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Abstract

In this paper, we present the simple and double compression al-

gorithms with an error control for compressing satellite data corre-

sponding to several revolutions. The compressions are performed

by means of approximations in the norm L1 by �nite series of

Chebyshev polynomials, with their known properties of fast eval-

uation, uniform distribution of the error, and validity over large

intervals of time. By using the error control here introduced, the

number of terms of the series is given automatically for a prede-

termined tolerance. As illustration, we apply the method to the

orbits of SPOT, Topex/Poseidon and Skybridge satellites.

1 Introduction

Compression of ephemerides has become a frequent way to distribute

ephemerides of celestial bodies, arti�cial satellites included. By means of

the compression, the amount of memory to store the orbit is drastically

reduced. Albeit the fact that computer technology is evolving quickly

and disk-space is cheap and of fast access, compression still is very useful

in Astrodynamics, for it reduces the time transmission of data to the

on board computer and the saved time transmission may be employed

for other purposes. Even more, with compression, the orbit is usually

recovered by a simple evaluation of a polynomial, which smoothes the

job to both, the on board computer and potential users of the satellite.

These advantages long time ago known (see e.g. [10]) still are valid

at present times and space agencies are concerned with the possibility

of compressing orbits valid for the longer time interval with the more

accuracy possible [7, 1].

Chebyshev polynomials are among the most popular orthogonal poly-

nomials bases to approximate a set of data. One of the �rst authors in
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using Chebyshev polynomials to approximate satellite ephemerides was

Corio [9]; however, Corio used an interpolation method using equidistant

data, which produces the Gibbs phenomenon: a good approximation in

the middle of the interval but great errors at the extremes. Deprit used

di�erent approximations, �rstly in the L1 norm [10] and later on in the

L1 norm [11], with reference points non uniformly distributed (the ze-

ros of the Chebyshev polynomials) with far better results. On the one

hand, the errors are uniformly distributed, and on the other, the ap-

proximation is quite good for moderate eccentricities and an estimate of

the least maximum error may be reached for a given degree.

Since the middle of the 1970s, Chebyshev series have been widely

used to distribute ephemerides of the sun, moon and planets (see e.g.

[20, 14, 16, 12, 8]).

To have high accuracy, one possibility is to take the truncated series

with many terms; however, series of several hundred terms are not prac-

tical. Another choice is to reduce the interval of time of validity of the

series, which eventually leads to multiply by several times the number

of coeÆcients.

A further step was given by Sheela and Padmanabhan [19]. These

authors, suggest the \compressed coeÆcients method," that is to say,

they compress separately several intervals, and then, they compress the

coeÆcients of the several series. Recently, Co�ey et al. [7] use this algo-

rithm to compress the ephemerides of the Naval Space Space Command

(NSC) catalog of satellites. In doing so, they have moderate accuracy,

but with signi�cant less coeÆcients than �tting each revolution sepa-

rately.

Our contribution here presented consists of an algorithm that cuts

automatically the series for a predetermined tolerance. In this way, we

optimize the number of terms in the series, since we avoid to compute

those terms that are not necessary to reach a certain accuracy. As a side

e�ect, we handle almost triangular matrices, which reduces the compu-

tation. In the paper, we describe the simple and double compression

algorithms; we de�ne the error control and give some indications about

how to make the compression in parallel. Several examples are shown:

SPOT, Topex/Poseidon and Skybridge satellites; in all of them, the

tolerance is reached with a reasonably moderate number of coeÆcients.
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2 Compression algorithms

2.1 Simple compression

Let Am = f(tj ;yj) j 1 � j � mg be a set of m values of osculating ele-

ments yj (in this paper, position and velocity) of an arti�cial satellite at

the instant tj. Let T be the period of the Keplerian orbit corresponding

to the �rst value (t1;y1). This period T will be the interval size in the

compression process.

The simple compression algorithm consists of compressing any of the

period{intervals of the satellite separately, that is to say, each one of the

intervals Ik = [t1+(k� 1)T; t1+ k T ], with 1 � k � p, and p the integer

part of (tm � t1)=T + 1. Let us denote by yik the component yi of the

vector y in the interval Ik. Each function yik(t) will be represented by a

�nite series of Chebyshev polynomials in the form

y
i
k (t) �

mi
kX

j=0

C
i
kj Tj(x); (1)

with t 2 Ik and x 2 [�1; 1], (obtained by the map x = (2 t � 2 t1 �

(2 k � 1)T )=T ) and in such a way that this �nite series of Chebyshev

polynomials is the best approximation of yik (t) of degree m
i
k over the in-

terval Ik in the norm of Chebyshev L1 on the set Am. For details about

the best approximation, the reader may consult the paper of Deprit and

collaborators [10].

