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Abstract

This paper is concerned with systems with control whose state
evolution is described by linear skew-product semiflows. The con-
nection between uniform exponential stability of a linear skew-
product semiflow and the stabilizability of the associated system
is presented. The relationship between the concepts of exact con-
trollability and complete stabilizability of general control systems
is studied. Some results due to Clark, Latushkin, Montgomery-
Smith, Randolph, Megan, Zabczyk and Przyluski are generalized.

1 Introduction

A central concern in the study of infinite-dimensional linear control sys-
tems with unbounded coefficients is to establish the connections between
their asymptotic behaviour and their controllability. It is well known
that in Hilbert spaces for a linear control system associated to a Cjy
- group its exact controllability is equivalent to its exponential stabi-
lizability backward and forward in time (see [9], [12], [21]). Another
important result, in Banach spaces, expresses the relation between uni-
form exponential stability of an evolution family and the stabilizability
and detectability, respectively, of the associated linear control system
([7]).

In recent years, the theory of linear skew-product semiflows has been
developed and used to study the asymptotic behaviour of time-varying
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linear systems ([18]). This approach led to the generalization of some
classical theorems of dichotomy and stability (see [2]-[6], [10], [11], [13],
14]).

Naturally, the question arises whether the connection between sta-
bilizability and controllability can be extended to systems associated to
linear skew-product semiflows.

The purpose of this paper is to answer this question. We shall con-
sider an abstract generalization of systems described by differential equa-
tions of the form

{:’U(t) = A(o(0,t)x(t) + B(o(0,t))u(t)
y(t) = C(a(0,1))a(t)

where o is a semiflow on a locally compact metric space ©. For every 6 €
©, the operators A(f) are generally unbounded operators on a Banach
space X, while the operators B(6) € B(U,X), C(0) € B(X,Y), where
U, Y are Banach spaces.

We establish the connection between the uniform exponential sta-
bility of a linear skew-product semiflow and the stabilizability and de-
tectability, respectively, of the associated control system, using a genera-
lization of a well-known stability theorem of Datko ([8]). Thus we extend
a theorem of Clark, Latushkin, Montgomery-Smith and Randolph ([7]).

We also study the relation between the complete stabilizability and
exact controllability of a control system associated to a linear skew-
product semiflow. The results obtained here generalize some theorems
due to Megan, Zabczyk and Przyluski (see [12], [17] and [21]).

2 Preliminaries

Let X be a Banach space, let (©,d) be a locally compact metric space
and let £ = X x © . We denote by B(X) the Banach algebra of all
bounded linear operators from X into itself and by Ry = [0, 00).

Definition 2.1. A mapping 0 : © x Ry — 0O is called a semiflow on
O, if it has the following properties:

(i) 0(0,0) =0, forall 6 € O;
(ii) o(0,s +t) =0o(c(0,s),t), for all (0,s,t) € © x R%;
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(iii) o is continuous.

Definition 2.2. A pair m = (®,0) is called a linear skew-product semi-
flow on & =X x O if o is a semiflow on © and ® : © x Ry — B(X)
satisfies the following conditions:

(i) ®(0,0) = I, the identity operator on X, for all 6 € ©;

(i) 90,1+ ) = B((6,0).)9(6.1), for all (6.1.5) € © x R (the
cocycle identity);

(iii) (0,t) — @(0,t)x is continuous, for every x € X;

(iv) there are M > 1 and w > 0 such that

|@(0,1)]| < Me*! (2.1)
for all (0,t) € ©® x Ry

The mapping ® given by Definition 2.2. is called the cocycle associ-
ated to the linear skew-product semiflow = = (®,0).

Remark 2.1. If 7 = (®,0) is a linear skew-product semiflow on & =
X x © then for every § € R the pair 713 = (®g,0), where ®5(6,t) =
e PLd(0,t) for all (0,t) € © x Ry, is also a linear skew-product semiflow
on & =X x0.

Example 2.1. Let © be a locally compact metric space, let ¢ be a
semiflow on © and let T = {T'(¢) };>0 be a Cp - semigroup on X. Then
the pair mp = (®p,0), where

Or(0,t) =T(t)

for all (0,t) € © x Ry, is a linear skew-product semiflow on £ = X x O,
which is called the linear skew-product semiflow generated by the Cy -
semigroup T and the semiflow o.

