4) ∩ P 6 and X ′ ⊂ P 6 be linked via a
complete intersection (2,3,3). Then X ′ is of log-general type, d = g =
13, χ(OX′) = 1, χ(OS′) = 5,K2

S′ = 5, e(X ′) = −38.

Proof. Recall that on G = G(1, 4) we have the following canonical
sequence

0 −→ U −→ O⊕5
|G −→ Q −→ 0 (40)

where U is the universal fibre bundle of rank 2 and Q is the quotient
bundle of rank 3. Hence TG

∼= U∗ ⊗Q.
Let G ∩ P6 ⊂ P6 and let i be the inclusion map. We have:

c1(X̃) = (−f∗H + E)|X̃ (41)

c2(X̃) = (8f∗H2 − 4(f∗H) · E)|X̃ (42)

c3(X̃) =
[
− 26f∗H3 + 26(f∗H2) · E − 6(f∗H) · E2 − 2a1

]
|X̃ (43)
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where a1 = j∗(g∗c2(U∗))

χ(OX̃) =
1
24
c1(X̃)c2(X̃) = −6f∗H6 + 16(f∗H5) · E (44)

−97
6

(f∗H4) · E2 +
47
6

(f∗H3)E3 − 11
6

(f∗H2) · E4

+
1
6
(f∗H) · E5

In this case the multiplication table in E ∼= P(N∗) is:

g∗i∗H5 = 0, g∗i∗H4 · E|E = 0, g∗i∗H3 · E2
|E = 5 (45)

g∗i∗H2 · E3
|E = 25, g∗i∗H · E4

|E = 82, E5
|E = 220

a1 · g∗i∗H3 = 0, a1 · E|E · g∗i∗H2 = 0, a1 · E2
|E · g

∗i∗H = 2

a1 · E3
|E = 10

Thus we get that χ(OX̃) = 1, degX̃ = (f∗H)3 · (2f∗H−E) · (3f∗H−
E)2 = 13 and e(X̃) = −38.

Again (45) and (2.2) give g = 13,K2
S̃

= 5, χ(OS̃) = 5, where S̃ is a
smooth member of |L̃|.

We will now determine the structure of (X̃, L̃). Our aim is to show
that (Y, L) = (X̃, L̃) and that (X̃, L̃) is of log-general type.

As in 3.3, 3.4 we see that K̃ + 2L̃ is spanned and big. Let (Y, L) be
the first reduction of (X̃, L̃).

We will show that K + L is nef and big. The cases i), ii), iv), v) in
2.1 are ruled out as the corresponding ones in 3.5.

The case iii) in 2.1 is ruled out as follows. From ([4], (4.3.1) we see
that

4K2
S̃

+ 8(g − 1)− 3d+ γ = 0 (46)

Plugging the values of K2
S̃
, g, d we get that γ = −77, a contradiction.

Suppose that (Y, L) is as in case vi), that is (Y, L) is a conic bundle
over a smooth surface Z. Note that in this case (K + L)3 = 0. On the
other hand (K +L)3 = (K̃ + L̃)3− γ = 1− γ, the latter equality follows
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from the fact that (K̃+ L̃)3 = (f∗H −E)3(2f∗H −E)(3f∗H −E)2 = 1.
Thus γ=1. Note that h0(Y,K + L) = χ(OS̃)− χ(OX̃) = 4.

Let ψ : Y −→ Z the structural morphism and let K + L = ψ∗H
for an ample line bundle H on Z. Since 6 = K2

S = 2H2 it follows that
H2 = 3. Moreover, since h0(Z,H) = h0(Y,K + L) = 4 it follows that
∆(Z,H) = 1. Hence by [14] it follows that (Z,H) is a del Pezzo surface
of degree 3.

If K + L is big then since (K + L)3 = 1 − γ it follows that γ = 0.
Hence (X̃, L̃) = (Y, L) and by ([3], (2.8), (2.3)) there exists a proper
modification r : X̃ −→ P 3 such that K̃ + L̃ = r∗OP3(1), d1 = 11, d2 =
5, d3 = 1, χ(OS̃) = 5.

Thus we have the following two cases:

A) (Y, L) is a conic bundle over a del Pezzo surface of degree 3, or

B) (Y, L) = (X̃, L̃) and (X̃, L̃) is of log-general type.