To have the approximation (1), the coeÆcients are determined by

solving an overdetermined system of linear equations in the norm of

Chebyshev L1. Several procedures have been proposed to achieve this

goal [18, 3]; these methods, essentially, are the simplex algorithm ap-

plied to the dual of the linear programming problem de�ned by the

minimization of the maximum error. In our work, we use the very eÆ-

cient algorithm developed by Barrodale and Phillips [3].

Thus, in order to know the value of each function yi along each inter-

val Ik, we have to store one integer number, m
i
k, and mi

k+1 coeÆcients

Ci
kj.

Once the compression is done, to decompress the ephemerides, that is

to say, for computing the ephemerides at an instant t 2 [t1; tm], the �rst

task is to determine the subinterval Ik to which t belongs and convert
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this subinterval into the standard interval [�1; 1]. Afterwards, one reads

the number mi
k and the coeÆcients Ci

kj from the corresponding �le.

The following step consists of evaluating the �nite series of Chebyshev

polynomials. This is done by means of the recursive algorithm proposed

by Clenshaw [6]

Pn(x) =

nX

r=0

Cr Tr(x) =
1

2
(b0(x)� b2(x) +C0);

where

bn+1(x) = bn+2(x) = 0;

br(x) = 2x br+1(x)� br+2(x) + Cr; r = n; :::; 0:

When the vector y = (x; y; z; _x; _y; _z) stands for the six dimension vector

made of the Cartesian components of position and velocity, it is neces-

sary to compress only the �rst three components (the position), whereas

the velocity is obtained by means of the algorithm proposed by Deprit

[11] to evaluate the derivative of a Chebyshev series without actually

producing the derivative series, that is,

d

dt
Pn(x(t)) =

2

T

d

dx
Pn(x) =

2

T
d0;

where

dn+1 = dn = 0;

dj = 2x dj+1 � dj+2 + (j + 1)Cj+1; j = n� 1; :::; 0:

2.2 Double compression

The double compression algorithm, also known as \compressed coeÆ-

cient method," was introduced by Sheela and Padmanabhan [19]. It

consist of compressing the coeÆcients obtained from the simple com-

pression above exposed.

Let us assume that for the data Am = f(tj ;yj) j 1 � j � mg the

single compression is already done. Thus, we have p intervals Ik (1 � k �

p), and for each interval, a set of coeÆcients Cik = fCi
kj j 0 � j � mi

kg.

By the double compression, we compress again, and separately, these

coeÆcients.
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There are two possibilities for the second compression:

a) We compress separately each one of the sets Cik (1 � k � p), that is,

the coeÆcients of each interval. By doing so, we have

Cik �

ni
kX

j=0

B
i
kjTj(~x); 1 � k � p; ~x 2 [�1; 1];

hence, for each interval Ik we obtain

Bi
k = fBi

kj j 0 � j � n
i
kg; (1 � k � p):

This procedure may be useful only when the number of coeÆcients mi
k

is large.

b) The second choice for the second compression, and the one we will

follow here, is based on the convergence of the approximation by Cheby-

shev polynomials in the L1 norm. Because of this fact, the coeÆcients

Ci
kj of the approximation, Equation (1), decrease very fast, thus, the

coeÆcients of the Chebyshev polynomials of degree low are much bigger

than those of degree high. This is why we will compress the k coeÆcients

of the polynomial of each degree. Furthermore, for each interval Ik we

truncate the series at the same degree, that is to say, mi
k = mi; 8k.

Once the �rst compression is done, we sort the sets of coeÆcients Cik
(1 � k � p), and form the sets

Di
j = fCi

kj j 1 � k � pg; 0 � j � m
i
k = m

i
; (2)

that is to say, Di
j is made of the coeÆcients of the polynomial Tj of

degree j; these coeÆcients are similar in size for a given degree.

Now, we compress each one of these sets

Di
j �

�ijX

`=0

A
i
j`T`(x̂); 0 � j � m

i
k = m

i
; x̂ 2 [�1; 1] (3)

and hence, we obtain the sets

Ai
j = fAi

j` j 0 � ` � �
i
jg; 0 � j � m

i
k = m

i
: (4)
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Consequently, with the double compression we only have to store the

numbers mi, �ij and the set of coeÆcients fAi
j` j 0 � ` � �ij; 0 � j �

mig.