Example 2.2. Let © = R, 0(0,t) =0+t and let U = {U(t, s) }+>s>0
be an evolution family on the Banach space X. We define

o(0,t) = U(t+6,0)
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for all (6,¢t) € R%. Then 7 = (®,0) is a linear skew-product semiflow
on & = X x O called the linear skew-product semiflow generated by the
evolution family U.

Example 2.3. Let X be a Banach space, © be a compact metric space
and let 0 : © x Ry — O be a semiflow on ©. Let A: © — B(X) be
a continuous mapping. If ®(6,t) denotes the solution operator of the
linear differential system

a(t) = A(o(0,t) u(t), > 0.

then the pair 7 = (®, o) is a linear skew-product semiflow on & = X x 0.
Often, these equations arise from the linearization of nonlinear evolution
equations (see e.g. [18] and the references therein).

Example 2.4. On the Banach space X, we consider the time-varying
differential equation

z(t) = a(t)z(t), t>0

where a : Ry — R is a continuous function such that there exists
= tlim a(t) < oo.
—00
Let C(R4,R) be the space of all continuous functions f : Ry — R.
This space is metrizable with the metric

R
= 1 (z,y)’
where d,,(z,y) = sup |z(t) — y(t)].
te0,n]
If we denote by as(t) = a(t + s) and by © = closure {as : s € Ry}
then
c:0xRy —0, o0,t)(s):=0(t+s)

is a semiflow on ©,
t
B:0 xRy — BX), 0,1z = e:np(/ 0(r) dr) x
0
is a cocycle and hence 7 = (¥, 0) is a linear skew-product semiflow on

E=X x0.
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If U, Y are Banach spaces we denote by B(U,Y) the space of all
bounded linear operators from U into Y. If © is a locally compact metric
space, we denote by Cs(©, B(U,Y")) the space of all strongly continuous
bounded mappings H : ©® — B(U,Y), which is a Banach space with
respect to the norm

|[H || := sup [|H(6)]].
0cO
If H € Cs(0,B(U,Y)) and G € Cs(0,B(Y, Z)) we shall denote by GH
the mapping © 3 6 — G(6)H (0).

Theorem 2.1. Let 7 = (®,0) be a linear skew-product semiflow on
E=Xx0O. IfPe(Cs(0,B(X)) there is an unique linear skew product
semiflow mp = (Pp,o) on X X © such that

Op(0,t)r =D(0,t)x + /Ot O(0(0,s),t—s)P(a(0,s)) Pp(d,s)xds (2.2)

for all (z,0,t) € X x © x Ry

Proof. First, we shall show that for every § € © and every t > 0 the
integral equation (2.2) has a solution which is a bounded linear operator
on X. Therefore we define:

Do(0,t)r = 0(0,t)x
and .
Oy(0,t)x = /0 ®(0(0,s),t—s)P(a(8,s)) Po(0,s)zds

for all (z,0,t) € X x © x Ry.
Let M and w given by (2.1). We have

191(0,0)]] < M?||P||t e,

for all (0,t) € © x R;. We prove that for every z € X the function
(0,t) — ®1(0,t)x is continuous. Let z € X and (6p,t0) € © x R
Because (0, d) is a locally compact metric space there exists r > 0 such
that V = Dy(0o,r) is a compact neighbourhood of 6.

Let € > 0. For h > 0 and 6 € V we have:

to
[@1(6, 0 + h)x — @1 (6o, to) || S/ |18, h, s) — (60,0, 5)|[ ds +
0
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to+h
+/ 1B(0(0, ), t0 + h — 5) P(0(0, 5)) (6, 5)| ds
to
where:

w:V x[0,1] x [0,t] — X,

©(0,h,s) =®(c(0,s),to+h—s)P(c(0,s))P(0,s)x.

The function ¢ is continuous on V' x [0, 1] x [0,%0] and hence it is
uniformly continuous. Then there exist §; € (0,1) and r; € (0,7) such

that
€

2(to+ 1)
for all (6, h,s),(0',h',s") € Vx[0,1]x[0,to] with |h—h'| < d1,|s—s| < 01
and d(0,0") < 1.

