AN EXTENSION OF SIMONS' INEQUALITY AND APPLICATIONS*

Robert DEVILLE and Catherine FINET

Abstract

This article is devoted to an extension of Simons' inequality. As a consequence, having a pointwise converging sequence of functions, we get criteria of uniform convergence of an associated sequence of functions.

I Introduction

Simons' inequality is a useful tool in Banach space geometry. Simons has observed in [S1] that this inequality allows to prove that if $\left(f_{n}\right)$ is a uniformly bounded sequence of real valued continuous functions on a compact space which converges pointwise to a continuous function g, then there is a sequence of convex combinations of the f_{n} 's that converges uniformly to g. Later, Godefroy ($[\mathrm{G}]$) found other applications of this inequality (see also [FG] and [GZ]). And more recently, Acosta and Galán ([AG]) improved James theorem in the case of smooth Banach spaces. Our main result is the following extension of Simons' inequality [S1]. We believe that this extension may have applications in non linear analysis.

Acknowledgement. The authors thank the referee for the remarks he made on this article.

[^0]
II. Main result

Theorem 1. Let B be a set and C be a non empty subset of a linear normed space that is stable with respect to taking infinite convex combinations. Let $f: C \times B \rightarrow \mathbb{R}$ be a bounded function such that the mappings $x \rightarrow f(x, b)$ are convex and Lipschitz continuous, with a Lipschitz constant independant of b. Let us also assume that
$(\star) \quad\left\{\begin{array}{c}\text { for every } x \in C \text { there is } a b \in B \text { such that } \\ f(x, b)=\sup _{\beta \in B} f(x, \beta)\end{array}\right.$
Then if $\left(x_{n}\right)_{n}$ is a sequence in C, we have

$$
\inf _{x \in C} \sup _{\beta \in B} f(x, \beta) \leq \sup _{\beta \in B} \limsup _{n} f\left(x_{n}, \beta\right)
$$

In particular, if we take as C a certain subset of $\ell^{\infty}(B)$, the Banach space of all bounded real functions on B, we get the "classical" Simons' inequality.

Corollary. (Simons' inequality). Let B be a set and C be a non empty bounded subset of $\ell^{\infty}(B)$ that is stable with respect to taking infinite convex combinations. Let us assume that for every $x \in C$, there is a $b \in B$ such that

$$
x(b)=\sup _{\beta \in B} x(\beta)
$$

Then if $\left(x_{n}\right)$ is a sequence in C, we have

$$
\inf _{x \in C} \sup _{\beta \in B} x(\beta) \leq \sup _{\beta \in B} \limsup _{n} x_{n}(\beta)
$$

Let us now discuss the assumption " C is stable by taking infinite convex combinations". This assumption is clearly satisfied if C is a closed convex subset of a Banach space. On the other hand, it is always satisfied by bounded convex subsets of a finite dimensional vector space V. This can be proved by induction. Indeed, this is clear if the dimension of the space is equal to 1 . We can assume that $0 \in C . C$ satisfies one of the following conditions: either C is contained in a linear proper subspace of V or C has non empty interior. In the first case, the statement follows
from our assumption. If C has non empty interior, let us assume that the result holds for vector spaces of dimension $\leq n$. Let C be a bounded convex subset of a vector space V of dimension $n+1$. Let us assume that there exist points x_{n} in C and scalars $\lambda_{n}>0$ such that $\sum_{n=1}^{+\infty} \lambda_{n}=1$ and $\sum_{n=1}^{+\infty} \lambda_{n} x_{n} \notin C$. By Hahn-Banach Theorem, there exists $\varphi \in V^{*}$ such that

$$
\varphi\left(\sum_{n=1}^{+\infty} \lambda_{n} x_{n}\right)=1 \quad \text { and } \quad \varphi(x) \leq 1 \quad \text { for } \quad x \in C
$$

