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SINGULARITIES
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Abstract

In this note we study deformations of a plane curve singularity
(C;P ) to Æ(C;P ) nodes. We see that for some types of singular-
ities the method of A'Campo can be carried on using parametric
equations. For such singularities we prove that deformations to Æ

nodes can be made within the space of curves of the same degree.

1 Introduction

Let f(x; y) 2 C fx; yg be a germ of analytic function having an isolated

critical point at P = (0; 0) of Milnor number �(f) <1. It is well known

that �(f) is the maximum number of critical points that a function

close to f can have in a neighborhood of P and that in fact there exist

deformations ft(x; y) of f possessing exactly �(f) critical points for any

t near 0 ([7],[9]).

If f(x; y) 2 Rfx; yg is a real irreducible germ, a remarkable result by

A'Campo and Gusein-Zade ([1],[6]) asserts that there exist deformations

ft(x; y) of f such that ft has �(f) non-degenerated real critical points.

Such deformations are called real morsi�cations and their existence is

related to the geometry of the level sets ft(x; y) = �: In fact, it is known

that ft(x; y) can have the same value on at most Æ = �=2 critical points.

It is therefore enough to �nd deformations of f such that the curve

ft(x; y) = 0 has Æ double points with two distinct real tangents (real

nodes) and Æ bounded regions where ft has either a maximum or a

minimum. Gusein-Zade constructs a real morsi�cation of f(x; y) for the

case where the germ of the curve C = f(x; y) 2 C 2 ; f(x; y) = 0g around

P = (0; 0) has a short real parametrization, that is, if the non-zero terms

of its parametrization correspond to the characteristic exponents.
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A'Campo's method is more geometrical since it uses the resolution

of the singular point P 2 C by means of quadratic transformations.

Let us assume that (C;P ) has only one real analytic branch and that

n0; n1; :::; nk; :::; is the sequence of multiplicities at the singular points

throughout the resolution. By means of a sequence of translations in

the direction of the exceptional divisor and by contractions one can

obtain a deformation of f having only ordinary singular points whose

tangents are real and have multiplicities n0; n1; :::; nk; ::: At the point of

multiplicity ni there are exactly ni smooth real branches. Arranging all

such branches in general position one obtains Æ =
P

i ni(ni � 1)=2 real

nodes. These deformations can be derived from the implicit equations

of the function at the sequence of singular points. The drawback of

this method is that the equation of the �nal deformation obtained is

not explicit. In particular, if f(x; y) is a polynomial of degree d; it

is not known in general whether or not the real morsi�cation can be

obtained by adding monomials of lower degrees. This question has a

geometrical interest, since the existence of such deformations implies

that the projective curve C � P2 can be deformed into a projective

curve having Æ nodes in a neighborhood of P inside the space of curves

of degree d:

In the present work { based on [5] { we prove that for a certain type

of singularities A'Campo's method can be applied to deform the para-

metric equations rather than the implicit ones, and consequently one

can obtain the explicit equations of such deformations. We also prove

that singularities of type yd�1 � xd and y2d�1 � x2d+1 can be deformed

into real morsi�cations preserving the degree of the original polynomial.

2 Partitions

De�nition 2.1. Let f(x; y) be a polynomial such that its associated

plane curve

H = f(x; y) 2 C 2 ; f(x; y) = 0g � C
2

has an isolated singularity at (0; 0) 2 C 2 : Let

B" = f(x; y) 2 C
2 ; j x j2 + j y j2� "2g ;
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with " > 0 suÆciently small, a Milnor ball for the singularity of H at

(0; 0): Let J be the disjoint union of r intervals [0; 1] and let D" be the

disk D" = B" \ R
2 :

A partition of D" in r branches is an immersion 
 : J �! D" such

that:

(i) 
(@J) � @D"; 
(
Æ

J) �
Æ

D"; 
(J) connected.

(ii) 
 is generic; that is, 
(J) has only ordinary double points.

If 
 : J �! D" is a partition then the curve 
(J) is also called a

partition.

Two-branch partition

Let f(x; y) 2 R[x; y] be a polynomial with an ordinary double point

P0 of multiplicity r {we can also assume f to be regular in y of or-

der r; that is, f(0; y) = yr+(higher degree terms in y). Let fr(x; y) =Qr
j=1(y��jx) be its initial form, then its tangent lines are given by the

equations lj � y � �jx = 0; j = 1; 2; :::; r:

Let us assume there exits a parametrization 
 = (
1; 
2) : I �! R2 ;


(u) = (x; y) such that 
(I) � C = f(x; y) 2 C 2 ; f(x; y) = 0g � C 2 ;

that is, f(
(u)) � 0 and such that there exist e1; e2; :::; er 2 I with


(ej) = P0 = (0; 0) and such that the tangent vector 
0(ej) is on the line

lj; for each j = 1; 2; :::; r:

Note that this condition about the parametrization is not a direct con-

sequence of the fact that C has a multiple point with r transversal

branches. The latter implies the existence of r parametrizations Æj :
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Ij �! R
2 ; one for each branch, whereas in our case 
 parametrizes the

r branches simultaneously, producing r � 1 loops.

Let v1;v2; :::;vr 2 R
2 � f(0; 0)g be vectors so that the translated

lines lj = lj + vj are in general position. The equation of lj is y � v
j
2 �

�j(x� v
j
1) = 0:

The coordinates of the intersection point, Pik; of two lines li and lk;

are

P 1
ik =

�
�iv

i
1 � �kv

k
1 � (vi2 � v

k
2 )
�

1
�i��k

P 2
ik =

�
�i�k(v

i
1 � v

k
1) + �iv

k
2 � �kv

i
2

�
1

�i��k

(2.1)

Theorem 2.1. Let f(x; y); lj and vj satisfy the previous conditions.

Consider p(u) =
�
p1(u); p2(u)

�
; where p1(u); p2(u) 2 R[u] are poly-

nomials such that p(ej) = vj ; j = 1; 2; :::; d � 1 { their existence is

assured by taking polynomials of a suÆciently large degree { and let


(u; b) = 
(u) + bp(u); b 2 R:

Then there exists " > 0 such that for any b with j b j< "; the curve 
(u; b)

is a partition of r branches intersecting generically in
�
r
2

�
distinct double

points.

Proof. Let us calculate the coordinates of the intersection points of

branches �i and �k; i 6= k; i; k 2 f1; 2; :::; rg; corresponding to 
(Ii) and


(Ik) where Ii = [ei�"; ei+"] and Ik = [ek�"; ek+"] are two suÆciently

small intervals around u = ei and u = ek respectively.