Let § € (0,41) such that

H§0(97 hv S) - @(el’h/’sl)H < (23)

to+h
/ |®(0(6,5),to + h — s) P(c(6, 5)) B8, s)x|| ds <

to
< h M2 [P [a] < 3, (24)
for all h € [0,4). Using (2.3) and (2.4) we obtain that
[|@1(0,t0 + h)x — ®1(0, to)x|| < e (2.5)

for all h € [0,8) and 8 € Dg(fo, r1).
Similary, one can show that there is d € (0,0) and 7o € (0,71) such
that
H(I)l(G,to — h)w — @1(90,150)3?” <e€
for all h € (0,0) and 6 € Dg(6g,70), so the function (0,t) — ®1(6,t)x is
continuous on © x R, for every z € X.
Inductively we define

D,11(0,t)x = /0 O(o(0,s),t—s)P(a(b,s)) P,(0,s)xds,

for all (n,0,t,2) € N x © x Ry x X. Then for every n € N and z € X
the function (0,t) — ®,(0,t)x is continuous on © x Ry and

(M| P[[t)"

a0, )] < M et 20

; (2.6)
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for all (n,0,t) € N x © x R,. It has sense to define:

Dp(h,1) = i D,(0,1), (2.7)
n=0

for all (0,t) € © x Ry. So ®p(0,0) = I for every § € O. Using (2.6) we
obtain that for every t > 0 and § € © ®p(6,t) € B(X) and

|®p(0,1)]] < Me(erMHPH)Q

for all (6,t) € © x R.

Let z € X, (6, t0) € © x R4 and let V' be a compact neighbourhood
of fy. Since the series (2.7) converges uniformly on V x [0,¢y + 1] by
the continuity of ®,,, we obtain that the function (6,t) — ®p(0,t)z is
continuous in (g, tg). Moreover:

Op(0,t)r = B0, )+ Y Dn(f,t)r =
n=1

— 0,0+ /0 B(o(0,5),t — 5) P(0(0, ) By 1 (6, 8z ds —
n=1

:<I>(9,t):c+/0 B(c(0,5),t — 5) P(0(0,5)) ®p(6, 5)z ds,

so ®p verifies the equation (2.2).

Using (2.2) and Gronwall’s lemma it is easy to show that ®p verifies
the cocycle identity.

Finally, suppose that ®’ is a cocycle which verifies (2.2). Then we
have:

t

00, )0, 101] < [ DIPI [0 (0, )0~ (0, ds.
0

From Gronwall’s lemma it follows that ®p(6,t) = ®(0,t), for all t > 0

and 0 € ©.

Remark 2.2. The linear skew-product semiflow 7p = (®p, o) given by
Theorem 2.1. is called the linear skew-product semiflow generated by the
pair (m, P).
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Corollary 2.1. Let 7 = (®,0) be a linear skew-product semiflow on
E=Xx0. If P € Cs(0,B(X)) then the linear skew-product semiflow
wp = (Pp,o) generated by the pair (w, P) verifies the equation

(I)p(e, t)l‘ =

= <I>(0,t)x+/0 Dp(o(d,s),t—s)) P(a(8,s)) ®(0,s)xds (2.8)

for all (0,t,z) € © x Ry x X.
Proof. It is easy to verify that

D, (0,t) = D,(0,1), (2.9)
for all (n,0,t) € N x © x R, where ®,(6,t) is defined by:

Dy(0,t) = D(0,1)

D, (0,t)x = /0 ®,_1(0(0,s),t —s)P(c(0,s)) ®(0,s)xds

for all (n,t,0,z) € N* x Ry x © x X. Then using (2.7) and (2.9) we
obtain

Op(0,t)r = D(0,t)x + i D, (0,t)x =
n=1
= ®(0,t)x + Z/ D, 1(c(0,5),t — s)P(0(6,5) (0, s)x ds =
n=1 0

=®(0,t)r + /0 Sp(o(,s),t —s)P(a(d,s))P(0,s)xds,

for all (z,0,t) € £ x R4, which ends the proof.

Definition 2.3. A linear skew-product semiflow 7 = (®,0) on & =
X X © is called uniformly exponentially stable if there are N > 1 and
v > 0 such that

12(0,)|| < Ne™™*

for all (0,t) € ©® x Ry.

Example 2.5. Consider the linear skew-product semiflow 75 = ($g, 0)
where

Ds(0,t) = e P D(0,1), BERy
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and m = (®,0) is the linear skew-product semiflow given in Example
2.4. It is easy to see that mg is uniformly exponentially stable if and
only if § > «a.