There exists n_{0} such that $\varphi\left(x_{n_{0}}\right)<1$. Indeed, otherwise the induction hypothesis would not be satisfied for the convex $C \cap\{\varphi=1\}$. But

$$
\varphi\left(\sum_{n=1}^{+\infty} \lambda_{n} x_{n}\right)=\sum_{n=1}^{+\infty} \lambda_{n} \varphi\left(x_{n}\right)<1
$$

and this gives us a contradiction.
Looking at the extension of Simons' inequality we got, it is natural to recall a Min-Max Theorem (see [A], see also [S2]) and to compare both results. Recall that if C is a convex subset of a vector space V, the finite topology on C is the strongest topology for which, for each n and for each n-uple $K=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ of elements in C, the mappings $f_{K}: C_{n}^{+} \rightarrow C$ defined by $f_{K}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)=\sum_{i=1}^{n} \lambda_{i} y_{i}$ are continuous, where C_{n}^{+}is the set of all $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$ such that $\lambda_{i} \geq 0$ for all i and $\sum_{i=1}^{n} \lambda_{i}=1$.
Min-max theorem. Let B be a compact space and let C be a convex subset of a vector space V, supplied with the finite topology.
Assume that
i) for all $x \in C, b \rightarrow f(x, b)$ is upper semicontinuous on B,
ii) for all $b \in B, x \rightarrow f(x, b)$ is convex.

Then there exists $b_{0} \in B$ such that

$$
\inf _{x \in C} f\left(x, b_{0}\right)=\sup _{b \in B} \inf _{x \in C} f(x, b)=\sup _{c \in C(C, B)} \inf _{x \in C} f(x, c(x)) .
$$

where $\mathcal{C}(C, B)$ denotes the space of continuous functions from C to B. The authors conjecture that this Min-Max Theorem should be deduced from Theorem 1.

Proof of theorem 1. Let us consider, for x in $C, \sigma(x)=\sup _{b \in B} f(x, b)$ and let us put,

$$
\begin{aligned}
m & =\inf \{\sigma(x), x \in C\} \\
M & =\sup \{\sigma(x), x \in C\} .
\end{aligned}
$$

Since f is bounded on $C \times B$, we have $-\infty<m \leq M<\infty$. Let $\left(x_{n}\right)_{n}$ be a sequence in C and put

$$
C_{p}=\operatorname{conv}\left\{x_{n}, n \geq p\right\}
$$

We can assume $m>0$. Let $0<\delta<m$. Let $\left(a_{p}\right)$ be a sequence such that $0<a_{p} \leq 1, \sum_{p \geq 1} a_{p}=1$ and $\sum_{p>n} a_{p} \leq \frac{\delta}{M} a_{n}$, and let $\left(\epsilon_{n}\right)$ be a sequence such that

$$
0<\epsilon_{n} \leq \frac{a_{n+1}\left(a_{n}+a_{n+1}\right)}{2 A_{n+1}} \delta
$$

where $A_{n}=\sum_{1 \leq p \leq n} a_{p}$.
Let $y_{1} \in C_{1}$ be such that $\sigma\left(y_{1}\right) \leq \inf _{y \in C_{1}} \sigma(y)+\epsilon_{1}$.
If $y_{1}, y_{2}, \ldots, y_{n-1}$ have been chosen, we write $z_{n-1}=\sum_{k=1}^{n-1} a_{k} y_{k}$ and take y_{n} in C_{n} such that

$$
\sigma\left(\frac{z_{n}}{A_{n}}\right) \leq \inf _{y \in C_{n}} \sigma\left(\frac{z_{n-1}+a_{n} y}{A_{n}}\right)+\epsilon_{n}
$$

Now, put $z=\sum_{p \geq 1} a_{p} y_{p}$. Clearly, $z \in C$, so, by assumption, there exists b in B such that, $f(z, b)=\sigma(z)$. Since

$$
z=A_{n-1} \frac{z_{n-1}}{A_{n-1}}+a_{n} y_{n}+\left(\sum_{p>n} a_{p}\right) \frac{\sum_{p>n} a_{p} y_{p}}{\sum_{p>n} a_{p}}
$$

by convexity of f with respect to the first variable, we get :

$$
f(z, b) \leq A_{n-1} f\left(\frac{z_{n-1}}{A_{n-1}}, b\right)+a_{n} f\left(y_{n}, b\right)+\left(\sum_{p>n} a_{p}\right) f\left(\frac{\sum_{p>n} a_{p} y_{p}}{\sum_{p>n} a_{p}}, b\right)
$$

Therefore,

$$
a_{n} f\left(y_{n}, b\right) \geq \sigma(z)-A_{n-1} \sigma\left(\frac{z_{n-1}}{A_{n-1}}\right)-\sum_{p>n} a_{p} M
$$

Hence, by the choice of $\left(a_{n}\right)$,

$$
\begin{equation*}
a_{n} f\left(y_{n}, b\right) \geq \sigma(z)-A_{n-1} \sigma\left(\frac{z_{n-1}}{A_{n-1}}\right)-\delta a_{n} \tag{1}
\end{equation*}
$$

