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Abstract

It is proved that the Freudenthal compacti�cation of an open,
connected, oriented 3-manifold is a 3-fold branched covering of S3,
and in some cases, a 2-fold branched covering of S3:The branching
set is a locally �nite disjoint union of strings.

La compacti�caci�on de Freudenthal de una 3-variedad abierta
conexa y orientable es una cubierta de 3 hojas rami�cada sobre
S3 y, en ciertos casos, de dos hojas. La rami�caci�on es una uni�on
localmente �nita y disjunta de cuerdas.

1 Introduction

H. Hilden ([9],[10]) and the author ([16],[17]) proved independently that

every closed, oriented 3-manifold is a 3-fold, dihedral covering of S3,

branched over a knot. Bobby Neals Winters asked me, some years ago,

if such a result could be generalized to open 3-manifolds with the obvious

restrictions on the base space. The purpose of this paper is to answer

this question in the aÆrmative giving a proof of the following theorem.

Theorem 1. Let M be an open, connected, oriented 3-manifold. Let cM

denote its Freudenthal compacti�cation.Then, there exist a 3-fold simple

branched covering p : cM ! S3 such that p maps the end space E(M)

of M homeomorphically onto a tame subset T of S3:The 3-fold branched

covering p j M : M ! S3 � T is simple, and the branching set is a

locally �nite disjoint union of strings (properly embedded arcs).

The number of sheets in the statement of Theorem 1 cannot be

reduced to 2 (take cM to be any closed and oriented 3-manifold which
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is not a 2-fold branched covering of S3, [6] together with [4]; or [1]).

However there are cases in which the Freudenthal compacti�cation of

an open 3-manifold is a 2-fold branched covering of S3, and we will give

a suÆcient condition.

These results were announced in [19].

2 Some mixed preliminaries

Following Fox [5], we say that a space X is locally connected in a space

Y if there is a basis of Y such that V \X is connected for every basic

open set V . Freudenthal [7] (see [5]) has shown that every connected,

locally connected, locally compact, with base numerable, regular space

X is contained in a connected, locally connected, compact, with base

numerable, regular space Y in such a way that X is dense, open and

locally connected in Y , and the end space E(X) := Y � X is totally

disconnected. Moreover, this compacti�cation (Freudenthal compacti-

�cation) is determined by these properties. If the space X is a locally

�nite contractible, connected 1-complex �(a tree) we can de�ne an end

as an injective simplicial map e: [0;1) ! � , such that e(0) = v, where

v is a �xed base vertex of �, and the tree [0;1) has some �xed simplicial

structure. A co�nal of e will be e ([x;1)) for some x � 0: An open

neighbourhood of e will be the union of a connected component V of

�� (compact set), containing a co�nal of e, together with the set of

ends having co�nals in V .

Manifolds of dimension 2 and 3 in this paper will be separable metric

spaces. Then, they are triangulated by locally �nite simplicial complexes

[14] (see also[15]). An open 3-manifold will be, in this paper, a non

compact, connected, oriented, 3-manifold (with empty boundary). If M

is an open 3-manifold we denote by cM its Freudenthal compacti�cation

and by E(M) the end space cM �M . The starting point for the proof

of Theorem 1 is the following representation of open 3-manifolds due

to Hoste [11] (compare[3] and Lemma 8 in [12]). If M is an open,

connected, oriented 3-manifold there exist a sequence fM1;M2; :::g of

compact, connected submanifolds ofM such that eachMi is contained in

the interior ofMi+1; M is the union of theMi's; and no two components

of BdMi (the boundary of Mi) can be joined by a path in the closure of

M �Mi. Hoste [11] associates a locally �nite tree � (or �(M)) to M by
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placing one vertex in each connected component of Mi�IntMi�1for i =

1, and joining two vertices with an edge whenever those two components

share a common boundary. Note that the subspace � + E(M) of cM is

the Freudenthal compacti�cation of the tree �. Therefore, the end space

E(�) of � is the same as the end space E(M) of M .

A branched covering will be understood in the sense of Fox [5]. The

Compacti�cation Theorem of Fox [5],page 249, can be generalized easily

giving the following useful condition:

Theorem 2. Let f : X ! B be a branched covering. Assume X and

B are connected, locally connected, locally compact, with base numerable

and regular, but no compact.Let bB be the Freudenthal compacti�cation of

B, and let j be the inclusion j : B � bB . Let g : Y ! bB be the branched

covering which is the Fox completion of j Æ f : X ! bB. Then, Y is the

Freudenthal compacti�cation of X if bB has a basis such that, for each

basic open set W , the number of components of f�1(W ) is �nite.

3 A Lemma on compact 3-manifolds

The following Lemma is the building block to construct the proof of

Theorem 1. It generalizes to compact 3-manifolds with boundary the

Theorem of Hilden and the author refered to in the introduction. The

proof will be an adaptation of the argument in [18].