A sufficient condition for uniform exponential stability of linear skew-
product semiflows is given by:

Proposition 2.1. Let = (®,0) be a linear skew-product semiflow on
E =X x 0. If there are tyo > 0 and c € (0,1) such that

12(6, 1) < c,

for all 0 € ©, then m = (®,0) is uniformly exponentially stable.
Proof. Let M > 1 and w > 0 given by (2.1) and let v > 0 such that

c=e Vo,

Let 6 € ©. For every t € Ry there are n € N and r € [0,%p) such
that ¢ = nty + r. Then we obtain:

120, 1)[| < [|@( (6, nto), r)|| |©(8, nto)|| < Me"0 e < Ne™™",

where N = Me@t)t_So 7 is uniformly exponentially stable.

Now, we give a characterization of uniform exponential stability of linear

skew-product semiflows, which generalizes the well-known theorem of
Datko ([8]).

Theorem 2.2. The linear skew-product semiflow m = (®,0) is uni-
formly exponentially stable if and only if there are K > 0 and p > 1
such that

| .l < Kol (2.10)
0

for all (x,0) € &.

Proof. Necessity. If m = (®,0) is uniformly exponentially stable and
N > 1, v > 0 are given by Definition 2.3. it follows that

> NP
/ |20, )| [P dt < — |[[[",
0 vp

for all (z,0) € £ and p > 1.
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Sufficiency. Let t > 1 and m = fol M~ Pe P¥Tdr where M > 1 and
w > 0 are given by (2.1). Then using the cocycle identity we obtain
from (2.10) that

t
ml|B(0, t)z|[P < ||B(0, t)z]]? / MPepolt=s) gg <
0

t
< / 1B(6, )| [Pds < K |||
0
and hence

190,011 < 34, = mas {ares, (57}
for all (¢,0) € Ry x ©. Setting to = 2P MV K we deduce:
tllo(@.to)ell < 217 [ 06, spalP ds < K |l
and hence [|®(6,t)|| < 3, for all § € ©. From Proposition 2.1. it results

that 7 is uniformly exponentially stable.

We denote by M(X) the linear space of all strongly Bochner mea-
surable functions u : R4 — X identifying the functions which are equal
almost everywhere. For every p € [1,00) the linear space

PRy, X) = {u € M(X) : /OOO [u(t)|[Pdt < o0}

is a Banach space with respect to the norm:

fully = ([ Hu(t)det)é .

We shall denote by Lj, (R4, X) the set of all locally integrable func-
tions u: Ry — X.

Let U, Y be two Banach spaces and
{A9 : Llloc(R+7 U) - Llloc(R+7Y)’ NS 6}
a family of linear operators.

Definition 2.4. The family { Ag}oco is said to be uniformly (LP (R4, U),
LP(R4,Y)) - stable if the following conditions are satisfied:
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(i) Agu € LP(R4,Y), for all (u,0) € LP(R4,U) x ©;

(ii) there is L >0 such that [|Agu|l, < Ll||ullp, for all (u,6) €
LP(R4,U) x ©.

Remark 2.3. If the families {Ap}lgco, {Byploco are uniformly
(LP(R4+,U), LP(R4,Y)) - stables and the family {Cp}gco is uniformly
(LP(R4y,Y), LP(R4, Z)) - stable then

(i) the family {Ap + Bploco is uniformly (LP(Ry,U), LP(R4,Y)) -
stable;

(i) the family {CpAp}oco is uniformly (LP(R4,U), LP(R4, Z)) - sta-
ble.

Let m = (®,0) be a linear skew-product semiflow on £ = X x ©. For
every 6 € © we define the operator

Pyt Lpo(Ry, X) — Lo (R, X), (Ppu)(t) = / B(0(6, 5),t — s)u(s) ds
(2.11)

Another characterization of uniform exponential stability of linear
skew-product semiflows has been treated in [13] and it is given by:

Theorem 2.3. Let m = (®,0) be a linear skew-product semiflow on
E =X x 0. Then 7 is uniformly exponentially stable if and only if the
family {Pp}oco is uniformly (LP(R4+, X), LP(R4, X)) - stable.

Proof. see [13], Theorem 3.2.