We will use the following notation 
i(ui; b) = 
(ui � ei; b); 

k(uk; b) =


(uk � ek; b) after translating 
 by u = ui � ei (resp. u = uk � ek)
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in such a way that 
i(0; 0) = (0; 0); 
k(0; 0) = (0; 0); and 
i and 
k

parametrize, respectively, the branches �i and �k (i.e. 

i([�"; "]; 0) = �i

and 
k([�"; "]; 0) = �k).

By the above considerations we know that


i(ui; b) = 
(ui � ei; b) = 
(ui � ei) + bp(ui � ei)


k(uk; b) = 
(uk � ek; b) = 
(uk � ek) + bp(uk � ek):

Moreover, since the tangent lines of 
i and 
k are �ix � y = 0 and

�kx � y = 0; respectively, the �rst terms in the Taylor expansion of 
i

and 
k around (0; 0) with respect to the variables (ui; b) (resp. (uk; b))

are of the form:


i(ui; b) =
�
ui + vi1b+higher deg terms, �iui + vi2b+higher deg terms

�

k(uk; b)=

�
uk + vk1b+higher deg terms, �kuk + vk2b+higher deg terms

�
(2.2)

Let us calculate the coordinates of a point of intersection of �i and

�k: In order to do so we have to solve the following two equations:


i(ui; b)� 

k(uk; b) = (0; 0):

We de�ne the following function  : R3 �! R2 as  (ui; uk; b) =


i(ui; b) � 
k(uk; b): Note that its jacobian matrix at (0; 0; 0) has the

form: 0
@ 1 �1 (vi1 � v

k
1 )

�i ��k (vi2 � v
k
2 )

1
A

This function veri�es the following:

There exists an open neighborhood U � R3 of 0 = (0; 0; 0) such that:

(a)  (0; 0; 0) = 
i(0; 0) � 
k(0; 0) = (0; 0)

(b)  is of class C1 on U

(c) detM =

�������
@ 1

@ui
(0) @ 1

@uk
(0)

@ 2

@ui
(0) @ 2

@uk
(0)

������� =
���� 1 �1

�i ��k

���� = �i � �k 6= 0
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Therefore,  (ui; uk; b) satis�es the conditions of the Implicit Function

Theorem and thus there exist at least two open neighborhoods V � R

and W � R
2 and a function '(b); such that, for any b 2 V; there is

a unique pair (ui(b); uk(b)) 2 W satisfying  (ui(b); uk(b); b) = 0: In

other words, the function ' : V �! W; de�ned by '(b) = (ui(b); uk(b))

(Implicit Function) is di�erentiable in V and it is the only di�eren-

tiable function that satis�es f(ui; uk; b) 2 W � V ; (ui; uk; b) = 0g =

f(ui; uk; b) 2W � V ; (ui; uk)= '(b)g: Hence, '(b) = (ui(b); uk(b)) is the

solution to both equations:  (ui(b); uk(b); b) = 0:

Let us calculate the expressions of ui(b) and uk(b):

The derivatives at 0; (dui=db)(0) and (duk=db)(0) can be obtained

knowing that


i(ui(b); b)� 

k(uk(b); b) � (0; 0)

Derivating this expression with respect to b and evaluating at 0 results

in a system whose only solution is:

dui

db
(0) =

1

�i � �k

�
�k(v

i
1 � v

k
1 )� (vi2 � v

k
2 )
�

duk

db
(0) =

1

�i � �k

�
�i(v

i
1 � v

k
1 )� (vi2 � v

k
2 )
�

Thus, ui(b) and uk(b) have the form

ui(b) =
1

�i��k

�
�k(v

i
1 � v

k
1 )� (vi2 � v

k
2 )
�
b+(higher degree terms in b)

uk(b) =
1

�i��k

�
�i(v

i
1 � v

k
1 )� (vi2 � v

k
2 )
�
b+(higher degree terms in b)

(2.3)

Therefore, the double point which is intersection of the branches �i and

�k has coordinates

!ik(b) = 
i(ui(b); b) = 
k(uk(b); b) = (!ik1 ; !
ik
2 ):

Substituting (3) in (2) one obtains that

!ik1 =
�
�iv

i
1 � �kv

k
1 � (vi2 � v

k
2 )
�

1
�i��k

b+(higher degree terms in b)

!ik2 =
�
�i�k(v

i
1 � v

k
1 ) + �iv

k
2 � �kv

i
2

�
1

�i��k
b+(higher deg terms in b)

(2.4)
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Let !ik(b) be the intersection point of the branches �i and �k: Con-

sider two pairs of branches f�i;�kg and f�i0 ;�k0g having at least a non-

common element. In order to show that !ik(b) and !i
0k0(b) are di�erent

for b suÆciently small, it is enough to check that the curves de�ning

such double points, say !ik and !i
0k0 have di�erent derivatives at 0: As

it is easily seen, the derivative 0 of !ik; veri�es

d!ik

db
(0) = Pik and Pik 6= Pi0k0 (see (2.1)).

Therefore, the curve 
(u; b) is a partition of r branches intersecting in�
r
2

�
distinct double points.

Theorem 2.2. Under the conditions of the previous theorem (2.1), for

any b suÆciently small, the r branches of 
(u; b) produce a partition of

the same real combinatorial type as the r lines lj; j = 1; 2; :::; r (trans-

lated of lj ; by the vector vj).

Proof. Let l
b

j = lj + bvj be the line lj translated by the vector bvj =

(bv
j
1; bv

j
2): Note that the line lj is l

1

j (b = 1)).

Let us calculate the coordinates of the intersection points of the

translated lines l
b

i and l
b

k; i 6= k; i; k 2 f1; 2; :::; rg:

Solving the system formed by the equations of both lines

l
b

i � y � bv
i
2 � �i(x� bv

i
1) = 0

l
b

k � y � bv
k
2 � �k(x� bv

k
1 ) = 0

)

it turns out that their intersection point, P bik; has the following coordi-

nates:

P b1ik =
�
�iv

i
1 � �kv

k
1 � (vi2 � v

k
2 )
� 1

�i � �k
b

P b2ik =
�
�i�k(v

i
1 � v

k
1 ) + �iv

k
2 � �kv

i
2

� 1

�i � �k
b

It is clear that the arrangement of double points of [rj=1l
b

j comes from

a dilation of ratio b from [rj=1lj: On the other hand, by the proof of

the previous theorem (2.1), the analytical expression of the intersection

point of the branches �i and �k is

!ik(b) = P bik+(terms of degree� 2 in b).
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Therefore it is obvious that the distance between the points !ik(b) and

P bik is of order b
2; whereas the distance between the points of intersection

P bik and P bi0k0 is of order b: Thus, for suÆciently small values of b; the

points P bik and !
ik(b) are very close, and their di�erence at b starts with

terms of degree greater or equal to 2 in terms of the coordinates of b:

This implies the same real combinatorial type of both arrangements.