Since f is Lipschitz continuous with respect to the first variable, with Lipschitz constant independent of the second variable, σ is Lipschitz continuous. Therefore, since $\lim _{n} A_{n}=1$, then $\lim _{p} \sigma\left(\frac{z_{p}}{A_{p}}\right)-\sigma\left(z_{p}\right)=0$, and so $\sigma(z)=\lim _{p} A_{p} \sigma\left(\frac{z_{p}}{A_{p}}\right)$, and

$$
\begin{aligned}
& \sigma(z)-A_{n-1} \sigma\left(\frac{z_{n-1}}{A_{n-1}}\right)=\sum_{p \geq n}\left[A_{p} \sigma\left(\frac{z_{p}}{A_{p}}\right)-A_{p-1} \sigma\left(\frac{z_{p-1}}{A_{p-1}}\right)\right] \\
& \geq \sum_{p \geq n}\left(\left[A_{p-1}\left(\sigma\left(\frac{z_{p}}{A_{p}}\right)-\sigma\left(\frac{z_{p-1}}{A_{p-1}}\right)\right)\right]+a_{p} m\right) .
\end{aligned}
$$

Let us put $\Delta_{p}=\sigma\left(\frac{z_{p}}{A_{p}}\right)-\sigma\left(\frac{z_{p-1}}{A_{p-1}}\right)$. The following lemma will lead us to a good estimate of $\sum_{p \geq n} A_{p-1} \Delta_{p}$. We will give the proof of this lemma after the end of the proof of the theorem.

Lemma. We have, for every $n \geq 2, \Delta_{n} \geq-a_{n} \delta$.
It follows from the lemma that

$$
\sum_{p \geq n} A_{p-1} \Delta_{p} \geq-\delta \sum_{p \geq n} A_{p-1} a_{p} \geq-\delta \sum_{p \geq n} a_{p}
$$

Therefore,

$$
\sigma(z)-A_{n-1} \sigma\left(\frac{z_{n-1}}{A_{n-1}}\right) \geq \sum_{p \geq n} a_{p}(m-\delta) \geq a_{n}(m-\delta)
$$

This estimate and (1) yield

$$
f\left(y_{n}, b\right) \geq m-2 \delta
$$

As $y_{n} \in C_{n}$, by convexity of f in the first variable, for each n there exists $k(n) \geq n$ such that $f\left(x_{k(n)}, b\right) \geq m-2 \delta$. So, $\sup _{b} \limsup _{n} f\left(x_{n}, b\right) \geq$ $m-2 \delta$, for all $\delta>0$. Thus the theorem is proved.

We now give the proof of the lemma:
Proof of the lemma. We first claim that: $\Delta_{2} \geq-\epsilon_{1}$ and for $n>2$, $\Delta_{n+1} \geq \gamma_{n} \Delta_{n}-2 \epsilon_{n}$, where $\gamma_{n}=\frac{a_{n}+1}{a_{n}} \frac{A_{n-1}}{A_{n+1}}$.
Indeed, $\Delta_{2}=\sigma\left(\frac{z_{2}}{A_{2}}\right)-\sigma\left(\frac{z_{1}}{A_{1}}\right)$. As $\frac{z_{2}}{A_{2}} \in C_{1}, \frac{z_{1}}{A_{1}}=y_{1}$, by definition of $y_{1}, \Delta_{2} \geq-\epsilon_{1}$.
Let $r_{n}=\frac{\bar{a}_{n+1}}{a_{n}}$ and $y=\frac{y_{n}+r_{n} y_{n+1}}{1+r_{n}}$. Since $y \in C_{n}$, by the choice of z_{n} it holds

$$
\sigma\left(\frac{z_{n}}{A_{n}}\right) \leq \sigma\left(\frac{z_{n+1}+r_{n} z_{n-1}}{A_{n}\left(1+r_{n}\right)}\right)+\epsilon_{n}
$$

We have $A_{n}\left(1+r_{n}\right)=A_{n+1}+A_{n-1} r_{n}$, so

$$
\sigma\left(\frac{z_{n}}{A_{n}}\right) \leq \sigma\left(\frac{A_{n+1} \frac{z_{n+1}}{A_{n+1}}+r_{n} A_{n-1} \frac{z_{n-1}}{A_{n-1}}}{A_{n+1}+r_{n} A_{n-1}}\right)+\epsilon_{n}
$$