Remark 2.4. The above result is an extension of a well-known theorem
of Perron type, proved by Datko in [8]. Other approaches of this the-
orem have been presented by Neerven in [16] for the particular case of
Cp-semigroups, employing a complex analysis technique and by Clark,
Latushkin, Montgomery-Smith and Randolph in [7], for the case of evo-
lution families, applying Neerven’s result for the associated evolution
semigroup.
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3 Stabilizability and detectability of linear
control sytems

In this section we shall establish the connection between the uniform
exponential stability of a linear skew-product semiflow and the stabi-
lizability and detectability of the system associated to the linear skew-
product semiflow. Thus, we shall extend a result due to Clark, La-
tushkin, Montgomery-Smith and Randolph ([7]).

Let X, Y, U be Banach spaces and let © be a locally compact metric
space. Let B € C5(0©,B(U, X)) and C € C4(0,B(X,Y)). Let 7 = (®,0)
be a linear skew-product semiflow on £ = X x ©.

Consider the system S = (7, B, C') described by the following integral
model

x(0,t,x0,u) = @(0,t)xo+ fot ®(0(0,s),t—s)B(o(6,s))u(s)ds
y(0,t,x0,u) = C(o(6,t))z(0,t,x0,u)

where t > 0, (z9,0) € €,p € [1,00) and u € L} (R4, U).

Definition 3.1. The system S = (w, B,C) is called:

(1) stabilizable if there exists F' € C5(©,B(X,U)) such that the li-
near skew-product semiflow rgr = (Ppp,0) generated by the pair
(m, BF') is uniformly exponentially stable;

(ii) detectable if there exists K € Cs(©,B(Y, X)) such that the li-
near skew-product semiflow nxc = (Prc, o) generated by the pair
(m, KC) is uniformly exponentially stable.

For every 6 € © we define the operators
Bp : Lige(R+,U) = Lige(R4, X),  (Bou)(t) = B(o(6,1))ul(t)
09 : Llloc(R+¢ X) - Llloc(RJra Y)7 (CGU)(t) = 0(0(9, t))u(t)

Theorem 3.1. Let m = (®,0) be a linear skew-product semiflow on
E =X x0, let {P(0)}gpco the family associated to w by relation (2.11)
and let p € [1,00). The following assertions are equivalent:
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(i) = is uniformly exponentially stable;

(i) the system S = (m, B, C) is stabilizable and the family {PyBp}oco
is uniformly (LP(R4+,U), LP(Ry, X)) - stable;

(iii) the system S = (w, B,C) is detectable and the family {CoPp}oco
is uniformly (LP(Ry, X), LP(R4+,Y)) - stable;

(
(iv) the system S = (mw, B,C) is stabilizable, detectable and the family
{CyPyByg}oco is uniformly (LP(R4+,U), LP(R4,Y)) - stable.

Proof. (i) = (ii) Since m is uniformly exponentially stable,
according to Theorem 2.3., the family {FPyp}pco is uniformly
(LP(R4, X), LP(R4, X)) - stable. Because

[ Boullp < [|B[|[ullp,

for all (u,0) € LP(R4,U) x O, it follows that the family {By}oco is
uniformly (LP(R4,U), LP(R4, X)) - stable, so from Remark 2.3. the
family {PyBp}oco is uniformly (LP(R4,U), LP(R4, X)) - stable.

The implications (i) = (iii) and (i) = (iv) can be obtained in an
analogous manner.

(ii) = (i) Let F' € C5(©,B(X,U)) such that ngr = (Ppp, o) is uni-
formly exponentially stable. For every 6§ € © we consider the operators

Gy Llloc(R+7X) - Llloc(R+’X)7 (Geu)(t) = /0 q)BF(O-(H? 8)7t - S)U’(S) ds

Fy : Lige(Ri, X) = Ligo(R4,U),  (Fou)(t) = F(o(6,))u(t).

Because mpp is uniformly exponentially stable the family {Gg}oco is
uniformly (LP(R4, X), LP(R4, X)) - stable.
Let € ©,¢t >0 and u € L} (R, X). Using Fubini’s theorem we
obtain
(PgB@FgG@U)(If) =

= /O /OS O(0(0,s),t —s)B(a(0,5))F(c(8,s)Ppr(c(0,7),s — T)u(r)drds =

= /0 / D(a(8,s),t —s)B(a(0,5))F(0(8,s)Ppr(c(f,7),s — T)u(r)dsdr =
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= /0 [®pr(c(0,7),t — T)u(t) — ®(c(0,7),t — T)u(r)] dr.

So
Py = Gy — PyByFyGy, (3.1)

for every 6 € ©.