In order to evaluate the function yi at the instant t 2 [t1; tm] from

the double compressed data, �rst at all, we determine the subinterval Ik
where is t is located. Next, we evaluate (3) at x̂ = (2k � p� 1)=(p� 1).

With this operation, we obtain the coeÆcients of the approximation (1)

and we can evaluate the series in x = (2 t�2 t1� (2 k�1)T )=T by using

the Clenshaw algorithm, for instance.

2.3 Error control

In the simple and double compression above described, the number of

the coeÆcients |or equivalently, the degree of the polynomial| must

be �xed by the user, either by trials or depending on the own experience.

Here, we add a mechanism that determines the number of coeÆcients

depending on the precision required. This is obtained by means of an

error control procedure that automatically cuts the series for a certain

tolerance.

Due to the special features of the Chebyshev polynomials, we have

that for the Chebyshev approximation of a smooth function, when the

convergence is reached, the size of the coeÆcients of the series decreases

quickly, which according to Bernstein [4, 17] gives a good estimation of

the truncation error. Hence, if the series
P

CjTj(x) is truncated at the

term n, the error estimation that we use is

Est(n) =
jCnj+ jCn+1j

2
;

to avoid diÆculties when even (or odd) coeÆcients vanish.

In the compression algorithm with error control, �rstly it is necessary

to perform the compression (simple or double) with a big number of

coeÆcients and, afterwards, for a certain given tolerance (Tol), the series

is cut at the coeÆcient where the error estimator is Est(n) � 10�1 �Tol.

The factor 10�1 has been introduced as a safety factor.

N.B. The safety factor has been introduced to have an estimation of the

error of the same order than the tolerance introduced. Since the Est(n)

is not an error bound, the �nal error may be higher than the actual

error. This fact can be avoided by adjusting the safety factor.
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It is worth to notice that with this procedure the number of coeÆ-

cients �ij is variable, that is to say, to perform the double compression,

the �rst coeÆcients (j low) are the biggest ones, hence, in order to ap-

proximate them, we need more coeÆcients than to compress the lasts

coeÆcients (j high), that are smaller.

By means of the error control, the desired level of precision is ob-

tained with a lower number of coeÆcients than for the simple or double

compression without error control; besides, it is easier to use it because

it is not necessary to �x the number of coeÆcients, but the required

precision.

3 Examples

The algorithms of the simple and the double compression with error

control, above exposed, have been tested in the compression of the

ephemerides of several arti�cial satellites. Each data �le contains more

than 200 points per revolution that have been numerically generated tak-

ing into account all the most important perturbation forces: the Earth

gravity potential (model GEM10 30 � 30), atmospheric drag, lunisolar

potential and solar radiation pressure (no shadow function is consid-

ered).

Note that since we are interested only in compressing a given �le

data, independently whether the data are accurate or not, it should be

no relevant which method is used to obtain the �le data in the examples.

Nevertheless, from a practical point of view, the more accurate the data

are, the better the compression will be. To compute the orbit, we used

the program PSIMU [13], developed by the Centre National d'�Etudes

Spatiales (CNES) that uses as numerical integrator an order 10 Cowell

method (see e.g. [5]).

We present below the results for three satellites: SPOT,

Topex/Poseidon and Skybridge satellites.

It is worth to note that, although we compress the position data

only, we can recover the velocity by means of Deprit's algorithm [11].
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3.1 SPOT satellite

The initial orbital elements of the french satellite SPOT (see e.g. [15])

are:
a = 7200:56 km; i = 98.Æ723; 
 = 188.Æ7;

e cos! = 0; e sin! = 0:00106:

The satellite has an e�ective surface of 20m2 and a mass of 2500 kg.

We take the initial Keplerian period (T = 6079 seconds) as the interval

size for compressing.

For these initial elements, three types of force models have been

considered, the main problem (J2), the main problem with the air-drag

(J2+Atm) and, �nally, the complete model (CM), that is, taking into ac-

count more general perturbation forces (Earth gravity potential (model

GEM10 30� 30), lunisolar potential, solar radiation pressure and atmo-

spheric drag).

For each model, we compress two intervals of 30 or 100 revolutions

(that is, 2.11 days and one week respectively) with di�erent tolerances

for both, the simple (SC) and double compression (DC).