Finally, note that the r � 1 intersection points of a branch with the

remaining r� 1 branches correspond to the values of !ik(b); with k 6= i;

where ui are close to 0: In the original parametrization this translates

into values of u close to ei: That is, the parametrization runs over the

r � 1 intersection points in �i before �nishing a loop and starting the

next one.

Theorem 2.3. Letm;n 2 N; m > n; (m;n) = 1 ; 
t(u) =
�

1t (u); 


2
t (u)

�
where


1t (u) = un +

nX
j=1

aj(t)u
n�j ; 
2t (u) = um +

mX
j=1

bj(t)u
m�j

t 2 Re ; aj(0) = 0 and bj(0) = 0 and let

F (x; y; t) = Resu
�

1t (u)� x; 


2
t (u)� y

�
:

Then, F (x; y; t) is a polynomial function of degree m in the variables x

and y; and F (x; y; 0) = yn � xm:
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Proof. Since 
1t (u)� x and 
2t (u) are both of the form:


1t (u)� x = un +

0
@ nX
j=1

aj(t)u
n�j

1
A� x


2t (u)� y = um +

0
@ mX
j=1

bj(t)u
m�j

1
A� y

they are monic in the variable u: Hence

Im
�

t(u)

�
= f(x; y; t);F (x; y; t) = 0g [8]

The implicit equation of F (x; y; t) is given by the determinant of the

Sylvester n+m matrix:��������������

1 a1 a2 . . . . . an�1 an � x 0 . . . . . . . . . . . . . . . . . 0
0 1 a1 a2 . . . . . . . . an�1 an � x 0 . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . 0 1 a1 a2 . an�1 an � x

1 b1 b2 . . . . . bm�2 bm�1 bm � y 0 . . . . . . . . 0
0 1 b1 b2 . . . . . . . . bm�2 bm�1 bm � y 0 . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . 0 1 b1 b2 . . . . . . . . . . bm�1 bm � y

��������������
By a direct analysis of this matrix, one sees that the only non-constant

polynomials in x and y belong to the rows n+1;n+2;..., n+m and are

linear polynomials in x and y: All the elements in the remaining rows

do not depend on x or y: Therefore, when computing the determinant,

m is an upper bound of its degree in the variables x and y:

On the other hand, if t = 0; then aj = 0 and bj = 0 for every

j = 1; 2; :::;m: Therefore it follows that F (x; y; 0) = yn � xm:

3 Type y
d�1
� x

d singularities

Proposition 3.1. Let f(x; y) = yd�1 � xd 2 R[x; y] be a polynomial

where d � 3: The real polynomial

f(x; y; t) =

d�1Y
j=1

(y � �jtx)� x
d
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with t; �j 2 R � f0g; j = 1; 2; :::; d � 1 and �k 6= �i if k 6= i; is a

deformation of f(x; y): Moreover, the plane curve

Ct = f(x; y) 2 C
2 ; f(x; y; t) = 0g � C

2

has a unique ordinary singular point at (0; 0) of multiplicity d� 1:

Proof. The plane curve H = f(x; y) 2 C 2 ; f(x; y) = 0g � C
2 has an iso-

lated singularity at (0; 0): The initial form of f(x; y; t);
Qd�1
j=1 (y � �jtx) ;

has degree d � 1 and d � 1 distinct roots: y = �d�1tx; y = �d�2tx;...;

y = �2tx; y = �1tx:

Hence, for any generic value of t 6= 0 and �k 6= �i for k 6= i; one

obtains d� 1 distinct tangents at the origen.

Case d = 5

In Theorem (2.1), it was described how to deform a parametrization


(u) of a curve C � f(x; y) = 0; with one ordinary singular point of

multiplicity r; in such a way that
�
r
2

�
new nodes are produced. Something

similar will be performed to a parametrization of the family Ct which

{ as we just proved { has one ordinary singular point for each t 6= 0: The

main diÆculty in this case is to check that the required functions are

actually analytical for t 6= 0; and have no poles for t = 0:

Let 
 : J � I �! R2 be a mapping such that, for any t 6= 0;


t(u) = 
(u; t) is a parametrization of Ct satisfying the following addi-

tional property: if we denote by e1(t); e2(t); : : : ; ed�1(t); the parameters

of u for which 
t(ej(t)) = (0; 0); then we ask these parameters to satisfy

ej(t) = ejt; where ej 2 R: It is easy to see that such a parametrization

exists.

Let lj � �jtx � y = 0; j = 1; 2; :::d � 1 be the tangent lines of Ct

at the origin, and let vj =
�
v
j
1t
d�1; v

j
2t
d�1
�
2 R2 ; j = 1; 2; :::; d � 1
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be vectors such that the translated lines lj = lj + vj ; intersect to each

other in distinct points. Hence, lj � �jt
�
x� v

j
1t
d�1
�
�

�
y � v

j
2t
d�1
�
;

j = 1; 2; :::; d � 1 and the intersection point of two lines li and lk has

coordinates of the form:

P 1
ik =

�
�iv

i
1 � �kv

k
1 �

�
vi2 � v

k
2

��
td�2

�i��k

P 2
ik =

�
�i�k

�
vi1 � v

k
1

�
+ �iv

k
2 � �kv

i
2

�
td�1

�i��k

(3.1)

Let pt(u) = (p1(u; t); p2(u; t)) where p1(u; t); p2(u; t)

2 R[u; t] are polynomials such that pt(ejt) =
�
v
j
1t
d�2; v

j
2t
d�2
�
; j =

1; 2; :::; d � 1: Such polynomials exist for large enough degrees. For ex-

ample,

p1(u; t) =

d�1X
j=1

v
j
1Lj(u; t) and p2(u; t) =

d�1X
j=1

v
j
2Lj(u; t)

with

Lj(u; t) =

d�1Y
k = 1

k 6= j

(u� ekt)

(ej � ek)

Proposition 3.2. Under the above conditions, let 
(u; b; t) = 
t(u) +

btpt(u); b 2 R � f0g: Then, for any b and t suÆciently small, the curve


(u; b; t) is a partition of d�1 branches intersecting generically in
�
d�1
2

�
distinct double points.

Proof. It basically follows the proof of Theorem (2.1) in the previous

section. The only di�erence being that the parametrization required in

this proof also depends on t:We will only stress the points of divergence

with the aforementioned proof.