Lemma 3. Let X be a compact, oriented 3-manifold with n boundary

components � = �1+ :::+�n:Then, there exists a 3-fold simple covering

p : X ! S3
n
branched over a set of disjoint arcs with their ends in the

boundary of the n-punctured 3-sphere S3
n
, such that the restriction p j �i

is a 3-fold simple branched covering onto the i-th boundary component

Si of S
3
n
:

Proof. First cap-o� each boundary component �i of X with a handle-

body to obtain a closed, oriented 3-manifold Y . The handlebodies can be

viewed as regular neighbourhoods of disjoint �nite graphs Gi in Y . By a

Theorem of Lickorish [13] and Wallace [20] (independently) there exists

a link L in Y such that S3 can be obtained by integral Dehn-surgery

on L. Since G = [n

i=1
Gi is 1-dimensional we may assume that L does

not intersect G. Next, we use Hempel's trick [8] liberally to unknot and
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unlink the components of G and to unknot the components of L so that

�nally we arrive to the following surgery description of the pair (Y;G).

In S3 = R3+1 we place a graph F = F1+:::+Fn , where �(Fi) = �(Gi),

as follows. The component Fj of F is a union Cj +Tj +Hj of a bouquet

Cj of circles with common point (a; bj ; 0), lying in the (x; y)� plane and

symmetric with respect to the plane x = a (for some real number a), to-

gether with the\tail" Tj = f(x; bj ; 0) : �a � x � 2ag, together with the

set of half circles Hj with common point (�a; bj ; 0), lying in the (x; y)�

plane and symmetric with part of Cj with respect to the plane x = 0

(see Figure 1); the numbers b1 < b2 < ::: < bn are suitably selected. (We

remark that the number of half circles in Hj is the same as the number

of circles in Cj:)

Figure 1

Next, there is a link L made of unknoted components, disjoint from

F , whose projection in the (x; y)� plane has only double points and lies

entirely on the strip fz = 0; a < x < 2ag. Then (Y;G) is (S3; F ) in

which some integral Dehn-surgery is performed in the link L. (The link
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L depicted in Figure 1 exhibits all possible complications.)

Now we continue as in [18] but taking care of the extra-complication

produced by the eventual linking between L and F . The details are left

to the reader, but here are some guiding principles to the proof. The

main point is to symmetrize the surgery instructions given by the framed

link L;with respect to the standard 3-fold covering f : S3 ! S3, de�ned

by folding S3 around the axes x = 0, x = 2a of Figure 1.

Figure 2a Figure 2b

The space X The space S3n

This standard 3-fold covering f : S3 ! S3 is branched over the

trivial link of two components depicted in part as the two vertical lines

of Figure 2b. To achieve this symmetrization process we need to consider

�rst the link L1 = f�1 Æ f(L): This link L1 has three parts: left part

L1l, middle part L1mand right part L = L1r. Fuse each component of

the right part L1r with its symmetric partner in the middle part L1m by

the boundary of a band, so that the resulting trivial knot is symmetric

with respect to the 180 degree rotation around the axis x = a: We get

(L1m+L1r): Consider L2 = f�1 Æ f(L1m+L1r): Then L2 has two parts:

the right part L2r and the left part L2l. The left part L2l is a system of

arcs (and is negligeable for reasons to be explained latter) and the right

part L2r is (L1m+L1r): This right part L2r is not isotopic to the original

link L due to the introduction of undesired linking between components

of L1m themselves and between components of L1m and the circles of
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C1 [ ::: [ Cn. We get rid o� these undesired linking by applying again

Hempel's trick along the little circles shown in the area 0 < x < a of

Figure 2a. These circles K are to be made symmetric, but this time

with respect to the 180 degree rotation around axis x = 0. As we did

before with L; we consider K1 = f�1 Æ f(K). This link K1 has three

parts: left part K1l, middle part K = K1m and right part K1r. Fuse

each component of the middle part K1m with its symmetric partner in

the left part K1l by the boundary of a band, so that the resulting trivial

knot is symmetric with respect to the 180 degree rotation around the

axis x = 0: We get (K1m +K1l): Consider K2 = f�1 Æ f(K1m +K1l):

Then K2 has two parts: the right part K2r and the left part K2l. The

right part K2r is a system of arcs (and is negligeable for reasons to

be explained latter) and the left part K2l is (K1m + K1l):This time

K2l is isotopic to K outside L2 [K2r [ F . Adjust the framings of the

Dehn surgeries in L2r [K2l so that they provide a surgery description

of the pair (Y;G): The projection f(L2r [K2l) is shown in Figure 2b,

as a system of arcs with their end-points lying on the branching set

of the standard 3-fold covering f . Suitable modi�cations inside regular

neighbourhoods of these arcs are lifted to desired Dehn-surgeries in L2r[

K2l, and negligeable modi�cations inside regular neighbourhoods of the

arcs (L2l[K2r):(Modi�cations inside regular neighbourhoods of arcs are

called negligeable because they have no e�ect on the topology of the pair

(Y;G):) In this way the branched covering p : X ! S3
n
is constructed.

Figure 2 shows the construction of the branched covering p : X ! S3
n

for the example of Figure 1.

