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REPRESENTING OPEN 3-MANIFOLDS AS
3-FOLD BRANCHED COVERINGS
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En recuerdo de mi padre, Lorenzo Montesinos

Abstract

It is proved that the Freudenthal compactification of an open,
connected, oriented 3-manifold is a 3-fold branched covering of S2,
and in some cases, a 2-fold branched covering of S3.The branching
set is a locally finite disjoint union of strings.

La compactificacién de Freudenthal de una 3-variedad abierta
conexa y orientable es una cubierta de 3 hojas ramificada sobre
S3 y, en ciertos casos, de dos hojas. La ramificacién es una unién
localmente finita y disjunta de cuerdas.

1 Introduction

H. Hilden ([9],[10]) and the author ([16],[17]) proved independently that
every closed, oriented 3-manifold is a 3-fold, dihedral covering of S3,
branched over a knot. Bobby Neals Winters asked me, some years ago,
if such a result could be generalized to open 3-manifolds with the obvious
restrictions on the base space. The purpose of this paper is to answer
this question in the affirmative giving a proof of the following theorem.

Theorem 1. Let M be an open, connected, oriented 3-manifold. Let M
denote its Freudenthal compactification. Then, there exist a 3-fold simple
branched covering p: M — S* such that p maps the end space E(M)
of M homeomorphically onto a tame subset T of S3.The 3-fold branched
covering p| M : M — S* —T is simple, and the branching set is a
locally finite disjoint union of strings (properly embedded arcs).

The number of /slleets in the statement of Theorem 1 cannot be
reduced to 2 (take M to be any closed and oriented 3-manifold which
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is not a 2-fold branched covering of S2, [6] together with [4]; or [1]).
However there are cases in which the Freudenthal compactification of
an open 3-manifold is a 2-fold branched covering of S3, and we will give
a sufficient condition.

These results were announced in [19].

2 Some mixed preliminaries

Following Fox [5], we say that a space X is locally connected in a space
Y if there is a basis of Y such that V N X is connected for every basic
open set V. Freudenthal [7] (see [5]) has shown that every connected,
locally connected, locally compact, with base numerable, regular space
X is contained in a connected, locally connected, compact, with base
numerable, regular space Y in such a way that X is dense, open and
locally connected in Y, and the end space E(X) := Y — X is totally
disconnected. Moreover, this compactification (Freudenthal compacti-
fication) is determined by these properties. If the space X is a locally
finite contractible, connected 1-complex I'(a tree) we can define an end
as an injective simplicial map e: [0,00) — I' , such that e(0) = v, where
v is a fixed base vertex of I', and the tree [0, c0) has some fixed simplicial
structure. A cofinal of e will be e ([z,00)) for some z > 0. An open
neighbourhood of e will be the union of a connected component V' of
'— (compact set), containing a cofinal of e, together with the set of
ends having cofinals in V.

Manifolds of dimension 2 and 3 in this paper will be separable metric
spaces. Then, they are triangulated by locally finite simplicial complexes
[14] (see also[15]). An open 3-manifold will be, in this paper, a non
compact, connected, oriented, 3-manifold (with empty boundary). If M
is an open 3-manifold we denote by M its Freudenthal compactification
and by E(M) the end space M —M. The starting point for the proof
of Theorem 1 is the following representation of open 3-manifolds due
to Hoste [11] (compare[3] and Lemma 8 in [12]). If M is an open,
connected, oriented 3-manifold there exist a sequence {Mj, Ms,...} of
compact, connected submanifolds of M such that each M; is contained in
the interior of M;1; M is the union of the M;’s; and no two components
of BdM; (the boundary of M;) can be joined by a path in the closure of
M — M;. Hoste [11] associates a locally finite tree I' (or I'(M)) to M by
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placing one vertex in each connected component of M; —IntM;_,for 1 =
1, and joining two vertices with an edge whenever those two components
share a common boundary. Note that the subspace I' + E(M) of M is
the Freudenthal compactification of the tree I'. Therefore, the end space
E(T) of T' is the same as the end space E(M) of M.