By Lagrange interpolation formula, a polynomial p satisfying p(u1) =

w1; p(u2) = w2; :::; p(ud�1) = wd�1 has the form

p(u) =

d�1X
j=1

wjLj(u) where Lj(u) =

d�1Y
k = 1

k 6= j

(u� uk)

(uj � uk)
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In our case we have uj = ejt; for each j = 1; 2; :::; d � 1: Also the de-

nominator of Lj(u) looks as follows t
d�2
Qd�1

k = 1

k 6= j

(ej � ek) : Therefore:

Lj(u) =
1

td�2
Lj(u; t) where Lj(u; t) =

d�1Y
k = 1

k 6= j

(u� ekt)

(ej � ek)

Considering wj = v
j
1t
d�2 (resp. wj = v

j
2t
d�2) we have

p1(u; t) =

d�1X
j=1

v
j
1Lj(u; t)

�
resp: p2(u; t) =

d�1X
j=1

v
j
2Lj(u; t)

�
:

As in Theorem (2.1), we will calculate the coordinates of the inter-

section points of the branches �i and �k (i 6= k; �; k 2 f1; 2; :::; d � 1g);

corresponding to 
t(Ii) and 
t(Ik); where Ii = [eit � "; eit + "] and

Ik = [ekt� "; ekt+ "] are two suÆciently small intervals around u = eit

and u = ekt respectively.

Denoting 
i(ui; b; t) by 
(ui � eit; b; t)
�
resp. 
k(uk; b; t) by 
(uk �

ekt; b; t)
�
one has 
i(ui; b; t) = 
t(ui � eit) + btpt(ui � eit); 


k(uk; b; t) =


t(uk � ekt) + btpt(uk � ekt): Since the tangent lines of 

i and 
k at the

origin are �itx� y = 0 and �ktx� y = 0; respectively, the �rst terms in

the Taylor expansions of 
i and 
k at (0; 0) have the form:


i(ui; b; t) =�
ui + vi1bt

d�1+higher deg terms, �itui + vi2bt
d�1+higher deg terms

�

k(uk; b; t) =�
uk + vk1bt

d�1+higher deg terms, �ktuk + vk2bt
d�1+higher deg terms

�
(3.2)

In order to solve the two equations: 
i(ui; b; t) � 
k(uk; b; t) = (0; 0)

we de�ne the function  : R4 �! R2 ;  (ui; uk; b; t) = 
i(ui; b; t) �


k(uk; b; t): This function veri�es the hypothesis of the Implicit Function

Theorem in an open neighborhood of O = (0; 0; 0; t); t 6= 0: (Note that,

in this case, the jacobian matrix of  at O has a zero column and that
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the third hypothesis is a consequence of the fact that (�i � �k)t 6= 0

since t 6= 0). Hence, the implicit function '(b; t) = (ui(b; t); uk(b; t)) is

the solution to the aforementioned equations. Calculating the derivative

with respect to b for the expression 
i(ui(b); b; t)�

k(uk(b); b; t) � (0; 0)

and evaluating at (0; t) one obtains a system of equations whose only

solution is

@ui

@b
(0; t) =

td�2

�i � �k

�
�kt(v

i
1 � v

k
1 )� (vi2 � v

k
2 )
�

@uk

@b
(0; t) =

td�2

�i � �k

�
�it(v

i
1 � v

k
1 )� (vi2 � v

k
2 )
�

Hence, ui(b; t) and uk(b; t) become

ui(b; t) =
td�2

�i��k

�
�kt(v

i
1 � v

k
1 )� (vi2 � v

k
2 )
�
b+ (higher deg terms in b)

uk(b; t) =
td�2

�i��k

�
�it(v

i
1 � v

k
1 )� (vi2 � v

k
2 )
�
b+ (higher deg terms in b)

(3.3)

Hence, substituting (3.3) in (3.2), one obtains the double point !ik;

which is the intersection of the branches �i and �k: Its coordinates are:

!ik1 =
� �
�iv

i
1 � �kv

k
1

�
t� (vi2 � v

k
2 )
�

td�2

�i��k
b+(higher deg terms in b)

!ik2 =
�
�i�k(v

i
1 � v

k
1 )t+ �iv

k
2 � �kv

i
2

�
td�1

�i��k
b+(higher deg terms in b)

(3.4)

Finally, it remains to check that !ik(b; t) is di�erent from !i
0k0(b)

for any two pairs of branches f�i;�kg and f�i0 ;�k0g having at least a

non-common point and for any t and b suÆciently small. In order to

do so, it is enough to check that the curves de�ning !ik and !i
0k0 have

di�erent derivatives at with respect to b at (0; t): This is a consequence

of the following fact

@!ik

@b
(0; t) = Pik and Pik 6= Pi0k0 (see (3.1)).

Hence, the curve 
(u; b; t) is a partition of d� 1 branches intersecting to

each other generically in
�
d�1
2

�
distinct double points.

Proposition 3.3. Under the hypothesis of the previous proposition

(3.2), the branches of 
(u; b; t) produce a partition whose real combi-

natorics coincide with the one of the arrangement of translated lines

lj = lj + vj ; j = 1; 2; :::; d � 1:
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Ct(Case d = 5)

Proof. The result follows by using Theorem(1.2) with the hypothesis

of Proposition (3.2).

Remark. In Proposition (2.2), the curve 
(u; b; t) = 
t(u) + btpt(u)

depends on the values of the parameters b and t:

From now on we will consider


t(u) =

� d�1Y
j=1

(u� �jt); u

d�1Y
j=1

(u� �jt)

�

as the parametrization of

Ct = f(x; y) 2 C
2 ; f(x; y; t) =

d�1Y
j=1

(y � �jtx)� x
d = 0g:

This parametrization satis�es the hypothesis of Proposition (2.2). More-

over, since ej = �j ; we have 
t(�jt) = (0; 0); for j = 1; 2; :::; d � 1:

Let 
t(u) be the parametrization and let 
(u; b; t) be the deformation

constructed in Proposition (3.2). That is,


(u; b; t) = 
t(u) + btpt(u) =
�

1t (u; b); 


2
t (u; b)

�
;

where


1t (u; b) =

d�1Y
j=1

(u� �jt) + bt

d�1X
j=1

v
j
1

d�1Y
k = 1

k 6= j

(u� �kt)

(�j � �k)
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2t (u; b) = u

d�1Y
j=1

(u� �jt) + bt

d�1X
j=1

v
j
2

d�1Y
k = 1

k 6= j

(u� �kt)

(�j � �k)

Proposition 3.4. Let f(x; y; b; t) = Resu
�

1t (u; b)� x; 


2
t (u; b)� y

�
:

Then, f(x; y; b; t) is a degree d polynomial in the variables x and y sat-

isfying f(x; y; 0; 0) = yd�1 � xd:

Proof. First note that both 
1t (u; b) and 
2t (u; b) have the following

form:


1t (u; b) = ud�1 + a1u
d�2 + a2u

d�3 + : : :+ ad�2u+ ad�1

2t (u; b) = ud + b1u

d�1 + b2u
d�2 + : : :+ bd�2u

2 + bd�1u+ bd

where the coeÆcients aj and bj; j = 1; 2; :::; d; are polynomials in the

variables b and t without degree zero terms in t: The result follows by

reproducing the proof of Theorem (2.3) and will be omitted.