Note that the graph F is projected under the standard 3-fold cov-

ering in the disjoint union F 0 of n trees. Therefore this standard 3-fold

covering restricted to S3 � U(F ) has base space S3 � U(F 0) �= S3n. To

complete the proof we have to show that the branching set of the cov-

ering can be converted into a number of arcs running from component

to component of BdS3n. There are exactly g1 + g2 + :::+ gn +2n arcs in

the branching set, where gi = genus(�i). This is because the branched

covering restricted to �i is a 3-fold simple covering of Si with 2gi + 4

points of rami�cation.If the branching set of p : X ! S3
n
contains some

knots, they can be connected to the strings using moves as in [18]. This

completes the proof of the Lemma.
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4 Proof of Theorem 1

Let � be a tree representing the open, connected, oriented 3-manifold

M . Thus, to each vertex v of � is associated a compact, connected,

oriented 3-manifold Xv . The boundary components of Xv are in one to

one correspondence with the edges of � touching v. To each edge e of �

we associate an orientation reversing homeomorphism fe : �v;e ! �w;e

between the corresponding boundary components �v;e of Xv and �w;e

of Xw:The manifoldM is obtained by pasting together the pieces Xv by

means of the homeomorphisms fe:

The same tree � gives rise to another open, connected, oriented 3-

manifold S3
�
as follows. To each vertex v of � of valence nv corresponds a

copy S3
v
of the nv-punctured 3-sphere. These pieces are pasted together

by cylinders C3
e
= S2 � [0; 1] corresponding to the edges of �. (We

introduce these cylinders for technical reasons.) It is not hard to see that

the Freudenthal compacti�cation of S3
�
is S3 and that the end space T

is tamely embedded. In fact the Freudenthal compacti�cation of � can

be embedded in R2 in such a way that its end space T lies in a straigth

line (see [11]). In Figure 3 we see an example.

Figure 3

According to Lemma 3, for each vertex v of � we have a 3-fold simple

covering pv : Xv ! S3
v
branched over a disjoint union of arcs. Therefore,

for each edge e we have two 3-fold simple branched coverings obtained by
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restriction, namely pv j �v;e : �v;e ! Sv;e and pw j �w;e : �w;e ! Sw;e,

where the spheres Sv;e and Sw;e are the boundary components of the

cylinder Ce. According to a Theorem of Hilden [10] there exists an

orientation reversing homeomorphism be : Sv;e ! Sw;e such that (pw j

�w;e)Æfe = beÆ(pv j �v;e). We therefore can paste together the branched

coverings pv to obtain a 3-fold simple branched covering with total space

M and base space S3
�
. Its branching set is obtained by sewing together

the branching sets of the di�erent pv's by means of the braids associated

to the homeomorphisms be realized in the cylinders Ce: If this branching

set contains knots, they can be connected to suitable strings by using

moves as in the proof of Lemma 3. In this way we have constructed

a 3-fold simple branched covering p0 : M ! S3
�
with branching set a

locally �nite collection of disjoint strings.

Consider the inclusion j : S3 � S3
�
. Let p : M 0 ! S3 be the Fox

completion of j Æ p0 : M ! S3. The preimage p�1(t) , t 2 T , in this

branched covering, is composed precisely of one point because for every

open connected neighbourhood V of t in S3 the preimage (j Æ p0)�1V

is connected, as it is evident from the construction of the branched

covering p0. From this, and Theorem 2, it follows immediately that M 0

is in fact the Freudenthal compacti�cation of M and that p sends the

end space E(M) of M homeomorphically onto the tame subset T of S3:

Of course, the branched index of p�1(t) , t 2 T , is 3. This ends the proof

of Theorem 1.

Corollary 4. Let M be an open, connected, oriented 3-manifold with

just one end. Then there exist a 3-fold branched covering p : M ! R3

onto Euclidean 3-space branched upon a locally �nite disjoint union of

strings.

This is the case of the uncountably many open, contractible 3-manifolds.

In a forthcoming paper we will deal with some concrete examples.

5 2-fold coverings

In some cases it is possible to prove that a particular open 3-manifold

is a 2-fold branched covering of S3 � T .

Theorem 5. Let M be an open, connected, oriented 3-manifold such

that each vertex v of the tree �(M) corresponds to a compact, oriented
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3-manifold Xv such that (i) BdXv is composed of nv connected com-

ponents of genus 5 2, and (ii) Xv is a 2-fold branched covering of the

3-sphere minus the interior of nv disjoint 3-balls. Then, there exist a

2-fold branched covering p : cM ! S3 such that p maps the end space

E(M) of M homeomorphically onto a tame subset T of S3:The branch-

ing set of the 2-fold branched covering p jM :M ! S3�T is a locally

�nite disjoint union of knots and strings.

Proof. The 2-fold branched coverings pv : Xv ! S3v can be pasted

together. In fact, if f : �! S is a 2-fold branched covering of a surface

� of genus 5 2 onto the 2-sphere S, every homeomorphism of � is the

lifting of some homeomorphism of S, up to isotopy [2].

Corollary 6. The open contractible Whitehead manifold is a 2-fold

covering of R3 branched over a string.

In a forthcoming paper we will o�er a number of examples.
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