And, by convexity,

$$
\begin{aligned}
&\left(A_{n+1}+r_{n} A_{n-1}\right) \sigma\left(\frac{z_{n}}{A_{n}}\right) \leq A_{n+1} \sigma\left(\frac{z_{n+1}}{A_{n+1}}\right)+r_{n} A_{n-1} \sigma\left(\frac{z_{n-1}}{A_{n-1}}\right) \\
&+\left(A_{n+1}+r_{n} A_{n-1}\right) \epsilon_{n}
\end{aligned}
$$

This inequality can be rewritten as follows :

$$
\begin{aligned}
A_{n+1}\left[\sigma\left(\frac{z_{n+1}}{A_{n+1}}\right)-\sigma\left(\frac{z_{n}}{A_{n}}\right)\right] \geq & r_{n} A_{n-1}\left[\sigma\left(\frac{z_{n}}{A_{n}}\right)-\sigma\left(\frac{z_{n-1}}{A_{n-1}}\right)\right] \\
& -\left(A_{n+1}+r_{n} A_{n-1}\right) \epsilon_{n}
\end{aligned}
$$

finally we get that

$$
\Delta_{n+1} \geq r_{n} \frac{A_{n-1}}{A_{n+1}} \Delta_{n}-\left(1+r_{n} \frac{A_{n-1}}{A_{n+1}}\right) \epsilon_{n} \geq \gamma_{n} \Delta_{n}-2 \epsilon_{n}
$$

this proves the claim.

The lemma then follows easily by induction from the claim and from the choice of the sequence $\left(\epsilon_{n}\right)$.

III Applications

In this section, we present some applications of Theorem 1 which cannot be deduced from Simons' inequality. Recall that the convex hull of a sequence $\left(x_{n}\right)$ is the set of finite combinations $\sum_{n=1}^{N} \lambda_{n} x_{n}$ with $\lambda_{n} \geq 0$ for all n and $\sum_{n=1}^{N} \lambda_{n}=1$.

Theorem 2. Let B be a set, X be a Banach space, C be a closed convex subset of X and $f: C \times B \rightarrow \mathbb{R}$ be a bounded function such that the mappings $x \rightarrow f(x, b)$ are convex and Lipschitz continuous, with a Lipschitz constant independent of b. Let us assume that for every $x \in C$ there exists $a b \in B$ such that

$$
f(x, b)=\sup _{\beta \in B} f(x, \beta)
$$

If $\left(x_{n}\right)$ is a sequence in C such that for every $\beta \in B, f\left(x_{n}, \beta\right) \geq 0$ and $\lim _{n} f\left(x_{n}, \beta\right)=0$, then, for all $\epsilon>0$, there exists x in the convex hull of the sequence $\left(x_{n}\right)$ such that

$$
\sup _{\beta \in B} f(x, \beta) \leq \epsilon
$$

Of course, when f takes values in the positive real numbers, if for every $\beta \in B, f\left(x_{n}, \beta\right)$ converges pointwise to 0 , the conclusion of Theorem 2 is that there exists a sequence $\left(y_{n}\right)$ of convex combinations of $\left(x_{n}\right)$ such that $f\left(y_{n}, \beta\right)$ converges to 0 uniformly with respect to β.
Proof. Indeed, we have $\sup _{\beta \in B} \limsup _{n} f\left(x_{n}, \beta\right)=0$. Let us denote \tilde{C} the closed convex hull of the sequence $\left(x_{n}\right)$. Theorem 1 shows that

$$
\inf _{x \in \tilde{C}} \sup _{\beta \in B} f(x, \beta) \leq 0
$$

Since the convex hull of the sequence $\left(x_{n}\right)$ is dense in \tilde{C}, the above inequality and the Lipschitz continuity of f with respect to the first variable imply Theorem 2.
If we take $B=\mathbb{N}$ in the above theorem, we get the following result.
Corollary. Let C be a closed convex subset of a Banach space X and $\left(f_{n}\right)$ be a sequence of convex continuous functions from C to \mathbb{R}, which is uniformly bounded and uniformly Lipschitz on C. Let us assume that for every $x \in C$ there exists a $n_{0} \in \mathbb{N}$ such that

$$
f_{n_{0}}(x)=\sup _{n} f_{n}(x)
$$

If $\left(x_{n}\right)$ is a sequence in C such that for every $p \in \mathbb{N}, f_{p}\left(x_{n}\right) \geq 0$ and $\lim _{n} f_{p}\left(x_{n}\right)=0$; then, for all $\epsilon>0$, there exists x in the convex hull of the sequence (x_{n}) such that

