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FUNCTION SPACES IN LIPSCHITZ

DOMAINS AND ON LIPSCHITZ

MANIFOLDS. CHARACTERISTIC

FUNCTIONS AS POINTWISE MULTIPLIERS

Hans TRIEBEL

Abstract

Function spaces of type Bs

pq
and F s

pq
cover as special cases clas-

sical and fractional Sobolev spaces, classical Besov spaces, H�older-
Zygmund spaces and inhomogeneous Hardy spaces. In the last
2 or 3 decades they haven been studied preferably on Rn and in
smooth bounded domains in Rn including numerous applications
to pseudodi�erential operators, elliptic boundary value problems
etc. To a lesser extent spaces of this type have been considered in
Lipschitz domains. But in recent times there is a growing interest
to study and to use spaces of this type in Lipschitz domains and on
their boundaries. It is the aim of this paper to deal with function
spaces of Bs

pq
and F s

pq
type in Lipschitz domains and on Lipschitz

manifolds in a systematic (although not comprehensive) way: We
describe and comment on known results, seal some gaps, give new
proofs, and add a few new results of relevant aspects.

1 Introduction

Let Bs
pq(
) and F

s
pq(
) be the nowadays well-established function spaces

on a domain 
 in Rn with

s 2 R ; 0 < p � 1; 0 < q � 1; (p <1 for F -spaces); (1)

de�ned by restriction of corresponding spaces on R
n to 
. Recall that

these two scales cover as special cases, classical and fractional Sobolev

spaces, classical Besov spaces, H�older-Zygmund spaces and (inhomo-

geneous) Hardy spaces. Let 
 be either Rn or Rn
+ (half-space) or a
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bounded C1 domain in R
n. The theory of the corresponding spaces in

its full extent has been developed in the last decades systematically. We

refer to the books [26], [37], [38], [10], [39], [7], [29], [1], [40]. A more

complete bibliography of books and surveys dealing with special cases

of the above spaces and including in particular the work of the Russian

school may be found in [41], pp. 1-4. There is also a short list of the

classical spaces mentioned above.

Again let 
 be a bounded C1 domain in Rn. Then the theory of the

spaces Bs
pq(
) and F

s
pq(
) is fully developed. Here are a few key-words:

embeddings, compactness, degree of compactness expressed in terms of

entropy numbers and diverse types of widths, traces (on the boundary),

interpolation, pointwise multipliers, scales, equivalent (quasi-)norms, in-

trinsic descriptions etc. Technically one developes �rst a corresponding

theory for spaces on R
n
+ and reduces afterwards problems for spaces on

boundedC1 domains via local charts (resolution of unity combined with

local di�eomorphisms) to this standard situation. If 
 is a bounded do-

main in Rn but not necessarily smooth then this method of local charts

does not work (at least not without severe restrictions for the parame-

ters involved). The question arises to which extent the well-established

theory of the function spaces Bs
pq(
) and F s

pq(
) can be carried over

from bounded C1 domains 
 in R
n to bounded non-smooth domains

in R
n. Especially bounded Lipschitz domains attracted a lot of atten-

tion in recent times. One reason is the study of (elliptic) PDE's in such

domains. Relevant references may be found in [41], 20.13, p. 308, and

also in [36], Ch. 4. Furthermore there is a growing interest in numerical

solutions of (elliptic) problems in Lipschitz domains using wavelets and

splines. However as far as we know there is no comprehensive treatment

of function spaces in bounded Lipschitz domains comparable with what

is available for bounded C1 domains. But there are several papers deal-

ing with speci�c aspects. It is beyond the scope of this paper to seal

this gap. But we wish to touch on a few of the topics listed above and

to discuss which of these assertions remain valid for bounded Lipschitz

domains and to which extent. Comparing properties of function spaces

in bounded C1 domains and in bounded Lipschitz domains there are 3

types of assertions:

I There is no di�erence neither in the formulation nor in the proof of cor-

responding properties. This applies to all embeddings between function
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spaces, including compactness and the degree of compactness expressed

in terms of entropy numbers.

II The respective properties are the same, but new arguments are needed

in case of bounded Lipschitz domains. This applies, for example, to

extension problems and to interpolation assertions, but also to duality.

III The assertions must be modi�ed when bounded C1 domains are

replaced by bounded Lipschitz domains. Typical examples are traces

on, say, the boundary, or scales and lifting properties.

The plan of the paper is the following.

Section 2 deals with basic properties of function spaces in (special and

bounded) Lipschitz domains covering assertions of types I and II, in-

cluding extensions and interpolation.

Section 3 covers a few more special properties, including subspaces, ex-

tensions by zero, duality and scales.

Section 4 concentrates on Lipschitz di�eomorphisms in R
n and its con-

sequences for function spaces in Lipschitz domains. As said above in

case of bounded C1 domains 
 in Rn, properties of respective function

spaces Bs
pq(
) and F s

pq(
) are derived via the method of local charts,

based on resolutions of unity and C1- di�eomorphisms on R
n. We

clarify under which restrictions for the parameters s, p, q involved this

method can be applied in case of Lipschitz domains. Non-smooth atomic

decompositions of function spaces will play a decisive role.

Section 5 might be considered as a digression. On the one hand we use

the assertions of Section 4 to formulate a few results concerning point-

wise multipliers related to Lipschitz domains. But on the other hand

we add some remarks dealing with characteristic functions of irregular

domains as pointwise multipliers in F s
pq(R

n) somewhat outside of the

main line of this paper.

Section 6 contains a second application of the results of Section 4. We

introduce (concrete and abstract) n-dimensional Lipschitz manifoldsM

(for example the boundary @
 of a bounded Lipschitz domain 
 in

R
n+1). With the help of the well-known method of local charts the the-

ory of function spaces F s
pq and Bs

pq can be transferred from R
n to M

under natural restrictions for s; p; q.
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2 De�nitions and basic properties

2.1 Basic notation

We use standard notation. Let N be the collection of all natural numbers

and N 0 = N [ f0g. Let Rn be euclidean n-space, where n 2 N ; put

R = R
1; whereas C is the complex plane. Let

R
n
+ =

�
x 2 R

n : x = (x0; xn) with x
0 2 R

n�1 and xn > 0
	

(2)

be the half-space (n � 2). As usual, Z is the collection of all integers; and

Z
n where n 2 N , denotes the lattice of all points m = (m1; :::;mn) 2 R

n

with mj 2 Z. Furthermore, a+ = max(a; 0) if a 2 R .

Let S(Rn) be the Schwartz space of all complex-valued, rapidly de-

creasing, in�nitely di�erentiable functions on R
n. By S0(Rn) we denote

the topological dual, the space of all tempered distributions on Rn. Fur-

thermore, Lp(R
n) with 0 < p � 1, is the standard quasi-Banach space

with respect to Lebesgue measure, quasi-normed by

kf jLp(R
n)k =

0
@ Z
R
n

jf(x)jp dx

1
A

1
p

with the obvious modi�cation if p =1. If ' 2 S(Rn) then

b'(�) = (F')(�) = (2�)�
n
2

Z
R
n

e�ix� '(x) dx; x 2 R
n; (3)

denotes the Fourier transform of '. As usual, F�1' or '_, stands for

the inverse Fourier transform, given by the right-hand side of (3) with i

in place of �i. Here x� denotes the scalar product in R
n. Both F and

F�1 are extended to S0(Rn) in the standard way. Let ' 2 S(Rn) with

'(x) = 1 if jxj � 1 and '(x) = 0 if jxj �
3

2
: (4)

We put '0 = '; '1(x) = '(x2 )� '(x); and

'k(x) = '1

�
2�k+1x

�
; x 2 R

n; k 2 N :
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Then, since
1X
k=0

'k(x) = 1 for all x 2 R
n;

the 'k form a dyadic resolution of unity in R
n. Recall that ('k bf)_ is

an entire analytic function on R
n for any f 2 S0(Rn). In particular,

('k bf)_(x) makes sense pointwise.

De�nition 2.1. (i) Let s 2 R , 0 < p � 1, 0 < q � 1. Then Bs
pq(R

n)

is the collection of all f 2 S0(Rn) such that

kf jBs
pq(R

n)k' =

0
@ 1X

j=0

2jsq k('j bf)_ jLp(Rn)kq

1
A

1
q

(5)

(with the usual modi�cation if q =1 ) is �nite.

(ii) Let s 2 R , 0 < p < 1, 0 < q � 1. Then F s
pq(R

n) is the collection

of all f 2 S0(Rn) such that

kf jF s
pq(R

n)k' =









0
@ 1X

j=0

2jsqj('j bf)_(�)jq
1
A

1
q

jLp(R
n)








 (6)

(with the usual modi�cation if q =1) is �nite.

Remark 2.2. These spaces, including their forerunners and special

cases, have a long history. We refer to the books mentioned in the

Introduction and to the more complete list given in [41], pp. 1-2. In

particular, both Bs
pq(R

n) and F s
pq(R

n) are quasi-Banach spaces which are

independent of the function ' according to (4), in the sense of equivalent

quasi-norms. This justi�es our omission of the subscript ' in (5) and

(6), in what follows. If p � 1 and q � 1 then both Bs
pq(R

n) and F s
pq(R

n)

are Banach spaces. Otherwise we assume that the reader is familiar

with the basic assertions of these spaces. In [39], Ch. 1, one �nds a

historically-minded survey. For sake of completeness we give a short

list of special cases without further comments. Some more details, in

particular a description in terms of classical norms, may also be found

in [7], 2.2.2; [40], 10.5; and [41], 1.2; including some references.

479 REVISTA MATEM�ATICA COMPLUTENSE

Vol. 15 N�um. 2 (2002), 475-524



hans triebel function spaces in lipschitz domains and on. . .

(i) Let 1 < p <1. Then

F 0
p;2(R

n) = Lp(R
n)

(Littlewood-Paley property).

(ii) Let 1 < p <1 and s 2 N 0. Then

F s
p;2(R

n) =W s
p (R

n)

are the classical Sobolev spaces.

(iii) Let 1 < p <1 and s 2 R . Then

F s
p;2(R

n) = Hs
p(R

n)

are the Sobolev spaces (sometimes denoted as fractional Sobolev spaces

or as Bessel-potential spaces).

(iv) Let s > 0. Then

Cs(Rn) = Bs
1;1(R

n)

are the classical H�older-Zygmund spaces.

(v) Let s > 0, 1 � p � 1 and 1 � q � 1. Then Bs
pq(R

n) are the

classical Besov spaces (including the limiting cases p = 1 and p =1).

(vi) Let 0 < p <1. Then

hp(R
n) = F 0

p;2(R
n)

are the (inhomogeneous) Hardy spaces.