A branched covering will be understood in the sense of Fox [5]. The
Compactification Theorem of Fox [5],page 249, can be generalized easily
giving the following useful condition:

Theorem 2. Let f : X — B be a branched covering. Assume X and
B are connected, locally connected, locally compact, with base numerable
and reqular, but no compact. Let B be the Freudenthal compactification of
B, and let j be the inclusion j : B C B . Let g:Y — B be the branched
covering which is the Fox completion of jof : X — B. Then, Y 1is the
Freudenthal compactification of X if B has a basis such that, for each
basic open set W, the number of components of f~1(W) is finite.

3 A Lemma on compact 3-manifolds

The following Lemma is the building block to construct the proof of
Theorem 1. It generalizes to compact 3-manifolds with boundary the
Theorem of Hilden and the author refered to in the introduction. The
proof will be an adaptation of the argument in [18].

Lemma 3. Let X be a compact, oriented 3-manifold with n boundary
components ¥ = 31+ ...+ Xy,. Then, there exists a 3-fold simple covering
p: X — S3 branched over a set of disjoint arcs with their ends in the
boundary of the n-punctured 3-sphere S, such that the restriction p | 3;
is a 3-fold simple branched covering onto the i-th boundary component

S; of S3.

Proof. First cap-off each boundary component ¥; of X with a handle-
body to obtain a closed, oriented 3-manifold Y. The handlebodies can be
viewed as regular neighbourhoods of disjoint finite graphs G; in Y. By a
Theorem of Lickorish [13] and Wallace [20] (independently) there exists
a link L in Y such that S can be obtained by integral Dehn-surgery
on L. Since G = Uj_,G; is 1-dimensional we may assume that L does
not intersect G. Next, we use Hempel’s trick [8] liberally to unknot and
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unlink the components of G and to unknot the components of L so that
finally we arrive to the following surgery description of the pair (Y, G).
In S3 = R¥*+00 we place a graph F = Fy+...+F, , where x(F;) = x(G;),
as follows. The component F} of F' is a union C; + T} + H; of a bouquet
C; of circles with common point (a, bj,0), lying in the (z,y)— plane and
symmetric with respect to the plane z = a (for some real number a), to-
gether with the“tail” T; = {(,b;,0) : —a < z < 2a}, together with the
set of half circles H; with common point (—a, b;,0), lying in the (z,y)—
plane and symmetric with part of C; with respect to the plane z = 0
(see Figure 1); the numbers b; < by < ... < b, are suitably selected. (We
remark that the number of half circles in Hj is the same as the number
of circles in Cj.)

y
. W c. .
T, ). _
/ L
W, c \
W T 3/
>
—a o aQ Za

Figure 1

Next, there is a link L made of unknoted components, disjoint from
F', whose projection in the (z,y)— plane has only double points and lies
entirely on the strip {# = 0,a < < 2a}. Then (Y,G) is (S%,F) in
which some integral Dehn-surgery is performed in the link L. (The link

536 REVISTA MATEMATICA COMPLUTENSE
Vol. 15 Num. 2 (2002), 533-542



J. M. MONTESINOS-AMILIBIA REPRESENTING OPEN 3-MANIFOLDS AS 3-FOLD. ..

L depicted in Figure 1 exhibits all possible complications.)

Now we continue as in [18] but taking care of the extra-complication
produced by the eventual linking between L and F. The details are left
to the reader, but here are some guiding principles to the proof. The
main point is to symmetrize the surgery instructions given by the framed
link L,with respect to the standard 3-fold covering f : S — S3, defined
by folding S3 around the axes x = 0, z = 2a of Figure 1.