Let D � C 2 be a nodal curve. Changing coordinates if necessary,

we can assume that no line in the pencil x = constant is tangent to D

at an in
exion point and that any of such lines contains at most one

node of D: Let g(x; y) = 0 be an equation for D in such a coordinate

system and let us denote by �(x) the discriminant of g with respect to y;

�(x) = Discy(g(x; y)). In the above conditions �(x) has r double roots

corresponding to the nodes of D and the rest of his roots are simple,

corresponding to the projection of an smooth points of D whose tangent

is vertical. Let R(x) = gcd(D(x);Dx(x)) ,then R(x) has degree r in x,

because its roots are the double roots of D(x): By using the principal

resultants we can expres the last condition as follows:

Let M the Sylvester matrix whose determinant gives Discx(D(x));

and Mj the submatrix of M formed by deleting the last j rows of terms

from D(x), the last j rows of terms from Dx(x) and the last 2j columns.

Then we have (see [3] Thm. 7.3, pg. 289) :

degree(Discx(D(x)) = r if and only

det(M0) = : : : = det(Mr�1) = 0 and det(Mr) 6= 0

Theorem 3.1. Under the previous conditions let U be the following set
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U = f(b; t) 2 C 2 ; 
(u; b; t) has
�
d�1
2

�
distinct nodesg.

Then, U contains a dense Zariski open set and, therefore, there exists an

analitic curve � : J �! C
2 ; �(s) = (b(s); t(s)) so that �(J � f0g) � U:

In other words, ~
(u; s) = 
(u; b(s); t(s)) = 
(u; �(s)) has
�
d�1
2

�
distinct

double points for any s 6= 0:

Proof. Let f(x; y; b; t) be the deformation of f(x; y) = yd�1 � xd ob-

tained in Proposition (3.4) and let take (b0; t0) so that f(x; y; b0; t0) = 0

is a nodal curve with r =
�
d�1
2

�
: Let �(x; b; t) = Discy

�
f(x; y; b; t)

�
2

R[x; y; t] be the discriminant of f(x; y; b; t) with respect to y: Then,

one can �nd a coordinate system such that the only multiple roots of

�(x; b0; t0) are r double roots in x.

In a neighborhood of (b0; t0) the curve f(x; y; b; t) = 0 has r nodes.

As we are in the situation described above , the principal resultants

verify :

det(M0)(b; t) = : : : = det(Mr�1)(b; t) = 0 and det(Mr)(b0; t0) 6= 0

Since H = f(b; t) 2 C 2 ; det(Mr)(b; t) = 0g is an algebraic curve

with a �nite number of branches, C 2 � H is a Zariski open dense set

and U � C 2 � H: Thus, there are in�nitely many analytic branches

� : J �! U such that �(J � f0g) � U:

Theorem 3.2. Let f(x; y) = yd�1 � xd 2 C [x; y] with d � 3:

Then there exist deformations of f(x; y); say f(x; y; s); in degree

d such that, for any s 2 R � f0g suÆciently small, the plane curve

Cs � f(x; y; s) = 0 has
�
d�1
2

�
distinct real double points.

Proof. The result is a straightforward consequence of the previous

propositions. In particular, the parametrization given in Proposition

(3.2) proves that the nodes are real.

A known result [2] can be also deduce from this Theorem.

Corollary 3.1. There exist irreducible curves of degree d having
�
d�1
2

�
distinct real nodes (note that this is the upper bound).

4 Type y
2d�1

� x
2d+1 singularities

Essentially A'Campo's method can be stated as follows: For

any given isolated singularity f(x; y); one can obtain a degeneration
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f(x; y; t1; t2; : : : ; tk) where k is the number of blowing-ups performed in

order to obtain an embbeded resolution and each parameter tj (j =

1; 2; : : : ; k) results in the (k � j)-th blow-up after performing a suitable

translation. In this context, A'Campo states that f(x; y; t; t; : : : ; t) has

Æ(f) real nodes. We will show a simple example (y3 � x5 = 0) that

proves that this statement is not correct.

After performing the following quadratic transformations �1(x1; y1) =

(x1; x1y1); �2(x2; y2) = (x2y2; y2); �3(x3; y3) = (x3; x3y3); one has:

Considering suÆciently small t1; t2; t3 2 R � f0g and performing

the following translation �3(x3; y3) = (x3 � t3; y3) in a non-exceptional

component,
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and, �nally, the contraction �1(x; y) it results in the following deforma-

tion

f(x; y; t3; t2; t1) = y3 � t2xy
2
� t1t3x

2y � t23x
3 + t1x

3y + 2t3x
4
� x5:

This deformation satis�es that for certain values of t1; t2; t3 with ti 6= tj
for i 6= j; the curve Ct given by the equation f(x; y; t3; t2; t1) = 0 has a

unique ordinary singular point of multiplicity 3 at (0; 0) and a double

point outside the origin.
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Following A'Campo's method, on the contrary, we have

f(x; y; t) = f(x; t; t; t) = y3 � txy2 + t2x2y � t2x3 + tx3y � 2tx4 � x5

which, for arbitrary small t has one real branch and two complex con-

jugated ones. This can be seen by extracting the homogeneous form of

degree 3 of f(x; y; t); that is, f3(x; y; t) = y3 � txy2 + t2x2y � t2x3 and

deshomogenizing for x 6= 0: The polynomial f3(1; y; t) = y3�ty2+t2y�t2

has only one real root since the discriminant of
@f3
@y

with respect to y is

�8t2 � 0 for t 2 R � f0g:

In this section we will study deformations into nodes of the singular-

ity types y2d�1 � x2d+1 = 0: We will prove that A'Campo's method of

blowing-ups and translations can be carried out in this case, but on para-

metric equations rather than on implicit equations. Another di�erence

with A'Campo's method is the kind of substitutions used: t1 = �1(s);

t2 = �2(s); : : : ; tk = �k(s); where �(s) is an analytic path, instead of

t1 = t2 = : : : = tk = t:

Let f(x; y) = y2d�1 � x2d+1 2 C [x; y]; d � 2: Its zero locus, the

plane curve H = f(x; y) 2 C 2 ; f(x; y) = 0g; has an isolated singularity

at (0; 0): Let us consider the following parametrization of H


0 = (
01; 
02) : I �! R2 ; 
0(u) = (x; y) =
�
u2d�1; u2d+1

�
and a sequence of quadratic transformations (�i)i=1;2;:::;d+1 de�ned as

follows:

�1(x1; y1) = (x; y) = (x1; x1y1);

�j(xj ; yj) = (xj�1; yj�1) = (xjyj; yj); j = 2; 3; : : : ; d;

�d+1(xd+1; yd+1) = (xd; yd) = (xd+1; xd+1yd+1)

Performing these transformation successively on 
0 one obtains:
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(x; y) =
�
u2d�1; u2d+1

�
 ! y2d�1 � x2d+1 = 0

" �1
(x1; y1) =

�
u2d�1; u2

�
 ! y2d�11 � x21 = 0

" �2
(x2; y2) =

�
u2d�3; u2

�
 ! y2d�32 � x22 = 0

" �3
(x3; y3) =

�
u2d�5; u2

�
 ! y2d�53 � x23 = 0

" �4
...