2.2 Spaces on domains

Let 
 be a domain (i.e., open set) in R
n. Its boundary is denoted by

@
. Let 0 < p � 1. Then Lp(
) is the quasi-Banach space of all

complex-valued Lebesgue integrable functions in 
 such that

kf jLp(
)k =

0
@Z



jf(x)jp dx

1
A

1
p

<1
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(with the usual modi�cation if p =1). As usual, D(
) = C1
0 (
) stands

for the collection of all complex in�nitely di�erentiable functions in R
n

with compact support in 
. Let D0(
) be the dual space of distributions

on 
. Let g 2 S0(Rn). Then we denote by gj
 its restriction to 
,

gj
 2 D0(
) : (gj
)(') = g(') for ' 2 D(
):

De�nition 2.3. Let 
 be a domain in R
n. Let s 2 R , 0 < p � 1,

0 < q � 1. Let As
pq stand either for Bs

pq or F s
pq (with p < 1 in the

F -case).

(i) As
pq(
) is the collection of all f 2 D0(
) such that there is a g 2

As
pq(R

n) with gj
 = f . Furthermore,

kf jAs
pq(
)k = inf kg jAs

pq(R
n)k;

where the in�mum is taken over all g 2 As
pq(R

n) such that its restriction

gj
 to 
 coincides in D0(
) with f .

(ii)
Æ

As
pq(
) is the completion of D(
) in As

pq(
).

(iii) eAs
pq(
) is the collection of all f 2 D0(
) such that there is a

g 2 As
pq(R

n) with gj
 = f and supp g � 
: (7)

Furthermore,

kf j eAs
pq(
)k = inf kg jAs

pq(R
n)k;

where the in�mum is taken over all g with (7).

Remark 2.4. All spaces are quasi-Banach spaces (Banach spaces if

p � 1 and q � 1). A detailed discussion of the spaces
Æ

As
pq(
) andeAs

pq(
) will be given in Section 3. We concentrate here on the spaces

As
pq(
). The above de�nition coincides essentially with [41], De�nition

5.3, p. 44 (extended to unbounded domains). We are mainly interested

in Lipschitz domains 
. But we postpone the de�nition of what is

meant by a Lipschitz domain to 2.4 and formulate �rst some assertions

of the spaces As
pq(
) which are independent of the quality of 
 and its

boundary @
.
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2.3 Embeddings and entropy numbers

Embedding theorems for spaces As
pq(R

n) and their special cases have

a long history. We studied assertions of this type in [38], 2.3.2 and

2.7. Short surveys including more recent assertions may be found in [7],

2.3.3, and in [29], 2.2. In [41], Ch. 2, we dealt in detail with limiting

embeddings. All these embedding theorems can be carried over from

R
n to arbitrary domains. This follows immediately from the de�nition

of As
pq(
) as restriction of As

pq(R
n). We describe an example without

further explanations. Let 
 be an arbitrary domain in R
n. Let

s0 2 R ; s1 2 R ; 0 < p0 < p1 <1; s1 �
n

p1
� s0 �

n

p0
;

and 0 < q0 � 1, 0 < q1 � 1. Then

F s0
p0q0

(
) � F s1
p1q1

(
); (8)

where ' �' always means that the respective embedding operator is linear

and bounded. This assertion with R
n in place of 
 may be found,

for example, in [38], 2.7.1, p. 129. As said, then (8) is an immediate

consequence of the de�nition of the spaces on 
 by restriction. This

applies to all embedding assertions of this type.

If 
 is a bounded domain in R
n then it makes sense to ask under

which conditions embeddings of type (8) are compact. Entropy num-

bers are the natural quantities to measure the degree of compactness.

We repeat �rst the abstract de�nition of entropy numbers and describe

afterwards a typical example of compact embeddings between function

spaces in bounded domains. If A and B are quasi-Banach spaces, then

L(A;B) is the space of linear and bounded operators from A into B.

Let UA, UB be the unit ball in A, B, respectively.

De�nition 2.5. Let A, B be quasi-Banach spaces and let T 2 L(A;B).

Then for all k 2 N the kth entropy number ek(T ) is de�ned as the

in�mum of all positive numbers " such that

T (UA) �

2k�1[
j=1

(bj + "UB) for some b1; :::; b2k�1 2 B:

Remark 2.6. As for the abstract theory of entropy numbers in Banach

spaces we refer to [27], Sect. 12, and [6]. A short description of some
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aspects (interpolation theory in Banach spaces) on an abstract level may

also be found in [37], 1.16. An extension of this theory to quasi-Banach

spaces has been given in [7], Ch. 1. We refer also to [40], Sect. 6. There

one �nds also applications to spectral theory of diverse types of partial

di�erential operators. This is the point where the interest in entropy

numbers of compact embeddings between function spaces comes from.

We formulate a typical result.

Theorem 2.7. Let 
 be an arbitrary bounded domain in R
n. Let

�1 < s2 < s1 <1; 0 < p1 �1; 0 < p2 � 1; (9)

0 < q1 � 1, 0 < q2 � 1 and

Æ+ = s1 � s2 + n

�
1

p1
�

1

p2

�
+

> 0 : (10)

Then the embedding of Bs1
p1q1

(
) into Bs2
p2q2

(
) is compact and for the

related entropy numbers we have

ek
�
id : Bs1

p1q1
(
) 7! Bs2

p2q2
(
)
�
� k�

s1�s2
n ; k 2 N : (11)

Remark 2.8. The equivalence in (11) and also equivalences at later

occasions must be understood as follows: there are two positive numbers

c1 and c2 such that

c1ek � k�
s1�s2

n � c2ek for all k 2 N :

A proof of this theorem may be found in [40], Sect. 23. There are

also further references. This can be extended to other embeddings as

far as compactness is expressed in terms of entropy numbers. On the

other hand, if one replaces entropy numbers by some types of widths,

for example approximation numbers, then the method used in [40] to

prove the above theorem for arbitrary bounded domains 
 in R
n does

not work. One needs additional restrictions for 
 such that the function

spaces de�ned on 
 have the extension property. It comes out that this

is the case if 
 is a bounded Lipschitz domain.
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2.4 Lipschitz domains and extensions

Let n� 1 2 N . Recall that

x0 2 R
n�1 7! h(x0) 2 R (12)

is called a Lipschitz function (on R
n�1) if there is a number c > 0 such

that

jh(x0)� h(y0)j � c jx0 � y0j for all x0 2 R
n�1, y0 2 R

n�1. (13)

De�nition 2.9. Let n� 1 2 N .

(i) A special Lipschitz domain in R
n is the collection of all points x =

(x0; xn) with x
0 2 R

n�1 such that

h(x0) < xn <1;

where h(x0) is a Lipschitz function according to (12), (13).

(ii) A bounded Lipschitz domain in R
n is a bounded domain 
 in R

n

where @
 can be covered by �nitely many open balls Bj in R
n; j =

1; :::; J ; centred at @
 such that

Bj \ 
 = Bj \ 
j with j = 1; :::; J; (14)

where 
j are rotations of suitable special Lipschitz domains in R
n.

Remark 2.10. (Localization method) If 
 is a bounded Lipschitz do-

main in R
n, then @
 can be covered by J open balls Bj = B(xj ; r),

centred at xj 2 @
 and of radius r > 0. Let f'jgj2J be a subordinated

resolution of unity,

'j 2 S(R
n); 0 � 'j � 1;

and

supp'j � Bj;

JX
j=1

'j(x) = 1 in a neighbourhood of @
:

Let As
pq(
) be a space according to De�nition 2.3. Then 'jf 2 A

s
pq(
)

if f 2 As
pq(
) and there is a number c > 0 such that

k'jf jA
s
pq(
)k � c kf jAs

pq(
)k for all f 2 As
pq(
).
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This follows from a corresponding property for the spaces As
pq(R

n) and

De�nition 2.3. Many properties for spaces of type As
pq in domains are

reduced with the help of this localization method to local investigations.

This applies in particular to the above special and bounded Lipschitz

domains. But it is obvious that this method works also for arbitrary (not

necessarily bounded) Lipschitz domains de�ned in the same way as in

part (ii) of the above de�nition, now with respect to balls Bj = B(xj ; r),

j 2 N , and under the assumption that the Lipschitz constants according

to (13) and related to the special Lipschitz domains 
j are uniformly

bounded. We will not stress this point in the sequel.

The extension problem. Let 
 be an (arbitrary) domain in Rn. Then,

by De�nition 2.3, the restriction operator re,

re (g) = gj
 : S0(Rn) 7! D0(
); (15)

generates a linear and bounded operator

re : As
pq(R

n) 7! As
pq(
); (16)

for all admitted A = B, A = F , and s, p, q. Of course, re in (16) is

the restriction of the operator in (15) to As
pq(R

n). But as usual this will

not be indicated by additional marks. This tacit agreement applies also

to other related operators such as extension operators and the identity

acting in spaces or between di�erent spaces, where (11) may serve as

an example. The extension problem is characterized by the question of

whether there is a linear and bounded extension operator ext, such that

ext : As
pq(
) 7! As

pq(R
n) (17)

with

re Æ ext = id (identity in As
pq(
)). (18)

If 
 is a bounded C1 domain in Rn then this problem has been solved
satisfactory in [39], 4.5, with many forerunners; [37], [38], as far as our
own contributions are concerned. There one �nds also the necessary
references and historical comments. It is, or, as far as smooth bounded
domains are concerned, it was one of the key problems of the theory
of the spaces As

pq(
). If @
 is smooth then the basic idea to construct

operators of type (17), (18), is to localize �rst the problem according
to Remark 2.10, to reduce afterwards the problem via local C1 di�eo-
morphic maps y =  (x) to R

n
+, to construct there explicitly extension
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operators from R
n
+ to Rn and to return afterwards to the bounded C1

domain 
. By [39], Corollary 4.5.2, p. 225, one �nds in this way for any
" > 0 a common extension operator ext",

ext" : As

pq
(
) 7! As

pq
(Rn) where jsj < "�1, " < p <1, " < q �1, (19)

(with " < p � 1 and 0 < q � 1 if A = B). We use the nota-

tion common extension operator, if the operator in question, in our case

ext", is de�ned on the union of all admitted spaces, and if the restric-

tion of this operator to each member of this union results in a linear

and bounded operator, (19) in our case. If 
 is a (special or bounded)

Lipschitz domain then one has the localization method as described in

Remark 2.10, but the reduction of the extension problem to Rn
+ works

only under severe restrictions of the parameters s, p, q. This will be the

subject of Section 4. But in general one needs other arguments. Let 


be a bounded Lipschitz domain in Rn. By Calder�on's extension method

(1960/61) combined with some interpolation one gets the following as-

sertion: For any N 2 N , there is a common extension operator extN for

all spaces

Hs
p(
) and Bs

pq(
); 0 < s < N , 1 < p <1, 0 < q �1.