Figure 2a Figure 2b
The space X The space S3

This standard 3-fold covering f : S — S is branched over the
trivial link of two components depicted in part as the two vertical lines
of Figure 2b. To achieve this symmetrization process we need to consider
first the link Ly = f o f(L). This link L; has three parts: left part
Ly, middle part Liyand right part L = Ly,.. Fuse each component of
the right part Ly, with its symmetric partner in the middle part Li,, by
the boundary of a band, so that the resulting trivial knot is symmetric
with respect to the 180 degree rotation around the axis z = a. We get
(L1 + L1y). Consider Ly = f o f(Lyy + L1,). Then Ly has two parts:
the right part Lo, and the left part Lo;. The left part Lo; is a system of
arcs (and is negligeable for reasons to be explained latter) and the right
part Lo, is (L1, + L1,). This right part Lo, is not isotopic to the original
link L due to the introduction of undesired linking between components
of Ly, themselves and between components of Ly,, and the circles of
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CiU...UC,. We get rid off these undesired linking by applying again
Hempel’s trick along the little circles shown in the area 0 < z < a of
Figure 2a. These circles K are to be made symmetric, but this time
with respect to the 180 degree rotation around axis z = 0. As we did
before with L, we consider K; = f ! o f(K). This link K; has three
parts: left part Ky;, middle part K = Ky,, and right part Ky,. Fuse
each component of the middle part Ki,, with its symmetric partner in
the left part Kq; by the boundary of a band, so that the resulting trivial
knot is symmetric with respect to the 180 degree rotation around the
axis z = 0. We get (K1, + Ky;). Consider Ky = f~' o f(Kim + Ky).
Then Kj has two parts: the right part Ky, and the left part Ko. The
right part Ko, is a system of arcs (and is negligeable for reasons to
be explained latter) and the left part Ky is (Ky,, + Ki;).This time
Ky, is isotopic to K outside Ly U Ko, U F'. Adjust the framings of the
Dehn surgeries in Lo, U Ko9; so that they provide a surgery description
of the pair (Y,G). The projection f(Ls, U Ky) is shown in Figure 2b,
as a system of arcs with their end-points lying on the branching set
of the standard 3-fold covering f. Suitable modifications inside regular
neighbourhoods of these arcs are lifted to desired Dehn-surgeries in Lo, U
Ky, and negligeable modifications inside regular neighbourhoods of the
arcs (Lo U Ky,).(Modifications inside regular neighbourhoods of arcs are
called negligeable because they have no effect on the topology of the pair
(Y,@).) In this way the branched covering p : X — S is constructed.
Figure 2 shows the construction of the branched covering p : X — S3
for the example of Figure 1.

Note that the graph F' is projected under the standard 3-fold cov-
ering in the disjoint union F’ of n trees. Therefore this standard 3-fold
covering restricted to S® — U(F) has base space S — U(F') = S3. To
complete the proof we have to show that the branching set of the cov-
ering can be converted into a number of arcs running from component
to component of BdS?. There are exactly g1 + g + ... + gn + 2n arcs in
the branching set, where g; = genus(X;). This is because the branched
covering restricted to ¥; is a 3-fold simple covering of S; with 2¢g; + 4
points of ramification.If the branching set of p: X — S3 contains some
knots, they can be connected to the strings using moves as in [18]. This
completes the proof of the Lemma.
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4 Proof of Theorem 1

Let T be a tree representing the open, connected, oriented 3-manifold
M. Thus, to each vertex v of I is associated a compact, connected,
oriented 3-manifold X,. The boundary components of X, are in one to
one correspondence with the edges of I' touching v. To each edge e of T’
we associate an orientation reversing homeomorphism f, : 3, . — Yy ¢
between the corresponding boundary components ¥, . of X, and ¥, .
of Xy,.The manifold M is obtained by pasting together the pieces X, by
means of the homeomorphisms f,.