Here, error means the di�erence between integrator supplied and

Chebyshev approximated values (we take as comparison points the com-

plete data �le, that is to say, 200 points at each revolution). The max-

imum of the error (Error1) in the three coordinates (x; y; z), the max-

imum of the root mean square error (RMS), the number of bytes to be

stored and the number of terms of the truncated Chebyshev series (for

the three coordinates) are given on Table 1. We may remark the high

ratio of the compression for the case of double compression; indeed, for

100 revolutions and with a tolerance of 1 km, the compressed �le needs

2; 157 bytes while the original �le has 3; 294; 270 bytes. Note that for

the sake of making clearer the presentation, there are several units for

the tolerance in the tables, although the numerical tests have been done

in the same units as the data �le.

From the �gures of Table 1, we may conclude that, in general, the

double compression algorithm (DC) is more eÆcient than the simple

compression (SC). For high precision compressions (error lower than

10 meters) there is no apparent advantage in using double compression

versus the simple one, since the DC takes all the SC's coeÆcients besides

extra coeÆcients describing the number of terms in the DC. For instance,

in this Table, in the CM model of forces and the compression of 30
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revolutions with a tolerance of 1 cm there are more terms in the DC

than in the SC.

However, for low precision (error bigger than 100 metres) double

compression drastically reduces the degree of the polynomials. Besides,

it is worth noticing that the more complex is the perturbation model,

the more terms are needed in the Chebyshev series.

Table 1: Results for a SPOT type orbit. Simple (SC) and double (DC)

compressions have been carried out for several models of forces, several

tolerances and several numbers of revolutions. In each case, we give the

maximum error (Error1), the RMS error, the number of bytes needed

for storing the polynomial and the total number of coeÆcients to be

stored for the three Cartesian components.

Forces Type Rev. Tolerance Error1 RMS Bytes Terms

J2 SC 100 1 cm 0.6 cm 0.2 cm 161088 7000

J2 DC 100 1 cm 9.4 cm 3.2 cm 4915 289

J2 + Atm SC 100 1 cm 0.6 cm 0.2 cm 161088 7000

J2 + Atm DC 100 1 cm 23 cm 7.8 cm 8697 541

J2 + Atm DC 100 1 km 0.665 km 0.186 km 1647 88

CM SC 30 1 cm 28 cm 10 cm 51838 2250

CM DC 30 1 cm 28 cm 10 cm 52363 2450

CM SC 30 100 m 57 m 21 m 19378 1260

CM DC 30 100 m 367 m 96 m 4928 303

CM SC 30 1 km 0.875 km 0.227 km 15698 1020

CM DC 30 1 km 1.45 km 0.304 km 1916 106

CM SC 100 1 km 0.879 km 0.227 km 52302 3400

CM DC 100 1 km 1.49 km 0.336 km 2157 122

The errors after double compression for the Cartesian x component

of the position and velocity are represented in Figure 1. In both cases,

the tolerance level is reached. The rippling e�ect in each revolution,

which is characteristic of this type of approximation, is observed. We

note, too, some jumps in the errors (more clearly in the velocity plots)

from one revolution to the next one; this is originated by the lack of

continuity in the approximation function at the end points of the dif-

ferent intervals. However, this e�ect does not a�ect the validity of the

compression, for the errors are within the tolerance level. Although in

the simple compression case it is possible to impose the continuity at

the end points of consecutive intervals [16], it is rather complex for the

double compression case.
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Figure 1: Errors in the double compression of the x component of po-

sition and velocity for 100 revolutions of a SPOT satellite with the

complete model of forces (CM) and a tolerance of 1 km. The values of

the velocity have been obtained by evaluating the derivative of the series

corresponding to x and not by producing the derivative series.

3.2 Topex/Poseidon

Now, we consider the Topex/Poseidon satellite. The initial orbital

elements for this satellite (see e.g. [21]) are

a = 7714:4278 km:; e = 0:000095; i = 66.Æ039;

! = 90Æ; 
 = 116.Æ5574; M = 253.Æ13;

and its mass is 2400 kg. We take T = 6745:72 seconds as the interval

size for compressing.

We present on Table 2 the results for several tests. The size of

the original data �le is 2,272,212 bytes, and it has been produced by

integrating numerically the equations of the motion with the complete

model (CM) of forces.