$$
\sup _{p \in \mathbb{N}} f_{p}(x) \leq \epsilon
$$

Remark. The hypothesis of the convexity of $\left(f_{n}\right)$ cannot be dropped. Indeed, consider $X=\mathbb{R}, f_{n}(x)=\inf \left\{(x+n)^{+}, 1\right\}$ and a sequence $\left(x_{n}\right)$ tending to $-\infty$. On the other hand, if you take $f_{n}(x)=(x+n)^{+}$, you see that the hypothesis of the uniform boundedness of the sequence $\left(f_{n}\right)$ also cannot be dropped.
Let us recall the following result (see [S1, Corollary 10]). Let K be a compact space and $\left(f_{n}\right)_{n}$ be a uniformly bounded sequence of continuous functions on K. If the sequence $\left(f_{n}\right)$ converges pointwise to zero on K then it converges weakly to zero.

We now give a vector-valued extension of this result.
Proposition. Let K be a compact space, X be a Banach space and $\left(f_{n}\right)_{n}$ be a uniformly bounded sequence of continuous functions from K to X. If the sequence $\left(f_{n}\right)$ converges pointwise to 0 on K then there exists a sequence of linear convex combinations of $\left(f_{n}\right)$ which is uniformly convergent on K.

Proof. Let us denote C the closed convex hull of the functions f_{n} in the Banach space $C(K, X)$ of continuous functions from K into X. The function $F: C \times K \rightarrow \mathbb{R}$ defined by $F(f, x):=\|f(x)\|_{X}$ is bounded, convex and continuous with respect to the first variable, and, for every $f \in C$, there exists $x \in K$ such that $\|f(x)\|_{X}=\sup _{y \in K}\|f(y)\|_{X}$. By assumption, $\sup _{x \in K} \limsup _{n}\left\|f_{n}(x)\right\|_{X}=0$. According to Theorem 1,

$$
\inf _{f \in C} \sup _{x \in K}\|f(x)\|_{X} \leq 0
$$

This proves the proposition.

Let us mention that, by a remark of the referee, this result is also a consequence of Simon's inequality. The subset $K \times B_{X^{*}}$ is a boundary of $C(K, X)$. If $\left(f_{n}\right)$ converges pointwise to zero on K, it converges pointwise on the boundary and so, it converges weakly to zero.

References

[AG] M. D. Acosta and M. Ruiz Galán, New characterizations of the reflexivity in terms of the set of norm attaining functionals. Canad. Math. Bull. (41) 1998, 279-289.
[A] J.P. Aubin, Mathematical methods of game and economic theory. Studies in Mathematics and its applications. Vol. 7. North Holland, 1979.
[DGZ] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces. Pitman monographs and Surveys in Pure and Appl. Math.. Longman Scientific \& Technical, 1993.
[FG] M. Fabian and G. Godefroy, The dual of every Asplund space admits a projective resolution of identity. Studia Math. (91) 1988, 141-151.
[G] G. Godefroy, Boundaries of a convex set and interpolation sets. Math. Ann. (277) 1987, 173-184.
[GZ] G. Godefroy and V. Zizler, Roughness properties of norms on nonAsplund spaces. Michigan Math. J. (38) 1991, 461-466.
[J] R.C. James, Weakly compact sets. Trans. Amer. Math. Soc. (113) 1964, 129-140.
[O] E. Oja, A proof of Simons' inequality, preprint.
[S1] S. Simons, A convergence theorem with boundary. Pacific J. Math. (40), 1972, 703-708.
[S2] S. Simons, Minimax and monotonicity. Lecture Notes in Math. Vol. 1693, Springer Verlag, 1998.

Robert Deville
Université de Bordeaux I
Mathématiques Pures de Bordeaux
Cours de la Libération, 351,
F 33405 Talence Cedex (France)
E-mail: deville@math.u-bordeaux.fr
Catherine Finet
Université de Mons-Hainaut
Institut de Mathématique et d'Informatique
"Le Pentagone"
Avenue du Champ de Mars, 6
B 7000 Mons (Belgique)
E-mail: catherine.finet@umh.ac.be
Recibido: 17 de Noviembre de 1999
Revisado: 3 de Julio de 2000

[^0]: *The research presented in this paper was supported by a FNRS grant and La Banque Nationale de Belgique. The paper was written when the first author visited the Department of Mathematics of the University of Mons-Hainaut (Belgium).