...

" �d
(xd; yd) =

�
u; u2

�
 ! yd � x

2
d = 0

" �d+1
(xd+1; yd+1) = (u; u)  ! yd+1 � xd+1 = 0

Implicit equations of the non-exceptional components of the resolution

are shown on the second column of the previous �gure. Their sequence

of multiplicities shows that there is one point of multiplicity 2d� 1 and

also d � 1 points of multiplicity 2. After the process shown next, we

will manage to obtain d� 1 double points and one point of multiplicity

2d � 1: This can be achieved performing the following translations and

contractions on the last non-exceptional branch, where tj 2 R � f0g;

j = 1; 2; : : : ; d+ 1

(xd+1; yd+1) = (u; u)
�1
�! (xd+1; yd+1) = (xd+1; yd+1 + t1) = (u; u+ t1)

�d+1
�! (xd; yd) = (u; u(u+ t1))

�2
�! (xd; yd) = (u; u(u+ t1) + t2) = (u; '1)

�d
�! (xd�1; yd�1) = (u'1; '1)

�3
�! (xd�1; yd�1) = (u'1; '1 + t3) =

= (u'1; '2)
�d�1
�! (xd�2; yd�2) = (u'1'2; '2)

�4
�! (xd�2; yd�2) =

= (u'1'2; '2 + t4) = (u'1'2; '3)
�d�2
�! : : : ;

where '1 denotes u(u+t1)+t2; '2 denotes '1+t3; and so on 'k denotes

'k�1 + tk+1 up until the one-to-last contraction �2;
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: : :
�2
�! (x1; y1) = (u'1'2'3 : : : 'd�1; 'd�1) :

The graph of this last parametrization becomes

.
.

.
.

.
.

.
.

.
.

.
.

Note that the d� 1 double points appear by considering both roots

of '1 up until 'd�1: Let u
k be a root of 'k; k 2 f1; 2; : : : ; d � 1g; then

one has

�
uk'1(u

k)'2(u
k) : : : 'd�1(u

k); 'd�1(u
k)
�
=
�
0;

dX
j=d�k+1

tj

�
:

The last translation �d+1 is performed in a direction normal to the x1-

axis, whereas the previous ones were performed in a direction normal to

the yj-axis. This last translation becomes

�d+1
�! (x1; y1) = (x1 + td+1; y1) = (u'1'2'3 : : : 'd�1 + td+1; 'd�1)

The graph, after this parametrization becomes

.
.

.
.

.
.

Finally, after contracting by �1 we obtain

�1
�! (x; y) = (u'1'2'3 : : : 'd�1 + td+1; 'd�1 (u'1'2'3 : : : 'd�1 + td+1))

which is the parametrization of a curve Ct denoted by:


(u; t) = 
(u; t1; t2; : : : ; td+1) = (x; y):

Note that if t1 = t2 = : : : = td+1 = 0 one has

'1 = '2 = '3 = : : : = 'd�1 = u2: Therefore 
(u; 0) =
�
u2d�1; u2d+1

�
=
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0(u):

Using the previous part, we can decide where the d�1 double points

of the curve 
(u; t) lay. In order to do that, let us consider the curve

obtained right before the last contraction,


�(u; t) = (x1; y1) = (u'1'2'3 : : : 'd�1 + td+1; 'd�1) :

Let us assume that uk1 and u
k
2 are the two roots of 'k; k 2 f1; 2; : : : ; d�1g:

Hence, for each

k 2 f1; 2; : : : ; d� 2g; one has 
�(uk1 ; t) = 
�(uk2 ; t) =
�
td+1;

Pd
j=k+2 tj

�
and for k = d� 1; one has 
�(ud�11 ; t) = 
�(ud�12 ; t) = (td+1; 0):

Let us �nd out under what conditions the equations 'j ; j = 1; 2; : : : ; d�

1; have two distinct real roots.

Since '1 = u(u + t1) + t2 = u2 + t1u + t2; it is enough to check

that t21 � 4t2 > 0; or equivalently, t2 <
1
4
t21: On the other hand, since

'j = '1 +
Pj+1

i=3 ti = u2+ t1u+
Pj+1

i=2 ti for each j = 2; 3; : : : ; d� 1; it is

enough to verify that t21 � 4
Pj+1

i=2 ti > 0; that is, tj+1 <
1
4
t21 �

Pj
i=2 ti:

Remark. Note that each double point Pk can be obtained after con-

tracting by �d�k+2: The following condition tk <
1
4
t21 �

Pk�1
j=2 tj implies

that �d�k+2(Pk) are two distinct points. Since �d�k+2 is a quadratic

transformation, the points in �d�k+2(Pk) correspond to tangents at Pk;

and hence, there are two distinct tangents at Pk; therefore it is a node.

Proposition 4.1. In the previous conditions, the polynomial u'1'2'3
: : : 'd�1+td+1 has 2d�1 real roots for an arbitrary small td+1 2 R�f0g:

Proof. Let us consider the parametrization right before the last trans-

lation,
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� = (�1; �2) = (u'1'2'3 : : : 'd�1; 'd�1) :

As we mentioned before, the image of � has d�1 nodes at P1; P2; : : : ; Pd�1
whose tangents are all di�erent from each other and also di�erent from

the last exceptional component E1; which is the y1-axis. Consider

Pk = �
�
ukj

�
(j = 1; 2); then the tangent vector becomes

�0
�
ukj

�
=
�
�01

�
ukj

�
; �02

�
ukj

��
:

The exceptional component E1 (x1 = 0) is tangent at Pk if and only

if �01

�
ukj

�
= 0: Hence, by construction �1(u) = u'1'2'3 : : : 'd�1 has

2d� 1 distinct roots, that is, �1(u) and �
0

1(u) have no common roots.

Since E1 is transversal to Im(�) at every Pk; after performing the

translation x1 = x1 + td+1; the axis x1 = 0 intersects the curve in two

points close to Pk and di�erent from each other if td+1 is suÆciently

small. This can be shown by a direct application of Theorem (2.1).
.
.
.

.
.
.

Note also that �1(u) + td+1 has 2d � 1 real roots if td+1 veri�es

jtd+1j < h(t1; t2; : : : ; td); where h(t1; t2; : : : ; td) is the minimum of jx1j

on the extreme values of the curves.