To finish off the proof of the proposition we need to rule out case A).
The following two lemmas are needed.

Lemma 3.10 Let (Y,L) be as in case A). Then Y has no divisorial
fibres.

Proof. Let (Y, L) be as in A). We know that X̃ is the blow up of Y at
a point y ∈ Y . Let r : X̃ −→ Y be the blow up map and let D be the
exceptional divisor.

We will show that ψ : Y −→ Z has no divisorial fibres. Assume
otherwise and let F be a divisorial fibre of ψ. By ([5], Theorem (2.3))
we have the following possibilities for F :

• F = F0 with LF0 = OF0(1, 2);

• F = F0 ∪ F1 with LF0 = OF0(1, 1) and LF1 = E + 2f .

We also know that y /∈ F , see ([5], (3.1.2)). Thus r−1(F ) ∼= F . Note
that L̃F0 = LF since L̃ = r∗L−D and D∩F = ∅. The adjunction bundle
K̃ + L̃ is trivial on r−1(F ) ∼= F . In fact K̃ + L̃ = r∗(K + L) + D and
since D and F don’t meet it follows that (K̃+ L̃)F = r∗(K+L)F = OF .

Since X̃ is isomorphic to X ′ we now work on X ′ ⊂ P6. From now on
we will denote with F either F itself or r−1(F ) ⊂ X̃ or f(r−1(F )) ⊂ X ′

this because r|r−1(F ) and f are isomorphisms. Being f∗(K ′+L′) = K̃+L̃
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it follows that K ′ +L′ is trivial on F and hence NF/X′ = KF −KX′|F =
KF + L′F .

From the sequence

0 −→ TF −→ TP6|F −→ NF/P6 −→ 0 (47)

we get that

21L′F
2 = c2(F )−KF · (KF + 7L′F ) + c2(NF/P6) (48)

Also from the sequence

0 −→ NF/X′ −→ NF/P6 −→ NX′/P6,F −→ 0 (49)

we get
c1(NX′/P6,F ) = 6L′F

and

c2(NF/P6) = (KF + L′F ) · 6L′F + c2(NX′/P6,F ) (50)

Claim 3.11. c2(NX′/P6,F ) = c2(NX̃/P̃ ,F )

Proof. (of Claim) Since f|X̃ : X̃ −→ X ′ is an isomorphism we have that

ci(X̃) = f∗ci(X ′) and thus

f∗c1(P )|X′ = f∗c1(X ′) + f∗c1(NX′/P6) = c1(X̃) + f∗c1(NX′/P6)

and similarly,

f∗c2(P )|X′ = c2(X̃)− c1(X̃)
2
+ c1(X̃)f∗c1(P )|X′ + f∗c2(NX′/P6)

i.e

f∗c2NX′/P6 = f∗c2(P )|X′ − c2(X̃) + c1(X̃)
2 − c1(X̃)f∗c1(P )|X′ (51)

Since NX̃/P̃ = (2(f∗H)⊗ [−E])⊕(3(f∗H)⊗ [−E])⊕(3(f∗H)⊗ [−E])
it follows that

c2(NX̃/P̃ ,F ) = (21f∗H2 − 16(f∗H) · E + 3E2)F (52)
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From (8) we know that

c2(NX̃/P̃ ) = c2(P̃ )− c2(X̃)− c1(P̃ )c1(X̃) + c1(X̃)
2
. (53)

Subtracting (53) from (51) we get

c2(NX̃/P̃ )− f∗c2(NX′/P6) = c2(P̃ )− f∗(c2(P )|X′) (54)

−c1(P̃ )c1(X̃) + c1(X̃)f∗c1(P )|X′

= −2((f∗H) · E)|X̃ − c1(X̃)(−2E)|X̃
= −2((f∗H) · E)|X̃ − ((f∗H − E) · E)|X̃
= −2(L̃+ K̃) · E

Since K̃ + L̃ is trivial on F , (54) gives

c2(NX̃/P̃ ,F ) = f∗c2(NX′/P6,F ) = c2(NX′/P6,F )

hence our claim is proven.