We refer to [37], 4.2.3, p. 314, where one �nds also the necessary refer-

ences. This result was extended by E. M. Stein in [35], p. 181, combined

with some interpolation, by constructing a common extension operator

ext1 for all spaces

Hs
p(
) and Bs

pq(
); s > 0, 1 < p <1, 0 < q � 1,

(including even Soblev spaces W k
1 (
), W

k
1(
), k 2 N 0). The next step

is due to G. A. Kalyabin. He proved in [16], Theorem 1, that Stein's

extension operator ext1 is also a common extension operator for all

spaces

F s
pq(
); s > 0, 1 < p <1, 1 < q <1;

(and for more general spaces of F -type considered there). We refer also

to [15] and [17], Sect. 7. The �nal step is due to V. S. Rychkov in

[31]. We call an extension operator universal if it is a common extension

operator for all spaces considered,

As
pq(
); s 2 R , 0 < p � 1, 0 < q � 1, (20)
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with p <1 if A = F .

Theorem 2.11. Let 
 be a bounded Lipschitz domain in R
n. Then

there is a universal extension operator.

Remark 2.12. (Rough domains, intrinsic characterizations) The uni-

versal extension operator of the above theorem is constructed explicitly

in [31], Theorem 4.1, p. 253, based on an adapted Calder�on reproducing

formula. This gives also the possibility to decide intrinsically to which

spaces As
pq(
) a given element f 2 D0(
) or f 2 re S0(Rn) belongs: for

the related quasi-norms one needs only the knowledge of f in 
 (and not

of some g 2 S0(Rn) with gj
 = f). We refer in this context also to [30].

If a bounded domain 
 is not Lipschitz then it is not clear of whether

there are linear extension operators of the above type for the spaces in

(20). A partial result concerning some Sobolev spaces Hs
p(
) with s > 0,

1 < p <1, may be found in [32]. Fortunately enough, by Theorem 2.7

assertions about entropy numbers do not depend on the quality of the

bounded domain 
. Furthermore there are intrinsic characterizations of

the spaces As
pq(
) with (20) for large classes of bounded domains 
 in

R
n which need not to be Lipschitz in terms of atomic representations.

We refer to [42]. A short description may be found in [7], 2.5, pp. 57-65.

2.5 Interpolation

We assume that the reader is familiar with the basic assertions of in-

terpolation theory. Let fA0; A1g ba an interpolation couple of complex

quasi-Banach spaces. Then

(A0; A1)�;q ; 0 < � < 1 ; 0 < q � 1; (21)

denotes, as usual, the real interpolation method based on Peetre's K-

functional. The original complex interpolation method,

[A0; A1]� ; 0 < � < 1; (22)

as introduced by Calder�on, is restricted to complex Banach spaces. We

refer to [2] and [37]. Several attemps have been made to extend the

complex method to quasi-Banach spaces. We refer to [38], 2.4 and 3.3.6,

as far as references and our own contributions are concerned. The re-

sulting interpolation formulas for the B-spaces and F -spaces have the
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expected form, but the interpolation property is not satis�ed automat-

ically, it must be checked case by case (what is always possible when

used). Fortunately enough, O. Mendez and M. Mitrea extended in [24]

Calder�on's original complex interpolation method from complex Banach

spaces to the larger class of so-called A-convex (analytically convex)

complex quasi-Banach spaces. Restricted to this sub-class of quasi-

Banach spaces the interpolation property is always valid. It is one of

the main aims of [24], Sect. 4, to prove that all spaces

As
pq(R

n); s 2 R , 0 < p � 1, 0 < q � 1, (23)

with p <1 if A = F , are A-convex quasi-Banach spaces. This extension

of Calder�on's complex interpolation method is again denoted by (22).

For example, let

s0 2 R , s1 2 R , 0 < p0 <1, 0 < p1 <1, 0 < q0 � 1, 0 < q1 � 1.

(24)

Let 0 < � < 1 and

s = (1� �)s0 + �s1;
1

p
=

1� �

p0
+

�

p1
;

1

q
=

1� �

q0
+

�

q1
: (25)

Then �
F s0
p0q0

(Rn); F s1
p1q1

(Rn)
�
�
= F s

pq(R
n): (26)

Let 
 be a bounded Lipschitz domain in Rn and let ext be the respective

extension operator according to Theorem 2.11. Then we have (17), (18)

for all admitted spaces (20). Furthermore,

P = ext Æ re ; As
pq(R

n) 7! As
pq(R

n) ; (27)

is a universal projection operator of As
pq(R

n) onto a complemented sub-

space of As
pq(R

n), denoted by PAs
pq(R

n), and ext is an isomorphic map

of As
pq(
) onto PA

s
pq(R

n). By the de�nition of A-convex quasi-Banach

spaces in [24] (with a reference to [18]) it follows that closed subspaces of

A-convex quasi-Banach spaces are again A-convex quasi-Banach spaces.

Furthermore, a quasi-Banach space which is isomorphic to an A-convex

quasi-Banach space is also A-convex. By the above remarks this ap-

plies to all spaces As
pq(
) in (20) where 
 is a bounded Lipschitz do-

main. Then the interpolation theory for complemented subspaces in
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[37], 1.17.1, p. 118, can be extended from Banach spaces to these classes

of A-convex quasi-Banach spaces. We formulate the outcome for the

spaces in (20). We give also a short proof based on the interpolation

property which is now available both for the real and the complex inter-

polation method within the classes As
pq(R

n) and As
pq(
) for all admitted

parameters s, p, q, according to (23) and (20).

Theorem 2.13. Let 
 be a bounded Lipschitz domain in R
n and let

As
pq(R

n) and As
pq(
) be the spaces according to De�nition 2.3. Then any

real or complex interpolation formula for A-spaces on R
n which results

again in an A-space on R
n remains valid if on replaces Rn by 
. For

example, �
F s0
p0q0

(
); F s1
p1q1

(
)
�
�
= F s

pq(
) (28)

with (24), (25).

Proof. Based on the above explanations the proof of the theorem is not

very complicated. As an example we justify (28). Let, for brevity,

F k(Rn) = F sk
pkqk

(Rn); where k = 0 or k = 1,

and similarly F k(
). Let, as a notation,

F �(
) =
�
F 0(
); F 1(
)

�
�
; 0 < � < 1:

Then we have to prove that

F �(
) = F s
pq(
):

By (25) and the interpolation property for the F -spaces both on Rn and

on 
 it follows that

kf jF �(
)k = kre Æ ext f jF �(
)k � c1 kext f jF
�(Rn)k � c2 kf jF

�(
)k:

Recall that ext is an universal extension operator. Then we get by (26)

that

kf jF �(
)k � kext f jF s
pq(R

n)k � kf jF s
pq(
)k:

This proves (28).
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2.6 s-numbers and widths

According to De�nition 2.5 one can describe the degree of compactness of

an operator T 2 L(A;B) in terms of entropy numbers ek(T ). However in

the abstract theory of Banach spaces there are several other quantities,

called s-numbers and widths, including approximation numbers, Kol-

mogorov numbers, Gelfand numbers and Weyl numbers measuring the

quality of operators T 2 L(A;B). We refer to [27], especially Sect. 11;

[28], especially Ch. 2, and [20]. A short description of some aspects (in-

terpolation theory in Banach spaces) on an abstract level may also be

found in [37], 1.16. At least for some of these numbers it makes sense to

extend the abstract theory from Banach spaces to quasi-Banach spaces.

We give an example.

Let A, B be quasi-Banach spaces and let T 2 L(A;B). Then given

any k 2 N , the kth approximation number ak(T ) of T is de�ned by

ak(T ) = inf fkT � Lk : L 2 L(A;B); rank L < kg ; (29)

where rank L is the dimension of the range of L.

These approximation numbers, but also other s-numbers fsk(T ) :

k 2 Ng, extendable to quasi-Banach spaces, have the following decisive

properties,

sl+k�1(S + T ) � c (sl(T ) + sk(T )) ; l 2 N ; k 2 N ; (30)

and

sk(T1 Æ T Æ T2) � kT1k � sk(T ) � kT2k ; k 2 N ; (31)

where

S 2 L(A;B); T 2 L(A;B); T1 2 L(B;C); T2 2 L(D;A);

and A, B, C, D, are complex quasi-Banach spaces. Here c � 1 (with

c = 1 in case of Banach spaces). A lot has been done over the years

to study these numbers in connection with function spaces. Of peculiar

interest is the situation as described in Theorem 2.7. As for the classical

theory in smooth domains (up to the middle of the seventies) one may

consult [37], 4.10. More recent results and references can be found in

[7]. Let 
 be a bounded domain in R
n. Assume that the parameters

490 REVISTA MATEM�ATICA COMPLUTENSE

Vol. 15 N�um. 2 (2002), 475-524



hans triebel function spaces in lipschitz domains and on. . .

are the same as in Theorem 2.7, in particular they are restricted by (9),

(10). Then we denote the corresponding embedding by

id
 : As1
p1q1

(
) 7! As2
p2q2

(
): (32)

(It does not matter very much whether we choose A = B or A = F ).

In case of bounded C1 domains 
 we studied in [7], Theorem 3.3.4,

p. 119, in detail the behaviour of the approximation numbers ak(id
).

The outcome is more complicated than the corresponding behaviour (11)

of the related entropy numbers. A case left open was solved afterwards

in [5]. Let K = fy : jyj < 1g be the unit ball and let idK be the

corresponding embedding operator (32).

Theorem 2.14. Let 
 be a bounded Lipschitz domain in R
n.

(i) Let ak(id
) be the approximation numbers of the embedding (32).

Then

ak(id
) � ak(idK); k 2 N ; (33)

where K is the unit ball in R
n and where the equivalence constants are

independent of k.

(ii) Let sk be �xed s-numbers satisfying (30), (31), and well-de�ned for

the considered couple of function spaces. Then

sk(id
) � sk(idK); k 2 N : (34)

Proof. Step 1. Let K1 and K2 be two open balls with

K1 � 
 and 
 � K2 :

Let  be a cut-o� function,

 2 D(K2) and  (x) = 1 if x 2 
" ;

where 
" is an "-neighbourhood of 
. Let ext be the extension operator

according to Theorem 2.11. Then

id
 = re Æ idK2 Æ  Æ ext:

By (31) with sk = ak the left-hand side of (33) can be estimated from

above by the right-hand side. In the same way one gets the converse

assertion using now K1 and 
.
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Step 2. In part (ii) we assume in addition that sk(id
) and sk(idK)

make sense. Then the proof is the same as in part (i)

Remark 2.15. In the above proof one does not really need the cut-

o� function  (at least not in Step 1). It simply makes clear that the

behaviour near @
 of functions belonging to some function spaces is

immaterial for assertions of type (33), (34). Furthermore it emphasizes

that  Æ ext is also an universal extension operator with the additional

property that the extended functions vanish outside of a given neigh-

bourhood of 
. The additional restriction in part (ii) must be checked

in dependence of the considered s-numbers. Sometimes it might mean

that the considered function spaces must be Banach spaces. In a con-

crete situation one can simply check whether the above reasoning is

applicable. We describe an example. Let ak(T ) with T 2 L(A;B) be

the approximation numbers as introduced in (29). Then

xk(T ) = sup fak(T ÆQ) : Q 2 L(`2; A); kQk = 1g ; k 2 N ;

are the Weyl numbers. In [20], 3.3.c.5, 3.3.c.7, pp. 186, 189, one �nds

estimates of xk(id) for the embedding operator id from Bs
pq(
) into

Lr(
), where 
 is a bounded Lipschitz domain in Rn, s > 0, and p, q, r,

are between 1 and1. This assertion has been extended in [3] and [4] to

all spaces As
pq(
) considered in this paper under the assumption that 


is a bounded C1 domain in Rn. By part (ii) of the above theorem these

estimates remain valid for arbitrary bounded Lipschitz domains in Rn.