Proposition 4.2. The curve


(u; t) = (u'1'2'3 : : : 'd�1 + td+1; 'd�1 (u'1'2'3 : : : 'd�1 + td+1)) ;
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where tk <
1
4
t21�

Pk�1
j=2 tj; (k = 2; 3; : : : ; d) and td+1 are arbitrary small,

has an ordinary double point of multiplicity 2d�1 and also d�1 distinct

double points.

Proof. It is enough to apply Proposition (4.1), where Im(�) \ E1 are

2d � 1 distinct points. After contructing by �1; 2d � 1 branches are

produced with di�erent tangents.

Proposition 4.3. There exists an analytic curve � : (�"; ") �! R
d+1

such that t = �(t) and, satisfying that the image of the parametrization


(u; �(t)) has one ordinary point of multiplicity 2d � 1 and also d � 1

distinct ordinary double points.

Proof. Let

U = ft 2 Rd+1 ; tk <
1

4
t21�

k�1X
j=2

tj ; (k = 2; 3; : : : ; d)andtd+1 < h(t1; : : : ; td)g:

Let us consider the sequence (t1n) such that t1n �! 0:We can construct

the following sequences (tkn) ; (k = 2; 3; : : : ; d) such that tkn <
1
4
t21n �Pk�1

j=2 tjn and
�
t(d+1)n

�
with t(d+1)n < h(t1n; t2n; : : : ; tdn): It is obvious

that all the so-constructed sequences converge to 0: Hence,

tn =
�
t1n; t2n; : : : ; t(d+1)n

�
�! 0; tn 2 U:

By Milnor's Curve Selection Lemma, [7], there exists an analytic curve

� : [0; ") �! Rd+1 such that �(0) = 0 and �(t) 2 U for t > 0: Performing

the following change t = t2; � : (�"; ") �! [0; "); �(t) = t2; one has

� = � Æ � and � ((�"; ")� f0g) � U:

Theorem 4.1. Let f(x; y) = y2d�1 � x2d+1 2 C [x; y]; d � 2; be a

polynomial and let 
(u; t) = 
(u; �(t)) be the parametrization described

in the previous proposition. The function

f(x; y; t) = Resu (x� 
1(u; t); y � 
2(u; t)) 2 R[x; y]ftg

is a deformation of f(x; y); and the plane curve Ct =f(x; y) 2 C
2 ; f(x; y; t)

= 0g � C 2 has a unique ordinary singular point of multiplicity 2d� 1 at

the origin, as well as d� 1 ordinary double points.
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Proof. This proof is similar to the one of Theorem (2.3) and Proposition

(3.4), since 
1(u; t) and 
2(u; t) are of the form:


1(u; t) = u2d�1 + a1u
2d�2 + a2u

2d�3 + : : :+ a2d�2u+ a2d�1

2(u; t) = u2d+1 + b1u

2d + b2u
2d�1 + : : :+ b2d�1u

2 + b2du+ b2d+1

where the coeÆcients ai and bj ; i = 1; 2; : : : ; 2d� 1; j = 1; 2; : : : ; 2d + 1

are analytic functions in t; (ai = ai(t); bj = bj(t)) without degree zero

terms in t: On the other hand, at t = 0 one has f(x; y; 0) =

= Resu (x� 
1(u; 0); y � 
2(u; 0)) = Resu

�
x� u2d�1; y � u2d+1

�
=

= y2d�1 � x2d+1 = f(x; y): Therefore, the result follows from Theorem

(2.3).

Let f(x; y; t) be the deformation of f(x; y) = y2d�1�x2d+1 described

in the previous Theorem and let 
(u; t) be the parametrization of Ct
above considered. For every t 6= 0; 
(ej(t); t) = 0: Performing the change

of variable t = ~tn it is possible to obtain that ej(t) are analytic functions

in ~t: Moreover,

Proposition 4.4. In the previous conditions, there exists a natural

number n 2 N and 2d � 1 analytic functions e1(~t); e2(~t); : : : ; e2d�1(~t) 2

Rftg such that, for any j~tj suÆciently small, one has 
(ej(~t); ~t
n) = 0:

Proof. The curve H = f(u; t); 
(u; t) = (0; 0)g is analytic, since, by

construction of 
(u; t); 
(u; t) 2 R[u]ftg:

For any t 6= 0; the values of u that satisfy 
(u; t) = 0 are the roots

of


�1(u; t) = �1(u; t) + td+1(t) = u'1'2 : : : 'd�1 + td+1(t) 2 R[u]ftg

where 
�1(u; t) is a polynomial of degree 2d � 1 in u: In other words,

the projection � : HC �! Et is a 2d � 1-covering { for each value

of t arbitrarily small there are 2d � 1 solutions close to zero. That

is, there exists �(0) (a complex ball) such that for any t; there exist

u1(t); u2(t); : : : ; u2d�1(t) 2 C verifying 
(uj(t); t) = (0; 0):

By the Local Parametrization Theorem, the above is equivalent to

the fact that 
(u; t) is regular and has order 2d � 1 in u: Hence, by

Weierstrass Preparation Theorem, there exists a unit l(u; t) (l(0; 0) 6= 0),

such that
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(u; t)l(u; t) = u2d�1 +
P2d�1

j=1 Aj(t)u
2d�1�j = Q(u; t)

By Newton-Puiseux Theorem, the 2d � 1 roots of Q(u; t) are series in

t
1
n for a certain n; ej(t

1
n ): Therefore Q(u; t) =

Q2d�1
j=1 (u� ej(t

1
n )): If we

consider the change of variable t = ~tn; one has

Q(u; ~tn) =

2d�1Y
j=1

(u� ej(~t)) = 
(u; ~tn)l(u; ~tn)

That is, 
(ej(~t; ~t
n) = (0; 0); for any j = 1; 2; : : : ; 2d � 1: Note that

ej 2 C f~tg; but if t is real and suÆciently small, then ej(~t) are all real,

since they are the roots of u'1'2 : : : 'd�1 + td+1(t): Therefore also the

series ej(~t) 2 Rf~tg:

Remark. Let ~
(u; ~t) = 
(u; ~tn): From now on, we will use ~
 and ~t; but

for the sake of simplicity we will denote them by 
 and t respectively.