On the other hand, since K̃+ L̃ = 2f∗H−E it follows that (2f∗H−
E)F = OF or equivalently, 2L̃F = EF . Hence (52) becomes

c2(NX̃/P̃ ,F ) = (21f∗H2 − 16(f∗H) · E + 3E2)F (55)

= 21L̃2
F − 32L̃2

F + 12L̃2
F = L̃2

F .

Assume now that there is a divisorial fibre F0 with L̃F0 = OF0(1, 2).
We have:

L̃2
F0

= 4,KF0
2 = 8,KF0 · L̃F0 = −6.

Then from (48) c2(NF0/P6) = 46 while from (50) c2(NF0/P6) = −8, a
contradiction. In the same way we exclude F0 with L̃F0 = OF0(1, 1). In
fact in this case L̃2

F0
= 2,KF0 · L̃F0 = −4. Thus (48) gives c2(NF0/P6) =

18 while (50) gives c2(NF0/P6) = −10, which is again impossible.
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The above lemma implies that (Y, L) is a geometric conic bundle
over a smooth surface.

Let us fix some notation and recall few facts about 3-dimensional
geometric conic bundles over smooth surfaces, see [9] for details.

Notation. Let p : Y −→ B be a 3-dimensional geometric conic bundle
over a smooth surface B. Let S be a generic surface section of Y . Then
p : S −→ B is finite 2 : 1. Let 2R ⊂ B be the ramification divisor of
p : S −→ B.

We set p∗OX(1) =: E, a rank 3 vector bundle over B. LetW := P(E)
be a P2-bundle over B.

We denote the natural projection of W onto B also by p and by H
the divisor on W corresponding to OW (1). Hence Y = 2H − p∗M for
some divisor M on B.

The divisor D ⊂ B corresponding to points whose fibres are singular
conics, is called the discriminant divisor. Moreover it can be easily seen
that D = 2c1(E) − 3M. Furthermore we have c1(E) = 3R − D,M =
2R−D.

As for the Chern classes of Y we have the following:

c1(Y ) = H − p∗KB − p∗R

c2(Y ) = H2 +H · [−p∗KB − 2p∗R+ p∗D]
+(−2p∗R2 + p∗KB · p∗R+ p∗D · p∗R+ p∗c2(B) + p∗c2(E))

c3(Y ) = 2c2(B)−D2 −D ·KB

see ([9], Prop. 4.12). Indeed such relations hold true for any 3-dimensional
geometric conic bundle over a smooth surface.

Lemma 3.12. There is no conic bundle (Y,L) as in case A).

Proof. Recall that the base surface B of our conic bundle is a del Pezzo
surface of degree 3. Moreover by ([9], Prop. 4.10) for any two divisors
G and G′ on B we have

i) H · p∗G · p∗G′ = 2G ·G′;

ii) H2 · p∗G = (4R−D) ·G.

We also know that K3 = −2, c1(Y ) ·H2 = 4, c2(Y ) ·H = 44, c1(Y )2 ·H =
0, c2(B) = 9. Using these and the relations i) and ii) we get a system
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of 5 equations on the unknown R2,KB ·R,D ·R,KB ·D,D2 which does
not have integer solutions. Hence there is no conic bundle (Y, L) as in
case A).

The proof of Proposition 3.9 is now complete.

4 New examples of smooth 3-folds in P 6 of de-
gree 11

The aim of this section is to give three new examples of smooth 3-folds
in P6 of degree 11 and genus 9. They are obtained via liaison. The first
two examples are linked to 3-folds in P6 of degree 7: the hyperquadric
fibration over P1 and the scroll over P2.

The third one is a 3-fold which is Pfaffian linked to a 3-dimensional
quadric in P6.

For these examples the Bertini-type criterion does not apply hence
we will use the computer algebra system Macaulay to show their smooth-
ness.

We recall the following proposition which is a test for non-singularity.

Proposition 4.1. (Test for non singularity) [16] Let X ⊂ PN be a pro-
jective algebraic set of dimension n, with defining ideal I = {f1, ..., fr}.
Let Df =

(
∂fi/∂xj

)
be the (N+1) by r Jacobian matrix. Let J be the

ideal consisting of I together with all the N-n by N-n determinants of the
matrix Df.

i) The singular locus of X is exactly the zero locus Z(J).

ii) X is non singular if and only if codim J = N+1.