Remark 2.16. Although part (ii) of the above theorem is little bit

cryptical, it might be of some help in concrete situations where assertions

of this type are needed. This happens, for example, if one deals with

quadratic forms in L2(
) or with weak (variational) solutions of elliptic

di�erential operators of second order with, maybe, rough coeÆcients.

Then one gets via duality theory or by the Lax-Milgram theorem (which

may be found in [45], p. 92) inverse operators T of type

T : H�1(
) 7! H1(
);

where, in our notation H�(
) = F �
2;2(
). Combined with the embedding

of H1(
) into H�1(
) one wishes to get sharp assertions for diverse s-

numbers. Also the complexity of some numerical problems such as the

computation of integrals or the solution of some PDE's is sometimes
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expressed in terms of some widths and s-numbers in function spaces

of positive and negative smoothness. The underlying domain might be

L-shaped, a polyhedron, or simply a cube.

3 Further properties, subspaces

3.1 Preliminaries

It is the main aim of this section to have a closer look at the spaces
Æ

As
pq(
) and

eAs
pq(
), introduced in De�nition 2.3, and their connections

with the spaces As
pq(
). This has a long tradition, at least as far as the

classical spaces are concerned, from the very beginning of the theory of

function spaces. Such subspaces and their interrelations have not only

be considered for their own sake but also in connection with diverse

applications, for example to boundary value problems of elliptic partial

di�erential equations. Related key words characterizing problems to be

treated in this context are: duality, liftings, scale properties, relations to

spaces on Rn, extensions by zero, interpolation. A corresponding theory,

restricted mainly to bounded C1 domains 
 in R
n and to the classical

spaces

Bs
pq(
) and Hs

p(
) with s 2 R , 1 < p <1, 1 � q � 1; (35)

and their subspaces may be found in [37], Ch. 4, especially 4.2, 4.3, 4.8,

4.9. We returned to this subject in [41], Sect. 5, now for the full scale

of the spaces As
pq(
), but again restricted to bounded C1 domains 


in R
n. It is the aim of this section to investigate to which extent at

least a few key assertions remain valid in case of bounded Lipschitz

domains 
 in Rn. The expected outcome is the same as indicated in the

introduction: some assertions can simply be carried over from bounded

C1 domains to bounded Lipschitz domains without changing the proofs;

other assertions remain valid but new proofs are needed; in some cases it

is at least doubtful whether properties for C1 domains can be extended

to Lipschitz domains.

3.2 Classes of subspaces

First we complement De�nition 2.3 as follows. Let 
 be a domain in

R
n and let s, p, q as in De�nition 2.3. Then we wish to compare the
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space eAs
pq(
) according to De�nition 2.3(iii) with the closed subspace of

As
pq(R

n) (with the Rn-quasi-norm) given by

eAs
pq(
) =

�
f 2 As

pq(R
n) : supp f � 


	
:

Although eAs
pq(
) is a subspace of D0(
) and eAs

pq(
) is a subspace of

S0(Rn) they can be compared and one gets (in obvious interpretation)

eAs
pq(
) =

eAs
pq(
)=

�
h 2 As

pq(R
n) : supp h � @


	
(36)

as a factor space. This makes clear what is meant by equality of eAs
pq(
)

and eAs
pq(
).

Proposition 3.1. Let 
 be a bounded Lipschitz domain in R
n and let

s 2 R ; 0 < p � 1, (p <1 for the F -spaces); 0 < q � 1:

(i) Let, in addition,

max

�
1

p
� 1; n(

1

p
� 1)

�
< s <1:

Then eAs
pq(
) =

eAs
pq(
): (37)

(ii) Let, in addition,

0 < p <1; 0 < q <1; max

�
1

p
� 1; n(

1

p
� 1)

�
< s <

1

p
; (38)

and q � min(p; 1) for the F -spaces. Then

Æ

As
pq(
) = As

pq(
) =
eAs
pq(
): (39)

Proof. Step 1. By (36), the proof of (37) reduces to�
h 2 As

pq(R
n) : supp h � @


	
= f0g

under the given restrictions for s, p, q. But the corresponding proof in

[41], pp. 45-46, with respect to bounded C1 domains, can be taken over

without any changes.
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Step 2. By [9], Corollary 13.6, the characteristic function �
 of a

bounded Lipschitz domain is a pointwise multiplier in F s
pq(R

n) under

the condition (38) and, in addition, q � min(1; p). (We return later on

in Sect. 5 in greater detail to this subject). By real interpolation, �

is a pointwise multiplier for Bs

pq(R
n) with (38). Then we are in similar

(but slightly di�erent) situation as in [41], 5.11, p. 58-59. Together with

(37) one gets the second equality in (39).

Step 3. It remains to prove the �rst equality in (39). But this can

be done by standard arguments using (37) and the second equality in

(39): localization according to Remark 2.10, reduction locally to special

Lipschitz domains as in (14), approximation via local translation and

molli�cation (where p <1, q <1 are needed).

Remark 3.2. If 
 is a bounded C1 domain then the restriction q �

min(1; p) in (ii) for the F -spaces is not necessary. This comes from the

better pointwise multiplier properties for bounded C1 domains, [41],

p. 58, known so far. (We return to this question in greater detail in

Sect. 5 where we give references to the original papers).

De�nition 3.3. Let 
 be a bounded Lipschitz domain in R
n. Let

s 2 R ; 1 < p <1; 1 < q <1: (40)

Again let either A = B or A = F . Then

As
pq(
) = As

pq(
) if s <
1

p
(41)

and

As
pq(
) =

eAs
pq(
) if s >

1

p
� 1: (42)

Remark 3.4. The overlap in (41), (42) is justi�ed by (39) with (38).

Let 
 be a bounded C1 domain in Rn and let As
pq be the classical spaces

in (35). Then the above de�nition coincides with the scales considered in

[37], 4.9.2, p. 335. It comes out that these spaces As
pq(
) with s 2 R and

�xed p, q are scales which are the right substitutes of the corresponding

spaces As
pq(R

n). There are satisfactory duality assertions, interpolation

formulas and extension properties. As will be shown, a substantial part

of this theory remains valid for the above spaces in bounded Lipschitz

domains.
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3.3 Main assertions

Recall that duality always must be understood in the framework of the

dual pairing (D(
);D0(
)). As above (�; �)�;q and [�; �]� are the real and

(classical) complex interpolation method, respectively.

Theorem 3.5. Let 
 be a bounded Lipschitz domain in R
n and let

again be either A = B or A = F . Let As
pq(
) and similarly As0

p0q0
(
) ,

As1
p1q1

(
), be the spaces introduced in De�nition 3.3.

(i) Let s, p, q be given by (40). Then As
pq(
) is a re
exive Banach space;

D(
) is dense in it and (dual spaces)

�
As
pq(
)

�0
= A�sp0q0(
) with

1

p
+

1

p0
=

1

q
+

1

q0
= 1 : (43)

(ii) Let

1 < p <1; 1 < q <1; s >
1

p
� 1:

Then Ext,

(Ext f)(x) = f(x) if x 2 
; (Ext f)(x) = 0 if x 2 R
nn
; (44)

is a (linear and bounded) extension operator from As
pq(
) into A

s
pq(R

n).

(iii) Let 0 < � < 1,

s0 2 R ; s1 2 R ; 1 < p0 <1; 1 < p1 <1; 1 < q0 <1; 1 < q1 <1;

and

1

p
=

1� �

p0
+

�

p1
;

1

q
=

1� �

q0
+

�

q1
; s = (1� �)s0 + �s1 :

Then �
As0
p0q0

(
); As1
p1q1

(
)
�
�
= As

pq(
); (45)

where either all A-spaces are B-spaces or all A-spaces are F -spaces

(hence (45) must be read either with A = B or with A = F ).

(iv) Let 0 < � < 1,

�1 < s0 < s1 <1; 1 < p <1;
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1 < q <1; 1 < q0 <1; 1 < q1 <1;

and let s = (1� �)s0 + �s1. Then�
As0
pq0

(
); As1
pq1

(
)
�
�;q

= Bs
pq(
); (46)

where the two A-spaces might be independently B-spaces or F -spaces.

Proof. Step 1. First we prove that D(
) is dense in As
pq(
). Let

s > 1
p
� 1. By (42), (37), and the standard arguments indicated at the

end of Step 3 of the proof of Proposition 3.1 it follows that D(
) is dense

in As
pq(
). Let s < 0. Then Lp(
) is dense in A

s
pq(
). Since D(
) is

dense in Lp(
) it follows that D(
) is also dense in As
pq(
) = As

pq(
) if

s < 0. This covers all cases.

Step 2. We prove the remaining assertions of (i). Recall�
As
pq(R

n)
�0
= A�sp0q0(R

n) ; s, p, q as in (40), (43): (47)

We refer to [37], 2.11.2, p. 178, always based on the interpretation of

dual spaces on Rn within the dual pairing (S(Rn); S0(Rn)). In particular,

all these spaces are re
exive Banach spaces. Let s > 1
p
� 1 . Then by

(42), (37) the space As
pq(
) can be identi�ed with a closed subspace of

As
pq(R

n) (equivalent norms). Hence by the Hahn-Banach and Eberlein-

Shmulyan theorems, [45], p. 141, these spaces are also re
exive Banach

spaces. By (27) and the arguments after all spaces As
pq(
) in question

are isomorphic to complemented subspaces of As
pq(R

n). Hence by the

above reasoning, they are also re
exive. This covers all cases. It remains

to prove (43) as far as part (i) is concerned. First we observe

�
As
pq(
)

�0
= A�sp0q0(
); s >

1

p
� 1 ; (48)

where duality is always interpreted within the dual pairing (D(
);D0(
)).

This follows from (47) and the de�nition of the spaces on the right-hand

side of (48) as restriction of the spaces on the right-hand side of (47) on


. We refer for details to [37], 4.8.1. The remaining cases follow now by

re
exity and density of D(
) in all spaces considered.