Hence, 
(ej(t); t) = (0; 0); j = 1; 2; : : : ; d � 1: Therefore, (0; 0) is an

ordinary singular point of multiplicity 2d� 1 of the curve Im(
(u; t)) =

Ct:

Let f(x; y; t) 2 C [x; y]ftg and let f(x; y; t) = 0 be the implicit equa-

tion of Ct obtained by Theorem (4.1). By the above discussion, the

initial form of f(x; y; t) as a polynomial in the variables x and y has

degree 2d� 1: We will denote such an initial form by f2d�1(x; y; t):

By construction, f2d�1(x; y; 0) = y2d�1: This means, that

f2d�1(x; y; t) = y2d�1 +

2d�1X
j=1

Bj(t)x
jy2d�1�j

Following step by step the proof of Proposition (4.4), it is clear that,

after performing the following change t = ~tn; one obtains

~f2d�1(x; y; ~t) = f2d�1(x; y; ~t
n) =

2d�1Y
j=1

(y � �j(~t)x)

Once again, for the sake of simplicity, we will denote ~fd�1 (resp. ~t) by

fd�1 (resp. t). Thus, the tangent lines at the origin are lj � �j(t)x�y =

0; j = 1; 2; : : : ; 2d � 1:
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For any j 6= k we will de�ne ej(t)�ek(t) = tnjk"jk(t); where "jk(0) 6=

0: Let nj =
P2d�1

k = 1

a 6= j

njk and n = maxfnj ; 1 � j � 2d� 1g:

Let vj =
�
v
j
1t
n+1; v

j
2t
n+1
�
2 R

2 ; j = 1; 2; :::; 2d � 1; be vectors

such that the translated lines lj = lj + vj intersect in distinct points.

Therefore, lj � �j(t)
�
x� v

j
1t
n+1
�
�

�
y � v

j
2t
n+1
�
; j = 1; 2; :::; 2d � 1:

Let pt(u) = (p1(u); p2(u)); where p1(u); p2(u) 2 R[u] are polynomials

such that pt(ej(t)) = (v
j
1t
n; v

j
2t
n); j = 1; 2; : : : ; 2d� 1: Such polynomials

exist for large enough degrees.

Proposition 4.5. Under the previous conditions, let

Lj(u; t) =

2d�1Y
k = 1

k 6= j

(u� ek(t))

"jk(t)
; j = 1; 2; :::; 2d � 1:

If we de�ne

p1(u; t) =

2d�1X
j=1

v
j
1t
n�njLj(u; t) and p2(u; t) =

2d�1X
j=1

v
j
2t
n�njLj(u; t);

one has p1(u); p2(u) 2 R[u]; p1(ej(t); t) = v
j
1t
n and p2(ej(t); t) = v

j
2t
n

Proof. The result follows using the Lagrange polynomial for interpola-

tion and the fact that "jk 6= 0 (since n � nj).

Proposition 4.6. Let 
(u; b; t) = 
(u; t) + btpt(u); b 2 R � f0g:

For any b and t suÆciently small, the curve 
(u; b; t) is a partition

at the origin of 2d � 1 branches intersecting generically. Moreover, it

also has d� 1 double points inherited from 
(u; t):

Proof. It is based on Theorem (2.1) and its proof is similar to the one

of Proposition (3.2). In this case the intersection point of li and lk has

coordinates

P 1
ik(t) =

�
�i(t)v

i
1 � �k(t)v

k
1 �

�
vi2 � v

k
2

��
tn+1�nik

"ik(t)

P 2
ik(t) =

�
�i(t)�k(t)

�
vi1 � v

k
1

�
+ �i(t)v

k
2 � �k(t)v

i
2

�
tn+1�nik

"ik(t)
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It is obvious that one can choose vi1; v
i
2; v

k
1 and vk2 so that the �rst term

in the Taylor expansion of Pik(t) = (P 1
ik(t); P

2
ik(t)) is di�erent for each i;

k (i 6= k): In other words, if t is suÆciently small, the intersection points

of li and lk are di�erent. The result follows as in Proposition (2.2).

Proposition 4.7. Under the hypothesis of the previous proposition (4.6)

the arrangement of the 2d� 1 branches of 
(u; b; t) produces a partition

with the same real combinatorics as the 2d�1 lines lj; j = 1; 2; : : : 2d�1:

Proof. It is direct consequence of Theorem (2.2) under the hypothesis

of Proposition (4.6).

Proposition 4.8. Under the previous conditions, let


(u; b; t) = 
(u; t) + btpt(u) =
�

1t (u; b); 


2
t (u; b)

�
be a parametrization, where


1t (u; b) = 
1(u; t) + btp1(u; t) ; 
2t (u; b) = 
2(u; t) + btp2(u; t):

The function f(x; y; b; t) = Resu
�

1t (u; b)� x; 


2
t (u; b)� y

�
is a poly-

nomial deformation of degree 2d+ 1 of f(x; y) = y2d�1 � x2d+1:

Proof. The proof is similar to the one of Theorem (2.3), (4.1) and

Proposition (3.4). Let us recall that


1t (u; b) = u'1'2'3 : : : 'd�1 + td+1(t) + btp1(u; t)


2t (u; b) = 'd�1 (u'1'2'3 : : : 'd�1 + td+1(t)) + btp2(u; t);

Therefore


1t (u; b) = u2d�1 + a1u
2d�2 + a2u

2d�3 + : : :+ a2d�2u+ a2d�1

2t (u; b) = u2d+1 + b1u

2d + b2u
2d�1 + : : :+ b2d�1u

2 + b2du+ b2d+1

where the coeÆcients ai and bj ; i = 1; 2; : : : ; 2d� 1; j = 1; 2; : : : ; 2d + 1

are analytic functions in t; (ai = ai(t); bj = bj(t)) with no degree zero

term in t: Hence, the result follows by Theorem (2.3).

Let U = f(b; t) 2 � � C 2 ; then 
(u; b; t) has
�
2d�1
2

�
distinct double

points (in addition to the d� 1 inherited from 
(u; t))g.

Theorem 4.2. Under the above conditions, there exists D(b; t) 2 Rfb; tg

such that the set U � f(b; t) 2 �;D(b; t) 6= 0g; is a dense Zariski
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open set, and therefore there exists an analytic curve � : J �! �;

�(s) = (b(s); t(s)) such that �(J � f0g) � U: Moreover, ~
(u; s) =


(u; b(s); t(s)) = 
(u; �(s)) veri�es that, for any s 6= 0; the curve ~
(u; s)

has
�
2d�1
2

�
distinct double points, in addition to the d�1 points inherited

from 
(u; t(s)):

Proof. The proof follows step by step the one in Theorem (3.1).

Theorem 4.3. Let f(x; y) = y2d�1 � x2d+1 2 C [x; y] be a polynomial

with d � 2: Then there exist deformations f(x; y; s) of f(x; y); of degree

2d+1; such that, for any s 2 R�f0g suÆciently small, the plane curve

Cs � f(x; y; s) = 0 has
�
2d�1
2

�
+ d � 1 distinct real double points near

the origin.

Proof. It is a straightforward consequence of the previous propositions.

Ct and Ct (Case d = 2)

Ct and Ct (Case d = 3)
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