Example 4.2. Let X,X ′ ⊂ P6 be linked via a complete intersection
(2, 3, 3) where X is a hyperquadric fibration over P1 of degree 7. Then
X ′ is smooth, deg X ′ = 11, g = 9, with resolution

0 → OP6(−6)⊕3 ⊕OP6(−5)⊕3 →
OP6(−4)⊕6 ⊕OP6(−5)⊕4 ⊕OP6(−6) →
OP6(−3)⊕5 ⊕OP6(−2) → IX′ → 0
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Proof. Let X ⊂ P6 be a smooth 3-fold of degree 7 which is a hyper-
quadric fibration over P1. The existence of such 3-fold has been shown
by [15]. We observe that such threefold can also be seen as the 1st de-
generacy locus of a general morphism u ∈ Hom(F,E) where F = O⊕2

P6

and E = OP6(1)⊕3⊕OP6(2). Let X = D1(u) be the 1st degeneracy lo-
cus, i.e. D1(u) = {x ∈ P6|rku(x) ≤ 1}. Since F∨ ⊗ E is ample and
spanned, f = rkF < rkE = e and N < (f − 1 + 1)(e− 1 + 1), by ([17],
Prop. §2), it follows that D1(u) is non empty, smooth and of codimen-
sion (f − 1)(e− 1) = 3. Thus X ⊂ P6 is defined by the 2 by 2 minors of
the following matrix 

x0 x1

x2 x3

x4 x5

q1 q2

 (56)

where x0, ..., x6 are homogenous coordinates in P6 and q1, q2 are quadrics
in P6, q1 = x2

3 + x2
4 + x2

5 + x2
6, q2 = x2

0 + x2
1 + x2

2 + x2
3 + x2

4.
The Eagon-Northcott complex associated with u : F −→ E yields

explicit locally free resolution of the ideal of X, see ([17], pg.6).
In the specific case we have

0 → ∧4E∨ ⊗ S2F → ∧3E∨ ⊗ F → ∧2E∨ → IX ⊗ detF∨ → 0 (57)

i.e.,

0 → OP6(−5)⊕3 → OP6(−4)⊕6 ⊕OP6(−3)⊕2 (58)
→ OP6(−2)⊕3 ⊕OP6(−3)⊕3 → IX → 0

We’d like to construct a smooth 3-fold X ′ ⊂ P 6 which is linked to
the above degree 7 threefold X via a complete intersection (2, 3, 3).

Note that after twisting (58) with OP 6(3) we see that IX⊗OP 6(3) is
globally generated, but we can’t say the same thing about IX ⊗OP 6(2).
Thus we can’t use 2.4 to get the smoothness of X ′.

We’ll overcome such obstacle by using the computer algebra system
Macaulay. We know the generators of IX , they are the 2 by 2 minors of
the matrix (56). We will choose some ad hoc hypersurfaces containing
X, precisely two cubics C1, C2 and a quadric Q.

Let f1 = x6(x0x3 − x1x2) + x3(x0x5 − x1x4) + x1(x2x5 − x3x4) +
x4(x2

0 + x2
1 + x2

2 + x2
3 + x2

4)− x5(x2
3 + x2

4 + x2
5 + x2

6) and f2 = x5(x0x3 −
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x1x2)+x2(x0x5−x1x4)+x0(x2
0+x2

1+x2
2+x2

3+x2
4)−x1(x2

3+x2
4+x2

5+x2
6)

be the equtions of the cubics C1, C2 respectively and let f3 = x0x3 −
x1x2 + x0x5 − x1x4 + x2x5 − x3x4 be the equation of the quadric Q.
Let IA = (f1, f2, f3). The quotient of IA with IX gives the ideal of IX′ .
Using Macaulay and 4.1 we see that sing(X ′) = ∅. Again with the help
of Macaulay we get that degX ′ = 11 and g = 9.