Step 3. We prove part (ii). Let ext be the extension operator according

to Theorem 2.11. As usual, re stands for the restriction operator. Using
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the notation (41) we have

re Æ ext = id in As
pq(
) where s <

1

p
:

By (43) we obtain that

(ext)0 Æ (re)0 = id in As
pq(
) where s >

1

p
� 1 : (49)

We claim

(re)
0

= Ext : eAs
pq(
) 7! As

pq(R
n);

where Ext is given by (44). This follows from (in obvious notation as

dual pairings of suitable smooth functions)

(re f; g)
 =

Z



(re f)(x) g(x) dx =

Z
R
n

f(x) (Ext g)(x) dx = (f;Ext g)
R
n :

Now part (ii) is a consequence of (49).

Step 4. We prove parts (iii) and (iv). If both s0 <
1
p0

and s1 <
1
p1

then all interpolation formulas are covered by Theorem 2.13. If both

s0 >
1
p0
� 1 and s1 >

1
p1
� 1 then we have by (ii) the common extension

operator Ext. By the same arguments as in connection with the proof

of Theorem 2.13 any interpolation formula in Rn can be carried over to


. In particular we have (45), (46) in these two separate s0 - s1-regions.

Fortunately there is an overlap of these two regions in the strip��
1

p
; �

�
: 1 < p <1;

1

p
� 1 < � <

1

p

�
:

Then one can apply Wol�'s interpolation theorems, [44]: Let, for exam-

ple, A1, A2, A3 and A4 be 4 of the above Banach spaces (recall that

D(
) is dense in all these spaces) with

A1 � A2 � A3 � A4; A2 = (A1; A3)�1;q1 ; A3 = (A2; A4)�2;q2 :

Then

A2 = (A1; A4)�3;q3 and A3 = (A1; A4)�4;q4 (50)

with naturally calculated �3, �4, q3 and q4 according to the reiteration

theorem of interpolation theory. This applies to (46) with respect to the
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two overlapping s0 - s1-regions and results �nally in a full proof of part

(iv). There is a corresponding assertion in [44] with respect to the clas-

sical complex interpolation method without the assumed monotonicity

of the spaces Aj involved in (50). A slightly more general version of

Wol�'s theorem can be found in [13], 1.3.

Remark 3.6. Let 
 be a bounded C1 domain in R
n. For �xed 1 <

p <1, 1 < q <1, the scale�
As
pq(
) : s 2 R

	
is the correct substitute of the corresponding scale�

As
pq(R

n) : s 2 R
	

in R
n. This follows from our detailed studies in [37], Ch. 4. By the

above theorem it comes out that at least some assertions remain valid

for bounded Lipschitz domains: extension, interpolation, duality.

4 Lipschitz di�eomorphisms and atomic repre-

sentations

4.1 Preliminaries

Let

y = �(x) : R
n 7! R

n; (51)

be a C1 di�eomorphism of Rn onto itself. Then

f 7! f Æ � (52)

is an isomorphic map of any space As
pq(R

n) with A = B or A = F

according to De�nition 2.1 onto itself. Assertions of this type have a

substantial history. After a long battle a complete proof of this asser-

tion was given in [39], 4.3.2, p. 209. There, and also in its forerunner

[38], 2.10, one �nds the history of this subject and related references. It

is the main aim of this section to discuss the question for which spaces

As
pq(R

n) the mapping (52) makes sense and remains to be an isomor-

phism of As
pq(R

n) onto itself if (51) is only a Lipschitz di�eomorphism.

Assuming that this is the case for some space As
pq(R

n) then one is in the
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same comfortable position for the respective space As
pq(
) in bounded

Lipschitz domains as for all spaces As
pq(
) if 
 is a bounded C1 domain:

By localization as described in Remark 2.10 and local di�eomorphisms

one can reduce many problems for spaces in 
 via local charts to cor-

responding related problems (locally) in R
n
+. It is just the lack of this

possibility if one switches from bounded C1 domains to bounded Lip-

schitz domains which causes additional diÆculties and which are the

subject of the two preceding sections. In Sections 5 and 6 we give two

applications of the main results of this section: Characteristic functions

of bounded Lipschitz domains as pointwise multipliers in some function

spaces (resulting in an 1-line-proof of a known result) and, maybe more

signi�cantly, function spaces on Lipschitz manifolds.

In this section we rely on atomic decompositions of some function

spaces As
pq(R

n) in terms of Lipschitz atoms. On the one hand we restrict

ourselves to the description of the bare minimum needed for our argu-

ments. On the other hand we developed in [40] and more systematically

in [41], the theory of quarkonial (or subatomic) decompositions of func-

tion spaces. Although not needed for our main applications we outline

how to develop a corresponding theory for function spaces in bounded

Lipschitz domains.

4.2 Lipschitz atomic representations

Let j 2 N 0 and m 2 Z
n. Then Qjm denotes a closed cube in R

n with

sides parallel to the axes centred at 2�jm and with side length 2�j . Let

Q be a cube in Rn and r > 0; then rQ is the cube in Rn concentric with

Q and with side length r times that of Q. As usual we introduce the

numbers

�p = n

�
1

p
� 1

�
+

and �pq = n

�
1

min(p; q)
� 1

�
+

(53)

where 0 < p � 1, 0 < q � 1.

We are interested in atomic representations

f =

1X
j=0

X
m2Zn

�jm ajm (54)
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in the spaces As
pq(R

n) where

0 < p � 1; 0 < q � 1; �p < s < 1 if A = B (55)

and

0 < p <1; 0 < q � 1; �pq < s < 1 if A = F: (56)

Here

� = f�jm 2 C : j 2 N 0; m 2 Z
ng (57)

are sequences of complex numbers belonging to the sequence spaces bpq
and fpq, respectively which are de�ned as follows. Let

�
(p)
jm(x) = 2

jn
p if x 2 Qjm and �

(p)
jm(x) = 0 if x 2 R

nnQjm (58)

be the p-normalized characteristic function of Qjm. Then � 2 fpq and

� 2 bpq if

k� jfpqk =









0
@ 1X

j=0

X
m2Zn

����jm �(p)jm(�)
���q
1
A

1
q

jLp(R
n)








 <1 (59)

and

k� jbpqk =

0
@ 1X

j=0

 X
m2Zn

j�jmj
p

! q
p

1
A

1
q

<1; (60)

respectively (with the usual modi�cation if p = 1 and/or q = 1).

Furthermore when r > 1 then ajm(x) are atoms with

supp ajm � rQjm; j 2 N 0 and m 2 Z
n; (61)

and

jajm(x)j � 2
�j(s�n

p
)
; jajm(x)� ajm(y)j � 2

�j(s�n
p
�1)

jx� yj: (62)

In other words, ajm are normalized (s; p)-Lip atoms. It comes out that

f 2 S0(Rn) belongs to As
pq(R

n) (again A = B or A = F with the

restrictions indicated above) if, and only if, it can be represented by

(54) with (57), (59), (60), and (61), (62). Furthermore,

kf jAs
pq(R

n)k � inf k� japqk; (63)
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where temporarily apq = bpq if A = B and apq = fpq if A = F (not

to be mixed with the atoms ajm) and where the in�mum is taken over

all admitted representations. If the atoms are smooth then this well-

known atomic representation (no moment conditions are required) may

be found in [40], Sect. 13, especially Theorem 13.8 on p. 75. There are

references to the literature. The above non-smooth version is covered

by [42] and [7], Theorem 2.2.3 on pp. 31/32.

4.3 Lipschitz di�eomorphisms

The one-to-one mapping (51) of Rn onto itself is called a Lipschitz dif-

feomorphism if the components �k(x) of �(x) = (�1(x); :::;�n(x)) are

Lipschitz functions on R
n and

j�(x)� �(y)j � jx� yj; x 2 R
n; y 2 R

n; jx� yj � 1;

where the equivalence constants are independent of x and y. Of course

the inverse ��1(x) of �(x) is also a Lipschitz di�eomorphism on R
n.

Proposition 4.1. Let � be a Lipschitz di�eomorphism in R
n. Let

As
pq(R

n) be the above spaces with (55) and (56), respectively. Then f 7!

f Æ � is an isomorphic map of As
pq(R

n) onto itself.

Proof. Let f be given by (54), where ajm are (s; p)-Lip atoms. Then

we have

f Æ � =

1X
j=0

X
m2Zn

�jm ajm Æ � (64)

with

j(ajm Æ �)(x)� (ajm Æ �)(y)j

� 2
�j(s�n

p
�1)

j�(x)� �(y)j � c 2
�j(s�n

p
�1)

jx� yj

and an adequate substitute of the localization requirement (61). Hence,

ignoring unimportant constants, ajm Æ � are again (s; p)-Lip atoms. In

particular, (64) is an atomic decomposition and

kf Æ � jAs
pq(R

n)k � c kf jAs
pq(R

n)k:

As mentioned, ��1 is also a Lipschitz di�eomorphism. This proves the

converse.
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Remark 4.2. It is the question of whether the abvoe proposition can

be extended to other spaces As
pq(R

n). If s < 0, 1 < p <1, 1 < q <1,

then one might think to get the desired assertion by duality, starting

from A�sp0q0(R
n). But it is not so clear whether the resulting Radon-

Nikodym derivative is a pointwise multiplier in the respective spaces.

Fortunately enough in order to establish the method of local charts for

bounded Lipschitz domains as described in 4.1 it is suÆcient to deal

with the special Lipschitz di�eomorphisms (51) given by

� : yj = xj if j = 1; :::; n � 1 and yn = xn � h(x0); (65)

where h(x0) is a Lipschitz function on R
n�1 according to (12), (13).

Then the Radon-Nikodym derivative (distortion factor) is 1. Let

R =

��
1

p
; s

�
: 0 < p � 1 ; �1 + 2n (

1

p
� 1)+ < s < 1

�

as indicated in Fig. 1.

n+1
n

s

s = n

�
1
p
� 1

�

s = �1 + 2n

�
1
p
� 1

�
1
p

1

�1

1

Fig. 1

Theorem 4.3. Let n 2 N with n � 2. Let h(x0) be a Lipschitz function

in R
n�1 according to (12), (13). Let�

1

p
; s

�
2 R and 0 < q � 1 (66)

(with p < 1 and q � min(1; p) in case of the F -spaces). Let � be the

Lipschitz di�eomorphism given by (65). Then f 7! fÆ� is an isomorphic

map of As
pq(R

n) onto itself.
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Proof. First, by Proposition 4.1 it follows that f 7! f Æ� is an isomor-

phic mapping from As
pq(R

n) onto itself if

0 < p � 1; 0 < q � 1; �p < s < 1;

(with p <1 and q � min(p; 1) if A = F ). Secondly, the duality formula

(47) with (40) can be extended to q = 1 both for A = B and A = F

and it can also be extended to p = 1 for A = B (again with q = 1 as

an admitted choice). We refer to [38], 2.11.2, p. 178, and [29], p. 20,

and the references given there as far as the included limiting cases are

concerned. Obviously, the inverse of � in (65) is of the same type (with h

in place of �h) and the Radon-Nikodym derivative (volume distortion)

of y = �(x) is 1. Hence by Proposition 4.1 and duality one gets the

desired assertion for the spaces As
pq(R

n) with

1 < p � 1 (p <1 if A = F ); 1 < q � 1; �1 < s < 0:

The rest is a matter of complex interpolation as described in 2.5 and

real interpolation.