The same tree I' gives rise to another open, connected, oriented 3-
manifold S? as follows. To each vertex v of I of valence n, corresponds a
copy S2 of the n,-punctured 3-sphere. These pieces are pasted together
by cylinders C3 = S% x [0,1] corresponding to the edges of I'. (We
introduce these cylinders for technical reasons.) It is not hard to see that
the Freudenthal compactification of S2 is S3 and that the end space T
is tamely embedded. In fact the Freudenthal compactification of I" can
be embedded in R? in such a way that its end space T lies in a straigth
line (see [11]). In Figure 3 we see an example.

Figure 3

According to Lemma 3, for each vertex v of I' we have a 3-fold simple
covering p, : X, — S branched over a disjoint union of arcs. Therefore,
for each edge e we have two 3-fold simple branched coverings obtained by

539 REVISTA MATEMATICA COMPLUTENSE
Vol. 15 Num. 2 (2002), 533-542



J. M. MONTESINOS-AMILIBIA REPRESENTING OPEN 3-MANIFOLDS AS 3-FOLD. ..

restriction, namely p, | Xy ¢ : 8y e = Spe and py | e : Bye = Swe,
where the spheres S, . and S, . are the boundary components of the
cylinder C.. According to a Theorem of Hilden [10] there exists an
orientation reversing homeomorphism b, : S, — Sy, such that (p, |
Yw,e)0fe =beo(py | Bye). We therefore can paste together the branched
coverings p, to obtain a 3-fold simple branched covering with total space
M and base space S2. Its branching set is obtained by sewing together
the branching sets of the different p,’s by means of the braids associated
to the homeomorphisms b, realized in the cylinders C,. If this branching
set contains knots, they can be connected to suitable strings by using
moves as in the proof of Lemma 3. In this way we have constructed
a 3-fold simple branched covering p’ : M — S3 with branching set a
locally finite collection of disjoint strings.

Consider the inclusion j : S € 82 . Let p : M’ — S° be the Fox
completion of jop’ : M — S3. The preimage p '(t) , t € T , in this
branched covering, is composed precisely of one point because for every
open connected neighbourhood V' of ¢ in S? the preimage (5 o p') 'V
is connected, as it is evident from the construction of the branched
covering p’. From this, and Theorem 2, it follows immediately that M’
is in fact the Freudenthal compactification of M and that p sends the
end space E(M) of M homeomorphically onto the tame subset 7' of S3.
Of course, the branched index of p~!(¢) , t € T, is 3. This ends the proof
of Theorem 1.

Corollary 4. Let M be an open, connected, oriented 3-manifold with
just one end. Then there exist a 3-fold branched covering p: M — R>
onto Euclidean 3-space branched upon o locally finite disjoint union of
strings.

This is the case of the uncountably many open, contractible 3-manifolds.
In a forthcoming paper we will deal with some concrete examples.

5 2-fold coverings

In some cases it is possible to prove that a particular open 3-manifold
is a 2-fold branched covering of S — T

Theorem 5. Let M be an open, connected, oriented 3-manifold such
that each vertex v of the tree I'(M) corresponds to a compact, oriented
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3-manifold X, such that (i) BdX, is composed of n, connected com-
ponents of genus < 2, and (ii) X, is a 2-fold branched covering of the
3-sphere minus the interior of n, disjoint 3-balls. Then, there exist a
2-fold branched covering p : M — S such that p maps the end space
E(M) of M homeomorphically onto a tame subset T of S3.The branch-
ing set of the 2-fold branched covering p|M : M — S —T is a locally
finite disjoint union of knots and strings.

Proof. The 2-fold branched coverings p, : X, — S7 can be pasted
together. In fact, if f : ¥ — S is a 2-fold branched covering of a surface
Y of genus < 2 onto the 2-sphere S, every homeomorphism of ¥ is the
lifting of some homeomorphism of S, up to isotopy [2].

Corollary 6. The open contractible Whitehead manifold is a 2-fold
covering of R® branched over a string.

In a forthcoming paper we will offer a number of examples.
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