Using the hypothesis and the fact that the families {Fjy}oco
and {PyBp}toco are uniformly (LP(Ry,X),LP(R4+,U)) -stable and
(LP(R4,U), LP(R4, X)) -stable, respectively, we deduce from
Remark 2.3. that the family {PyBypFyGoloco is uniformly
(LP(R4, X), LP(Ry, X)) -stable.

Hence from (3.1) and Remark 2.3. we obtain that the the family
{Py}oco is uniformly (LP(Ry, X), LP(R4, X)) - stable. From Theorem
2.3. it follows that 7 is uniformly exponentially stable.

(ili) = (i) Let K € Cs(©,B(Y, X)) such that 7xc = (Pxc,0)
is uniformly exponentially stable. For every § € © we consider the
operators

Hy: Lh,(Ro, X) — L, (R, X),  (Hyu)(t) = / B (0(6,5).t — s)uls) ds

Ko LR, Y) = Lho(Ry, X, (Kou)(t) = K(o(8,)u(t)
Because mg ¢ is uniformly exponentially stable the family {Hp}gco is

uniformly (LP(R4, X), LP(Ry4, X)) - stable. Using an analogous argu-
ment as in the proof of (ii) = (i) one obtain that

Py=Hy— HyKygCo Py,

for all # € ©. Then we immediately deduce that the family {FPp}gpco is
uniformly (LP(Ry, X)), LP(R4, X)) - stable, so from Theorem 2.3. 7 is
uniformly exponentially stable.

(iv) = (i) If {Hp}gco and {Kp}pco are defined in the same manner
as above we obtain that

PyBy = HyBy — HyKogCyPyBy,

for all & € ©. Then, using the hypothesis we deduce that the family
{PyBy}oco is uniformly (LP(R4,U), LP(R4, X)) - stable. Because S is
stabilizable we finally conclude that 7 is uniformly exponentially stable.
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Remark 3.1. The above theorem has been obtained by Clark, La-
tushkin, Montgomery-Smith and Randolph ([7]), for the case of time-
varying systems associated to evolution families.

Remark 3.2. Another characterization for exponential stability of li-
near systems in Hilbert spaces, in terms of dual concepts, have been
presented by Weiss and Rebarber in [19]. There, it is proved that a
system associated to a Cp-semigroup is exponentially stable if and only
if it is optimizable, estimatable and input-output stable.

4 Complete stabilizability and exact controlla-
bility

In this section we shall present the connection between complete stabili-
zability and the exact controllability of a system associated to a linear
skew-product semiflow.

Let X, U,Y be reflexive Banach spaces and let © be a locally compact
metric space. Let m = (®,0) be a linear skew-product semiflow on
E=Xx0,Bel(0,B(U,X))and C € Cs(0,B(X,Y)). Let p € (1,00).

Let S = (m, B,C') be the system considered in the previous section.
Definition 4.1. The system S = (w, B, C) is said to be exactly control-

lable if for every 6 € © there is t > 0 such that for all xg,x1 € X there
exists u € LP(R4,U) with z(0,t,xo,u) = 1.

Remark 4.1. Because the concept of exact controllability does not
depend on the mapping C we suppose C' = 0 and in all what follows we
shall denote the system S = (w, B,0) by S = (7, B).

For every (6,t) € © x R4 consider the bounded linear operator

t
O PR, U) — X, C’g’tu:/o B(o(0,5),t — 5) B(o (0, 5)) uls) ds.

Lemma 4.1. Let X be a Banach space and let X' be a reflexive Banach
space. If A € B(X', X) then A is surjective if and only if there is ¢ > 0
such that

1A%z = cf[z"]],

for all x* € X*.
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Proof. See [21], pp. 207-209.

Proposition 4.1. Let m = (®,0) be a linear skew-product semiflow on
E=Xx0O and S = (m,B). The following assertions are equivalent:

(i) S is exactly controllable;
ii) for every 0 € ere is t > 0 such that C&" is surjective;
i) f y 0 € O there is t > 0 such that C%" is surjecti

(iii) for every @ € © there aret >0 and ¢ > 0 such that H(Cg’t)* z*|| >
c||lz*||, for all z* € X*.

Proof. It is immediate from Definition 4.1. and Lemma 4.1.

As a consequence of Theorem 2.1. and Definition 4.1. we obtain
Proposition 4.2. Let 1 = (®,0) be a linear skew-product semiflow
on €& =X x0 and let F € C5(0,B(X,U)). The system S = (mw, B) is
exactly controllable if and only if the system Spr = (wpFr, B) is exactly

controllable.