Remark 4.4. In case of A = B the restriction (66) looks natural.

In case of A = F the restriction q � min(p; 1) is disturbing although

both Proposition 4.1 and also the above complex interpolation cover in

addition a few cases with q < min(p; 1). The above theorem applies in

particular to some (inhomogeneous) Hardy spaces

hp(R
n) = F 0

p;2(R
n);

2n

2n+ 1
< p � 1; n � 2:

4.4 Quarkonial decompositions of functions in Lipschitz

domains

Let N n
0 , where n 2 N , be the set of all multi-indices

� = (�1; :::; �n) with �j 2 N 0 and j�j =

nX
j=1

�j ;

and let

x� = x
�1
1 � � � x�nn where x = (x1; :::; xn) 2 R

n and � 2 N
n
0 :
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Let  2 D(Rn) be a non-negative function withX
m2Zn

 (x�m) = 1 if x 2 R
n :

Let s 2 R , 0 < p � 1, � 2 N
n
0 and  �(x) = x�  (x). Then

(�qu)jm(x) = 2
�j(s�n

p
)
 �(2jx�m); x 2 R

n; j 2 N 0; m 2 Z
n ;

is called an (s; p)-�-quark related to the cube Qjm as introduced at the

beginning of 4.2. We developed in [41], Sect. 2, the theory of quarkonial

(subatomic) decompositions of the spaces As
pq(R

n) under the restrictions

(55), (56), respectively (regular case) and extended this theory in [41],

Sect. 3, to all spaces As
pq(R

n) (general case). In the regular case it came

out that f 2 S0(Rn) is an element of As
pq(R

n) if, and only if, it can be

represented as

f =
X

�2Nn0 ;j2N0 ;m2Z
n

�
�
jm (�qu)jm (67)

(unconditional convergence in S0(Rn) or, likewise, absolute and, hence,

unconditional convergence in Lloc1 (Rn) ) where (�qu)jm(x) are the above

(s; p)-�-quarks, and

sup
�2Nn0

2%j�j k�� japqk <1; (68)

for some % > 0 where we use apq as in (63) and �� is given by (57) with

��, ��jm in place of �, �jm, respectively. Furthermore,

kf jAs
pq(R

n)k � inf

"
sup
�2Nn0

2%j�j k�� japqk

#
; (69)

where the in�mum is taken over all admissible representations (67), (68).

Furthermore there are optimal coeÆcients

�
�
jm(f) =

Z
R
n

f(x) ��
jm(x) dx; ��

jm(x) 2 S(R
n); (70)

which depend linearly on f and

kf jAs
pq(R

n)k � sup
�2Nn0

2%j�j k��(f) japqk (71)
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(equivalent quasi-norm). The functions �
�
jm can be constructed explic-

itly. There is a complete counterpart for the general case, covering all

spaces As
pq(R

n). We refer for details and additional explanations to [41],

Sections 2 and 3.

Combining these results with Theorem 2.11 one gets for bounded

Lipschitz domains 
 constructive quarkonial characterizations for all

spaces As
pq(
). We give a brief description restricting ourselves again to

the regular case. Let �
 be the characteristic function of 
. Let
P


 be

the sum over those � 2 N
n
0 , j 2 N 0, m 2 Z

n in (67) with


 \ supp (2j � �m) 6= ;:

Similarly we write a


pq when the summation in the sequence spaces apq

is restricted in the same way. Let

(�qu)
jm(x) = (�qu)jm(x) � �
(x)

Theorem 4.5. Let 
 be a Lipschitz domain in R
n. Let As

pq(
) be

the spaces according to De�nition 2.3(i) restricted by (55) and (56),

respectively. Then As
pq(
) is the collection of all f 2 L1(
) which can

be represented as

f =
X



�
�
jm (�qu)
jm (72)

(absolute convergence in L1(
)) such that

sup
�2Nn0

2%j�j k�� ja
pqk <1; (73)

where % > 0 and �� have the above meaning. Furthermore,

kf jAs
pq(
)k � inf

"
sup
�2Nn0

2%j�j k�� ja
pqk

#

(equivalent quasi-norms) where the in�mum is taken over all admissible

representations (72), (73). Furthermore there are optimal coeÆcients

�
�
jm(f) which depend linearly on f such that

kf jAs
pq(
)k � sup

�2Nn0

2%j�jk��(f) ja
pqk:
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Proof. Let ext be the extension operator according to Theorem 2.11.

One can expand ext f by (67) - (71). Restriction to 
 gives the desired

result.

Remark 4.6. In [41], Ch. 1, we dealt with several types of quarko-

nial decompositions of function spaces, also in domains. We managed

to overlook the above simple application of corresponding expansions in

R
n, even in case of bounded C1 domains. If (55) or (56) is not satis-

�ed, then (�qu)jm and (�qu)
jm must be complemented in Rn and in 
,

respectively, by�
�N �

�
(2jx�m) and

�
�N �

�
(2jx�m) � �
(x); (74)

with some N 2 N (in dependence of s, p, q) and suitably normalized.

This is the simplest way to incorporate moment conditions. If the sup-

port of  (2jx�m) intersects @
 then the second building blocks in (74)

do not satisfy moment conditions. Nevertheless they remain to be the

correct building blocks. This e�ect on the level of so-called boundary

atoms is known: We refer to [42] and [7], 2.5, pp. 57-65.

5 Characteristic functions as pointwise multi-

pliers

5.1 Pointwise multipliers

Let As
pq(R

n) withA = B or A = F be the spaces introduced in De�nition

2.1. A functionm 2 L1(Rn) is called a pointwise multiplier for As
pq(R

n)

if

f 7! mf generates a bounded map in As
pq(R

n):

One must say what this means. But for this technical side we refer to

[29], 4.2. Pointwise multipliers in general and characteristic functions

of domains as pointwise multipliers in particular attracted a lot of at-

tention. As far as classical Besov spaces and (fractional) Sobolev spaces

are concerned we refer to [22] and [23]. Pointwise multipliers in general

spaces As
pq(R

n) have been studied in [29] (where one �nds also many

references) and in the most recent and most advanced papers [33], [34].

As for our own contributions we refer to [38], 2.8, and [39], 4.2.
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5.2 Characteristic functions of Lipschitz domains

Let �
 be the characteristic function of an arbitrary domain in Rn. We

write �+ if 
 is the half-space Rn
+ according to (2). Recall the following

de�nitive result.

Proposition 5.1. Let s, p, q be as in (1). Then �+ is a pointwise

multiplier for As
pq(R

n) if, and only if,

max

�
n(
1

p
� 1);

1

p
� 1

�
< s <

1

p
; (75)

Fig. 2

Remark 5.2. A complete proof may be found in [29], 4.6.3, p. 208.

First results of this type had been obtained in [38], 2.8.7, p. 158. This

covers the case A = B (with exception of some limiting cases). If A = F

then there are some curious restrictions for q.

1
1
p

s = n

�
1
p
� 1

�

s

1

�1

s =
1
p

Fig. 2

The proof of the independence of the pointwise multiplier assertion for

�+ on q in case of A = F and hence the �rst proof of Proposition 5.1

is due to J. Franke, [8]. Further references may be found in [38], 2.8.5,

Remark 4, p. 154, and in [29], p. 258.
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Proposition 5.3. Let 
 be a bounded Lipschitz domain in R
n. Let p,

q, s be restricted as in Theorem 4.3. Then �
 is a pointwise multiplier

for As
pq(R

n) if, and only if, �+ is a pointwise multiplier for As
pq(R

n).

Proof. By Theorem 4.3 and Remark 2.10 one can apply the method of

local charts which results in the above assertion.

Remark 5.4. This is the �rst application of Theorem 4.3 we have in

mind. By Proposition 5.1 it follows that �
 is a pointwise multiplier for

As
pq(R

n) if 0 < p � 1,

max

�
n(
1

p
� 1);

1

p
� 1

�
< s < min(

1

p
; 1) and 0 < q � 1

(with p < 1 and q � min(1; p) if A = F ), Fig. 2. By Proposition 4.1

and Remark 4.4 one can extend this proof to a few other cases but the

outcome is not satisfactory. The above results including the extension

just indicated are known. One can ask the following question:

Let 
 be a bounded Lipschitz domain in R
n. Is �
 a pointwise

multiplier for As
pq(R

n) if, and only if, �+ is a pointwise multiplier for

As
pq(R

n)?

The best result known so far may be found in [9], Corollary 13.6. It

is the direct extension of [38], 2.8.7, p. 158, from �+ to �
. In particular

it covers the above Proposition 5.3 and it gives an aÆrmative answer of

the above question if A = B. However in case of A = F there remains a

dependence on q and the above question seems to be open for F -spaces.

5.3 Characteristic functions of arbitrary domains

Pointwise multiplier properties of �
 with respect to arbitrary domains


 in Rn for F s
pq(R

n) have been considered in [29], Theorem 3 on p. 216,

[33], Theorem 1 on p. 227, Corollary 1 on p. 230, Theorem 6 on p. 240,

Remark 22 on p. 241 and in [34]. There are suÆcient conditions which

ensure that �
 is a pointwise multiplier for F s
pq(R

n) depending on q.

In these papers one �nds also additional references describing the state

of art. It is not our aim to deal with problems of this type here in

detail. There is only one point which we wish to discuss brie
y and

which applies to bounded Lipschitz domains but also to more general

domains:
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The interrelation of geometric properties of @
 (expressed in terms of the

so-called ball condition) and the q-dependence of the pointwise multiplier

property of �
 for F s
pq(R

n) (if there is any).