In Figure 2 we present the errors in the compression of 127 revolu-

tions, that is, a complete repeat period (10{day cycle).
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Table 2: Results for the Topex/Poseidon satellite. Simple (SC) and

double (DC) compressions have been carried out for the complete (CM)

model of forces. In each case, we give the maximum error (Error1),

the RMS error, the number of bytes needed for storing the polynomial

and the total number of coeÆcients to be stored for the three Cartesian

components.

Type Tolerance Error1 RMS Bytes Terms

SC 1 m 0.372 m 0.086 m 130,159 8128

SC 1 km 0.356 km 0.171 km 51,292 3937

DC 1 km 0.805 km 0.260 km 2,196 141

0 20 40 60 80 100 120
-1000

0

1000

revolutions

er
ro

r

error coordinate X (m)

0 20 40 60 80 100 120
-5

0

5

revolutions

er
ro

r

error velocity dX/dt (m/s)

Figure 2: Errors in the double compression of the x coordinate position

and velocity for 127 revolutions of the Topex/Poseidon satellite with

a tolerance of 1 km.

95 REVISTA MATEM�ATICA COMPLUTENSE

(2002) vol. XV, num. 1, 85-100



roberto barrio, antonio elipe compression of satellite data . . .

3.3 Skybridge satellite

Lastly, we will compress 350 revolutions (28 days) of a satellite of the

constellation Skybridge with the following initial orbital elements:

a = 7835:21 km; e = 0:001; i = 55Æ;

! = 46Æ; 
 = 0Æ; M = 58Æ;

(See http://www.skybridgesatellite.com for details about this con-

stellation).

We take T = 6904 seconds as the interval size (' the initial Keple-

rian period). The complete model of forces has been taken to integrate

numerically the orbit. The �le to compress is 6,242,292 bytes long.

Similarly to the preceding cases, we present on Table 3 the errors,

bytes for the compression and the number of terms of the series for

several cases. The errors after double compression for the x Cartesian

coordinate of the position and velocity vectors are represented on Fig-

ure 3. In every case the tolerance level is reached.

Table 3: Results for a Skybridge type orbit. Simple (SC) and dou-

ble (DC) compressions have been carried out for the complete (CM)

model of forces. In each case, we give the maximum error (Error1),

the RMS error, the number of bytes needed for storing the polynomial

and the total number of coeÆcients to be stored for the three Cartesian

components.

T.C. Tolerance Error1 RMS Bytes Terms

SC 1 m 0.714 m 0.137 m 319,315 19950

SC 1 km 0.892 km 0.245 km 136,611 10500

DC 1 km 1.457 km 0.391 km 2,271 150

One of the authors [2] has elaborated a program ComPa that imple-

ments the algorithms above exposed, and it is available from the author

upon request. In Figure 4, for Skybridge satellite, we present the out-

put �le (elaborated with ComPa) of the double compression (2 in the

�rst row) process of 350 revolutions and the three Cartesian coordinates

(second row) for a tolerance of 1 km, that is, we present all the com-

pressed data for the evaluation of the position and velocity of any point
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Figure 3: Errors in the double compression of the x coordinate position

and velocity for 350 revolutions of a Skybridge satellite with a tolerance

of 1 km.

among the 350 revolutions. The fourth row gives the number of coeÆ-

cients needed for the simple compression (mi in equation (2)) of the x,

y and z. Rows 5,6, and 7 gives the number (�ij) of coeÆcients needed

to compress each one of the previous coeÆcients (equation (3)). The

remaining rows are these coeÆcients (4).

Finally, let us remark the advantage of using the error control; the

number of the coeÆcients is calculated by the error control algorithm

(in this case 12 coeÆcients for the x component, 9 for the y and 9 for the

z) and the output coeÆcients matrix is almost-triangular, it is not dense

because the compression of the last sets of coeÆcients needs a smaller

number of coeÆcients.
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Figure 4: CoeÆcients �le of the double compression of 350 revolutions

of a satellite with a tolerance of 1 km.

4 Conclusions

The simple and double compressions with Chebyshev polynomials with

error control prove their feasibility in several tests. The error control

permits to select a priori the precision level of the compressed data. It

allows to compute automatically the numbers of terms necessary, in the

truncated series, to reach a predetermined tolerance. Similar results are

obtained for the three Cartesian coordinates. As a practical aspect, we

recommend the use of double compression for low precision levels (error

> 100 m) while the simple compression is more useful for high precision

(error < 100 m).
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