Proof. Let (6,t) € © x Ry and u € LP(R4,U). Using Theorem 2.1.
and Fubini’s theorem we obtain that

%t u= Cg’t(u + u1),

SBr

u1(7_)_{ F(o(0,7)) fOT Opr(o(6,s), 7 —s)B(a(0,s))u(s)ds, T € [0,1]
0 ,T>1

So Range C’ggF C Range C’g’t. In the same way by using Corollary
2.1. we obtain that Range C’g’t C Range C’ggF, which ends the proof.
Definition 4.2. The system S = (m, B) is said to be completely stabili-
zable if for every v > 0 there are N > 1 and F € C4(0,B(X,U))
such that the linear skew-product semiflow m1pr = (Ppr, o) satisfies the
mequality

1®5r(0,1)|] < Ne™™,

for all (0,t) € © x Ry.

Now we can give:
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Theorem 4.1. Let m = (®,0) be a linear skew-product semiflow on
E = X x © with the property that for every 8 € © there is tg > 0
such that ®(0,ty) is surjective. If the system S = (mw, B) is completely
stabilizable then S is exactly controllable.

Proof. Suppose the contrary, i.e. there exists 6y € © such that for all
t > 0 Range C’go’t # X. It follows from Proposition 4.1. that for every
e > 0 and every t > 0 there is ;. € X with [[z}.[| = 1 such that

Bo,t\* %
1(C) @il < e (4.1)

Let tg > 0 such that ®(6y,tp) is surjective. Since X is reflexive from
Lemma 4.1. it follows that there exists £ > 0 with

kllz*|| < || (6o, to) "], (4.2)

for all z* € X™.
Let v > 0. Since S is completely stabilizable there is F' : © —
B(X,U) a strongly continuous mapping with ||F|| = sup ||F(0)|| < oo
0cO

and N > 1 such that
[ ®pr(0,1)]| < Ne™™,
for all (0,t) € © x Ry. Using Theorem 2.1. we obtain that
&0, 1)z = Opp(d, t)x — CH' Ty,

for all (0,t,x) € © x Ry x X, where for every 6 € ©

Ip: X — LP(Ry,U), (Tox)(s)=F(o(0,s)) Ppr(f,s)z.
Then we have

B0, )" " = dpp(0,1)" 2" — (Tg)* (CF)" 2",

for all * € X*. It follows that

19(8,0)" 2] < N e [|2*|| + [|(To)*[| [|(C§")* 2], (4.3)

for all (0,t,2*) € ©® x Ry x X*. Since

F||N
To) |l = ITe|| < Ny := I
[1(To) ™[] = [[Tol| < N1 e
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from (4.3) applied for z, .,0p and to using (4.1) and (4.2) we obtain
that
k < Ne "' + Nie.

Since € > 0 was arbitrary we obtain from above that
N

el/t() < =,

k

for all v > 0, which is absurd.
So the system S = (, B) is exactly controllable.

Remark 4.2. The above theorem generalizes a result obtained by
Megan ([12]), Zabczyk (][20], [21] Theorem 3.4., pp. 229-231) and Przy-
luski ([17]), for systems with control described by Cj - groups and Cj -
semigroups, respectively.

Remark 4.3. The hypothesis imposed in Theorem 4.1. on the surjec-
tivity of @ is essential, even for linear skew-product semiflows generated
by Cy - semigroups, as shows:

Example 4.1. Let {e;, },>0 be an ortonormal basis in the separable real
Hilbert space X and T = {T'(¢) }+>0 be the Cy - semigroup defined by

(o) (o)
T(t)x = E e Mynen, forx= E Tnln.
n=0 n=0

Let o be a semiflow on the locally compact metric space © and ® be the
cocycle generated by T and 0. Let U = X, B: © — B(X),B(0) = I,
the identity operator on X and p = 2. Since for every every t > 0

o0 o0
Range T'(t) = {x = anen : Z MMy < oo}
n=0 n=0

it follows that for every 8 € ©, &1 (6,t) = T'(t) is not surjective.
It is easy to see that S = (7, B) is completely stabilizable but

o o
Range Cg’t ={z= anen : Z nr? < oo},
n=0 n=1

for every (60,t) € © x R4, so the system S = (m, B) is not exactly
controllable.
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