De�nition 5.5. A non-empty Borel set � in R
n is said to satisfy the

ball condition if there is a number 0 < � < 1 with the following property:

For any ball B(x; t) centred at x 2 R
n and of radius 0 < t < 1 there is

a ball B(y; �t) (centred at y 2 R
n and of radius �t) with

B(y; �t) � B(x; t) and B(y; �t) \ � = ;:

Remark 5.6. This de�nition coincides with [41], 9.16, p. 138, and, in

turn, with [40], 18.10, p. 142. But this notation appears also in several

other contexts, for example, fractal geometry and physics (porous me-

dia). It plays also a remarkable role in connection with traces of function

spaces As
pq(R

n) on compact sets � with Lebesgue measure j�j = 0. We

refer to [41], 9.16-9.22, pp. 138-143. In particular, by [41], Theorem 9.21

on pp. 141-142, traces of spaces F s
pq(R

n) (with 1 < p <1) on compact

sets � satisfying the ball condition, if exist, are independent of q with

0 < q � 1: The independence of traces of spaces F s
pq(R

n) on sets sat-

isfying the ball condition has also been observed by Netrusov in [25],

assertion 1.4, p. 193. This suggests to discuss the following situation:

Let 
 be a, say, bounded domain in R
n such that � = @
 satis�es the

ball condition. Let p, q, s be restricted as in Proposition 3.1(i). Is there

an alternative such that either the trace of F s
pq(R

n) on � exists (and is

independent of q) or �
 is a pointwise multiplier for F s
pq(R

n) (indepen-

dent of q)? It might well be the case that some limiting spaces in this

context must be discussed separately and (as a consequence) excluded

from this alternative. Let, for example, � = @
 be a d-set. We refer

for de�nition and generalization to [41], 9.1, p. 120. We have d � n� 1

with d = n� 1 in case of bounded Lipschitz domains. If n� 1 � d < n,

then � = @
 satis�es the ball condition, [41], Remark 9.19, pp. 140-141,

and F
n�d
p

pq (Rn) are limiting spaces in the above context, [40], Corollary

18.12, p. 142. Concerning the independence of q of pointwise multipliers

�
 for F s
pq(R

n) (if exists) we have no de�nitive results comparable with

correponding assertions for traces as indicated above. But we wish to

complement the existing literature by a few related results.
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Proposition 5.7. Let 
 be a domain in R
n such that its boundary

� = @
 satis�es the ball condition. Let p and s be restricted by (75),

Fig. 2.

(i) Let �
 be a pointwise multiplier for F s
pq0

(Rn) for some 0 < q0 � 1.

Then �
 is a pointwise multiplier for all spaces F s
pq(R

n) with q0 � q �

1.

(ii) Let, in addition, 1 < p <1 and let �
 be a pointwise multiplier for

F s
pq0

(Rn) for some 1 � q0 < 1. Then �
 is a pointwise multiplier for

all spaces F s
pq(R

n) with 1 � q � 1,

(iii) Let, in addition, 1 < p < 1, s = 0 and 1 � q � 1. Then �
 is a

pointwise multiplier for all spaces F 0
pq(R

n).

Proof. Step 1. By Proposition 5.1 characteristic functions of cubes Q

are pointwise multipliers for F s
pq(R

n), where the corresponding multiplier

constants are independent of Q. Then, by the localization principle for

F -spaces, [39], 2.4.7, p. 124, we may assume, in addition, that 
 is

bounded. We prove part (i). Let f 2 F s
pq(R

n). We use the same

quarkonial decompositions as in Step 2 of the proof in [41], Theorem

9.21, p. 142, without further explanations,

f =
X
�;j;m

�
�
�
jm (�qu)jm + �

�
jm (�qu)Ljm

�
= f1 + f2; (76)

where f1 collects all those (j;m) with

dQjm \ � 6= ;

for a suitable d > 0, and f2 the remaining terms. Then it follows �
f2 2

F s
pq(R

n) and

k�
f2 jF
s
pq(R

n)k � c kf jF s
pq(R

n)k: (77)

As for f1 we have

k�
f1 jF
s
pq(R

n)k � c1 k�
f1 jF
s
pq0

(Rn)k � c2 kf1 jF
s
pq0

(Rn)k

� c3 kf1 jF
s
pq(R

n)k � c4 kf jF
s
pq(R

n)k : (78)

The �rst inequality comes from the monotonicity of the quasi-norms

involved (recall q � q0). The second inequality is the assumption that

�
 is a pointwise multiplier for F s
pq0

(Rn). The main observation is the
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third inequality. Here we use that � satis�es the ball condition. We

refer for details to [41], especially formula (9.99) on p. 143. The �nal

estimate comes from the quarkonial decomposition using that the above

coeÆcients �
�
jm and �

�
jm in (76) are universal. Now part (i) follows from

(77), (78).

Step 2. We prove part (ii). By part (i), �
 is a pointwise multiplier for

all spaces F s
pq(R

n) with q0 < q � 1. We use the duality (47), (40) with

A = F . Then �
 is also a pointwise multiplier for all spaces

F�s
p0q0

(Rn) with 1 < q0 < q00 :

Application of part (i) shows that �
 is a pointwise multiplier for all

spaces

F�s
p0;u(R

n) with 1 < u <1:

A second application of duality proves part (ii) with q > 1. It remains

the case q = 1 < q0. Let
Æ

F s
p1(R

n) be the completion of S(Rn) in

F s
p1(R

n). Then the duality (47) can be complemented by

� Æ

F
s
p;1(R

n)
�0

= F�s
p0;1(R

n); 1 < p <1;
1

p
+

1

p0
= 1; s 2 R ;

[29], p. 20, with a reference to [21]. Furthermore by the above quarkonial

arguments �
 is also a pointwise multiplier for
Æ

F s
p;1(R

n). Then one

can argue as before. In particular, �
 is also a pointwise multiplier for

F s
p;1(R

n).

Step 3. Part (iii) follows from part (i), the Littlewood-Paley assertion

F 0
p;2(R

n) = Lp(R
n); 1 < p <1;

and the obvious observation that any characteristic function �
 is a

pointwise multiplier in Lp(R
n).

Remark 5.8. The a-priori restriction that p and s satisfy (75) is natural

but not necessary. We used it at the beginning of Step 1 since (76)

is applied in [41] to compact �. But it can be extended to closed �.

Furthermore we remark that if

s > 0; 1 � p <1; 1 � q0 � q1 � 1;
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then any pointwise multiplier m for F s
pq0

(Rn) is also a pointwise multi-

plier for F s
pq1

(Rn). We refer to [34], Lemma 2.14, p. 300. Hence, part (i)

complements this result, restricted to m = �
. By Proposition 5.1 the

restriction p > 1 in part (iii) is natural. Pointwise multipliers for Besov

spaces B0
pq(R

n) with 1 � p � 1 and 1 � q � 1 have been treated

recently in [19], concentrating preferably on the limiting cases B0
1;1(R

n)

and B0
1;1(R

n).

6 Spaces on Lipschitz manifolds

6.1 Preliminaries

Function spaces on other structures than euclidean n-spaces and do-

mains in euclidean n-spaces have been studied since a long time with

great intensity based on a large variety of di�erent methods. We mention

a few of them. In [14] Jonsson and Wallin introduced function spaces of

Besov type and potential type (fractional Sobolev spaces) on some sets

in Rn using di�erences of functions and approximation techniques. Our

own approach in [40] and in [41], especially Sect. 9, to spaces of type

Bs
pq(M) on compact d-setsM in Rn and on more general setsM in Rn is

characterized by traces of suitable spaces of type Bs
pq and F

s
pq on R

n and

intrinsic descriptions in terms of quarkonial representations. Next we

mention the substantial theory of function spaces of type F s
pq(M) and

Bs
pq(M) on so-called spaces of homogeneous type (M;%; �) consisting of

an abstract connected set M furnished with a quasi-metric % and a suit-

able measure �. It is based on so-called Calder�on reproducing formulas

and results in a remarkable analysis on these spaces of homogeneous

type. We refer to the two surveys [11] and [12]. There, and also in the

more recent paper [43] one �nds further references and applications. The

Lipschitz manifolds M we have in mind are special spaces of homoge-

neous type (X; %; �). But our approach is rather di�erent. In particular

we do not rely on the techniques developed in [11], [12], and the related

papers. We use the method of local charts and follow closely the ap-

proach presented in [39], Ch. 7, where we studied spaces F s
pq(M) and

Bs
pq(M) on Lie groups and on C1-Riemannian manifolds with bounded

geometry and positive injectivity radius. As a consequence, the spaces

F s
pq(M) have priority. They are de�ned directly by the method of local
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charts. The spaces Bs
pq(M) are introduced afterwards via real interpo-

lation. We are doing here the same but now based on the Lipschitz

di�eomorphisms according to Proposition 4.1.

6.2 De�nitions

Let (M;%; �) be a connected set, equipped with a metric %, generating a

topology, and a Borel measure �. A ball centred at y 2M and of radius

t > 0 is denoted by B(y; t). Let J be either J = f1; :::; j0g for some

j0 2 N (compact case) or J = N (non-compact case). We assume that

there are an n 2 N , two positive numbers c and �, grids fyjgj2J � M

and bi-Lipschitzian maps

�j : B(yj; 2�) 7! R
n where j 2 J; (79)

such that

%(yj ; yk) � c if j 6= k, j 2 J , k 2 J ; (80)[
j2J

B(yj ;�) =M ; (81)

�j

�
B(yj; 2�)

�
=Wj bounded neighbourhood of 0 2 R

n ;(82)���j(z
1)� �j(z

2)
�� � %(z1; z2); z1; z2 2 B(yj; 2�); (83)

with equivalence constants in (83) which are independent of z1, z2 and

j. We call �
B
�
yj ; 2�

�
;�j

	
j2J

(84)

an atlas. Obviously any notation introduced on (M;%; �) furnished with

an atlas according to (84) must be invariant with respect to all admissible

atlases of the described type.

De�nition 6.1. Let n 2 N and let (M;%; �) be a connected set, equipped

with a metric %, generating a topology, and a Borel measure �, furnished

with an atlas according to (84) with the properties (79) - (83). Then

(M;%; �) is called an n-dimensional Lipschitz manifold if

� (B(y; r)) � rn with y 2M and 0 < r < 1,

where the equivalence constants are independent of y and r.
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Remark 6.2. The measure � is locally the pullback measure of the

Lebesgue measure j � j on R
n,

�(E) � j�j(E)j ; E � B(yj; 2�):

Concrete examples of abstract n-dimensional Lipschitz manifolds are

the boundaries M = @
 of special Lipschitz domains in R
n+1 (non-

compact case) and of bounded Lipschitz domains in Rn+1 (compact case)

according to De�nition 2.9. In these cases � � HnjM , the restriction of

the n-dimensional Hausdor� measure Hn in Rn+1 to M .

6.3 Function spaces on Lipschitz manifolds

Let M be a n-dimensional Lipschitz manifold according to De�nition

6.1. We always assume that n, %, � are �xed in what follows. As usual,

Lp(M) with 0 < p � 1 are the quasi-Banach spaces of complex-valued

�-measurable functions f on M such that

kf jLp(M)k =

0
@ Z

M

jf(x)jp �(dx)

1
A

1
p

<1 ; 0 < p <1;

(with the usual modi�cation if p = 1). Furthermore, Lip (M) is the

usual Lipschitz spaces onM consisting of all complex-valued continuous

functions on M such that

kf jLip(M)k = sup
x2M

jf(x)j+ sup
x6=y;%(x;y)��

jf(x)� f(y)j

%(x; y)
<1 :

Of course, Lip(M) is a Banach space.