Example 4.3. Let X,X ′ ⊂ P6 be linked via a complete intersection
(2, 3, 3) where X is a scroll over P2 of degree 7. Then X ′ is smooth,
degX ′ = 11, g = 9, with resolution

0 → OP6(−6)⊕3 ⊕OP6(−5) → OP6(−4)⊕6 ⊕OP6(−5)⊕2 ⊕OP6(−6)
→ OP6(−3)⊕5 ⊕OP6(−2) → IX′ → 0

Proof. Let X ⊂ P6 be a smooth 3-fold of degree 7 which is a scroll over
P2. As Okonek observed, such 3-fold is generally linked (2, 2, 2) to P3.
Thus using Macaulay one can compute the generators of the ideal IX ,
they are:

f1 = x2
0+x0x1+2x1x3+x2x3−x1x4+x2x4+x1x5−x0x6, f2 = x0x3+

x1x4 + x2x5, f3 = x0x2 + x1x2− x1x3− x2x3 + x1x4 + x0x6 + x2x6, f4 =
x2

3(x2 + x3 − x4 + x5 − 2x6) + x2
4(x1 − x2 + x3 − x6) + x2

5x6 − x4x
2
6 +

x3(x2x5−x1x4 +x4x6)+x4(x0x6−x1x6−x1x5−x0x5)+x5x6(x0 +2x2)
We’d like to construct a smooth 3-fold X ′ ⊂ P6 by linking it to the

above degree 7 threefold X via a complete intersection (2, 3, 3).
As in the previous example, we’ll choose two cubics and a quadric

containing X. We use Macaulay to get the smoothness of X ′.

The next example is obtained via Pfaffian liaison. A good reference
on this subject is [1].

We recall that two codimension three subvarieties X and X ′ of P6

are Pfaffian linked if their union is a Pfaffian subvariety Y of P6.
For our purpose the Pfaffian subvariety Y we consider is the first

non-trivial degeneracy locus of a skew-symmetric morphism f : E −→
E∗⊗L, where E = O⊕4

P6 ⊕OP6(−1) is a rank 5 vector bundle over P6 and

42 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 17-45



aldo biancofiore and maria lucia fania On the structure of linked . . .

L = OP6(1) is a line bundle on P6. Following Arrondo’s notation in [1]
we call such Y an (E , L)-Pfaffian subvariety.

The equations of Y are the 5 principal Pfaffians associated to the
following skew-symmetric matrix


0 x0 x1 x2 q1
−x0 0 x3 x4 q2
−x1 −x3 0 x5 q3
−x2 −x4 −x5 0 q4
−q1 −q2 −q3 −q4 0

 (59)

where x0, ..., x6 are homogenous coordinates in P6 and q1, ..., q4 are quadrics
in P6.

From general results on Pfaffian subvarieties, see [17], [1], it is easy
to see that Y is a smooth 3-fold of degree 13 and genus 14.

Example 4.4. LetQ3 ⊂ P6 be a smooth quadric, let E = O⊕4
P6 ⊕OP6(−1)

be a rank 5 vector bundle over P6 and let L = OP6(1) a line bundle on P6.
Let Y be the (E , L)-Pfaffian subvariety containing Q3. Then Y yields a
residual X ′ which is smooth, degX ′ = 11, g = 9 and with resolution

0 → OP6(−6)⊕2 ⊕OP6(−5) → OP6(−4)⊕6 ⊕OP6(−5)⊕2

→ OP6(−3)⊕5 ⊕OP6(−2) → IX′ → 0

Proof. We can assume that Q3 ⊂ P6 is defined by

{(x0, ..., x6) ∈ P 6|x0x5−x1x4 +x2x3 = x6 = x0 +x1 +x2 +x3 +x5 = 0}

Since we want the Pfaffian Y to contain Q3 ⊂ P 6 it is enough to choose
q1, ..., q4 in (59) so that they contain the chosen Q3.

It’s easy to see that the Bertini-type criterion for Pfaffian liaison, see
([1], Prop. 1.8), does not apply in this case. Hence the smoothness of
the residual X ′ is proved using the computer algebra system Macaulay.

Knowing the resolution of the ideal IQ3 in P6

0 → OP6(−4) → OP6(−3)⊕2 ⊕OP6(−2) → OP6(−2)⊕OP6(−1)⊕2

→ IQ3 → 0

we get that of IX′ in P6 by using Prop 1.6 in [1].
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