Next we introduce resolutions of unity on M using standard argu-

ments. Let � > 0 be as above and let ' be a non-negative C1 function

on R such that

supp' � (�2�; 2�) and '(t) = 1 if jtj � �:

Let fyjgj2J � M be the grid used in the atlas according to (84) with

the properties (79) - (83). Let

'j(y) = '
�
%(yj ; y)

�
and  j(y) =

'j(y)P
k2J 'k(y)

; j 2 J: (85)
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Then  j 2 Lip(M), and

supp j � B(yj ; 2�) ;
X
j2J

 j(y) = 1 where y 2M: (86)

Hence, f jgj2J is a resolution of unity onM , consisting of Lip-functions

and adapted to the given atlas (84). The numbers �p and �pq have the

same meaning as in (53). We use real interpolation according to (21).

De�nition 6.3. Let M be an n-dimensional Lipschitz manifold accord-

ing to De�nition 6.1. Let f jgj2J be the above resolution of unity.

(i) Let 0 < p � 1, 0 < q � 1 (with q =1 if p =1) and �pq < s < 1.

Then F s
pq(M) is the collection of all f 2 Lloc1 (M) with

( jf) Æ �
�1
j 2 F s

pq(R
n) ; j 2 J ; (87)

and

kf jF s
pq(M)k =

0
@X

j2J




( jf) Æ ��1j jF s
pq(R

n)



p
1
A

1
p

<1 (88)

(with the usual modi�cation if p = q =1 ).

(ii) Let 0 < p � 1, 0 < q � 1 and �p < s < 1. Let

�p < s1 < s < s0 < 1 and s = (1� �)s0 + �s1 :

Then

Bs
pq(M) =

�
F s0
pp (M); F s1

pp (M)
�
�;q

: (89)

Remark 6.4. In part (i) we put F s
11 = Bs

11 for obvious reasons in

connection with part (ii). Of course, ��1j is the inverse of the mapping

�j with the properties (82), (83). In (87) we assume that the function

( jf)Æ�
�1
j , originally de�ned onWj , is extended by zero to Rn. In case

of M = R
n, the equality (88) re
ects the so-called localization principle

for the spaces F s
pq(R

n), [39], 2.4.7, p. 124. In particular F s
pq(M) with

M = R
n coincides with F s

pq(R
n). This property was taken in [39], Ch. 7,

to introduce the spaces F s
pq(M) on C1-Riemannian manifolds and Lie

groups for all s, p, q with (1). Now we are doing the same but with the

restrictions indicated. The main point is to prove that these spaces are
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independent of the admitted atlases and resolutions of unity. This comes

out easily (equivalent quasi-norms) and may justify our omission to in-

dicate the given atlas and the given resolution of unity on the left-hand

side of (88). Furthermore, (89) is a well-known interpolation formula in

case ofM = R
n. Again, both in [39], 7.3, p. 309, and also here we rely on

this property to de�ne the spaces Bs
pq(M) on more general structures.

Then we are precisely in the same position as in [39], Ch. 7, and the

related arguments concerning the spaces Bs
pq(M) will not be repeated

here.

Theorem 6.5. Let M be an n-dimensional Lipschitz manifold accord-

ing to De�nition 6.1 furnished with an atlas (84). Let f jgj2J be a

subordinated resolution of unity, (85), (86).

(i) Let

0 < p <1; 0 < q � 1; �pq < s < 1:

Then F s
pq(M) according to De�nition 6.3(i) is a quasi-Banach space

(Banach space if p � 1, q � 1). It is independent of admissible atlases

and admissible resolutions of unity.

(ii) Let

0 < p � 1; 0 < q � 1; �p < s < 1:

Then Bs
pq(M) according to De�nition 6.3(ii) is a quasi-Banach space

(Banach space if p � 1, q � 1). It is independent of s0, s1.

Proof. Let  2 Lip(Rn). By the atomic representations (54) for the

admitted spaces As
pq(R

n) with (55), (56) it follows that

k f jAs
pq(R

n)k � c k jLip(Rn)k � kf jAs
pq(R

n)k

for some c > 0 which is independent of  and f . This pointwise multi-

plier property is well-known, [39], Corollary 4.2.2, p. 205. This observa-

tion and Proposition 4.1 prove part (i) by standard arguments. As for

part (ii) we have the same situation as in [39], Theorem 7.3.1, p. 309,

including

F s
pp(M) = Bs

pp(M) ; 0 < p � 1; �p < s < 1;

as it should be. We do not repeat the details.
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6.4 Properties, atomic representations

By De�nition 6.3 and Theorem 6.5 we have now the same situation as in

[39], Ch. 7. On the basic of the technique developed there one can derive

diverse properties, for example embedding theorems and interpolation

formulas. We do not repeat these assertions here and refer in particular

to [39], 7.4.2, 7.4.4, pp. 314-316, 317-318. On the other hand, intrin-

sic characterizations of spaces F s
pq(M) and Bs

pq(M) on C1 Riemannian

manifolds (with bounded geometry and positive injectivity radius) and

Lie groups in terms of local means and geodesics have no immediate

counterpart. However atomic and quarkonial representations can be in-

trinsically transferred from R
n to Lipschitz manifolds. We describe the

outcome in case of atomic representations and indicate the necessary

modi�cations.

To simplify the presentation we assume that M is non-compact (the

modi�cations in case of compact M are obvious). We cover M with

dyadic grids �
xjm : m 2 N

	
; j 2 N 0; (90)

such that there are two numbers c > 0 and C > 0 with

%
�
xjm; x

j
l

�
� c 2�j ; j 2 N 0; m 6= l ;

[
m2N

B
�
xjm; C 2�j

�
=M; j 2 N 0:

Then, in analogy to (61), (62), the function ajm(x) 2 Lip(M) is called

an (s; p)-Lip atom if for j 2 N 0, m 2 N ,

supp ajm � B
�
xjm; C 2�j+1

�
; (91)

jajm(x)j � 2
�j(s�n

p
)
; jajm(x)� ajm(y)j � 2

�j(s�n
p
�1)

%(x; y); (92)

where x 2M , y 2M . We need also the counterparts of (57) - (60). Let

� = f�jm 2 C : j 2 N 0; m 2 Ng ; (93)

�
(p)
jm(x) = 2

jn
p �jm(x); x 2M; 0 < p � 1;
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where �jm are the characteristic functions of the balls B(x
j
m; C2

�j).

Then � 2 fMpq and � 2 bMpq if

k� jfMpq k =









0
@ 1X

j=0

1X
m=1

����jm �(p)jm(�)
���q
1
A

1
q

jLp(M)








 <1 (94)

and

k� jbMpqk =

0
@ 1X

j=0

 
1X

m=1

j�jmj
p

! q
p

1
A

1
q

<1;

respectively (with the usual modi�cation if p =1 and/or q =1 ).

Theorem 6.6. LetM be a (non-compact) n-dimensional Lipschitz man-

ifold according to De�nition 6.1.

(i) Let

0 < p <1; 0 < q � 1; �pq < s < 1:

Then F s
pq(M) consists of all f 2 Lloc1 (M) which can be represented as

f =

1X
j=0

1X
m=1

�jm ajm; absolute convergence in Lloc1 (M), (95)

where ajm are (s; p)-Lip atoms according to (91), (92) and � 2 fMpq .

Furthermore,

kf jF s
pq(M)k � inf k� jfMpq k;

where the in�mum is taken over all representations (95) with � 2 fMpq .

(ii) Let

0 < p � 1; 0 < q � 1; �p < s < 1: (96)

Then Bs
pq(M) consists of all f 2 Lloc1 (M) which can be represented by

(95), where again ajm are (s; p)-Lip atoms and � 2 bMpq . Furthermore,

kf jBs
pq(M)k � inf k� jbMpqk;

where the in�mum is taken over all representations (95) with � 2 bMpq .
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Proof. Step 1. First we remark that f 2 Lloc1 (M) and the absolute

convergence in Lloc1 (M) in (95) are no additional restrictions but con-

sequences of the assumptions: Recall that we have for p, q, s given by

(96),

Bs
pq(R

n) � Lr(R
n) with s�

n

p
> �

n

r
and 1 � r � max(p; 1):

This is a well-known embedding theorem, [38], 2.3.3, 2.7.1. In particular

f 2 Lloc1 (M), and under the above assumption, (95) converges absolutely

in Lloc1 (M). Secondly, by 4.2 we must carry over the atomic representa-

tions from R
n to M via local charts. This will be done for the spaces

F s
pq(M) in the next step. As far as the spaces Bs

pq(M) are concerned

we are afterwards very much in the same situation as in case of corre-

sponding function spaces on Riemannian manifolds and on Lie groups.

We developed in [39], 7.3.2, technical instruments which can be applied

also to the above situation. In this way one can prove part (ii) of the

theorem under the assumption that part (i) holds.

Step 2. We prove the atomic representation for the spaces F s
pq(M).

Let gl = ( l f) Æ �
�1
l according to De�nition 6.3(i). Then gl can be

expanded in F s
pq(R

n) in the desired way, where we may assume that all

atoms ajm (in R
n) involved are supported in Wl given by (82). This

follows from the atomic representations as described in 4.2 where one

may assume that j = j0; j0 + 1; ::: and j0 2 N can be chosen arbitrarily

large (instead of j 2 N 0). These atoms can be transferred from R
n to

M via local charts. Then one gets atoms of type (91), (92). It remains

to clip together these local atomic representations. Let B(yl;�) be the

balls according to (81), now with l 2 N , and let fx
j
mg be the dyadic

grids in (90). Then we decompose the grids in (93), (94) by

Gl =
n
(j;m) : j 2 N 0, m 2 N , x

j
m 2 B(yl;�)

o
; l 2 N :

(There might be some overlaps, but this is immaterial for what follows).

By (94) we have

k� jfMpq k
p �

1X
l=1

Z
M

0
@ X

(j;m)2Gl

j�jm �
(p)
jm(x)j

q

1
A

p
q

�(dx):
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Hence one has again a localization principle for the spaces F s
pq(M) as

described in case of Rn in [39], 2.4.7. This results in the desired atomic

decomposition for F s
pq(M). We refer also to [41], Sect. 6, where we used

this decomposition technique extensively and in greater details.

Remark 6.7. We mentioned in 6.1 several other possibilities to intro-

duce function spaces on more general structures. This applies also to

Lipschitz manifolds and in particular to the concrete Lipschitz mani-

folds according to Remark 6.2. One can expect that for given p, q, s the

diverse possibilities to say what is meant by Bs
pq or F

s
pq always result in

the same spaces, hopefully.
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