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ABSTRACT

There is a disk in S
3whose interior is PL embedded and whose boundary has

a tame Cantor set of locally wild points, such that the n-fold cyclic coverings

of S3 branched over the boundary of the disk are all S3
: An uncountable set of

inequivalent wild knots with these properties is exhibited.
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1. Introduction

This paper deals with wild disks like the disk � of Figure 1. The interior of � is a

PL embedded open disk in S3. Its boundary is a simple closed curve K in S3. The

set T of points at which � is not locally tame is a tamely embedded Cantor set. We

will prove the following theorem.

Theorem 1. K is a prime, non trivial knot, but the n-fold cyclic covering of S3

branched over it is S3, for every n � 2. The preimage of K is a simple closed curve

in S3 bounding a disk, and the set of points at which it is not locally tame is a wildly

embedded Cantor set covering T . Moreover, uncountably many inequivalent knots

having these properties can be exhibited.
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Figure 1: The disk �

By considering the preimage of � in any of the n-fold cyclic coverings of K we

obtain disks satisfying the:

Corollary 2. There exist a disk in S3 whose boundary is a knot K which is wild

at a wildly embedded Cantor set, such that the n-fold cyclic covering of S3 branched

over K is S3, for every n � 2. Moreover, there are uncountably many inequivalent

knots having these properties.

However, exhibiting such knots might be diÆcult. These two results are in sharp

contradistinction with the PL case in which there exist exactly one such knot, namely,

the trivial knot. One wonders if every homotopy 3-sphere is always an (non PL) n-

fold covering of S3; branched over a wild knot, with wild subset T; (where T might

be a knotted Cantor set, as in Corollary 2), for some n:

These results were, in part, announced in [11].

Acknowledgement 3. I am grateful to Professor E. Outerelo for his help with

Theorem 4.

2. Preliminaries

A closed set X in a 3-manifold M is tame if there is a homeomorphism of M onto

itself sending X onto a subpolyhedron of some rectilineal triangulation of M: If X

is not tame then it is wild. The set X is locally tame at a point x of X if there exist

a neighbourhood U of x in M and a homeomorphism of U into M that takes U \X

onto a tame set. Otherwise we say that X is locally wild at x: Bing [5] showed that

a closed set is tame in S3 if is locally tame at each of its points. The set of points of

X at which it is locally tame is open in X and is called the tame subset of X , while
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the subset at which it is locally wild is closed, and is called the wild subset of X . A

knot in M is an embedding of the 1-dimensional sphere S1 in M . A wild knot has a

non empty wild subset. A Cantor set A embedded in S3 will be called an Antoine�s

Cantor set if S3�A is not simply connected and A is not separated by any 2-sphere.

Following Fox [8], we say that a space X is locally connected in a space Y if there

is a basis of Y such that V \X is connected for every basic open set V . Freudenthal

[9] (see [8]) has shown that every T1, connected, locally connected, locally compact,

regular space X with a numerable basis, is contained in a compact space Y with the

same properties in such a way that X is dense, open and locally connected in Y , and

the end space E(X) := Y �X is totally disconnected. Moreover, this compacti�cation

Y of X (Freudenthal compacti�cation) is determined by these properties. As an

important example we have:

Theorem 4. Let T be a compact, totally disconnected subset of a compact , connected

3-manifold M , then M is the Freudenthal compacti�cation of M � T .

Proof. The only property which is not completely obvious to check is that M � T is

locally connected in M , but this is a consequence of the Jordan Separation Theorem

(see [10], for instance).

We need to recall some concepts from decomposition theory (see [7]). A decompo-

sition G of a topological space S is a partition of S. The elements g of the partition

are subsets of G. If g contains more than one point, then g is non-degenerate. The

decomposition space S=G is a topological space with underlying point set G and with

the quotient space topology induced by the decomposition map � : S ! S=G sending

s 2 G to the unique element ofG containing s. We say thatG is upper semi-continuous

if (1) � is closed and (2) each g 2 G is compact. An upper semi-continuous decompo-

sition G is monotone when the elements g of G, besides being compact, are connected,

that is, if the elements g of G are continua.

Let M1;M2;M3; ::: be a sequence of compact, 3-manifolds PL embedded in S3

such that each component of Mi is a handlebody and, for each positive integer j,

Mj+1 � IntMj . We say that the sequence fMig
1

i=1 is a de�ning sequence of the up-

per semi-continuous monotone decomposition G of S3 whose non degenerate elements

are the connected components of H = \1i=1Mi. In the decomposition space S3=G ,

the image of H is a compact, totally disconnected subset (see [1], [2]). Two such de-

compositions F and G of S3, with de�ning sequences fMig
1

i=1 and fNig
1

i=1are called

equivalent if and only if there exists a homeomorphism from (S3=F; (\1i=1Mi)=F ) onto

(S3=G; (\1i=1Ni)=G). In [2] is stated the following Theorem.

Theorem 5. Suppose F and G are equivalent monotone decompositions of S3, with

de�ning sequences fMig
1

i=1 and fNig
1

i=1. Assume also that the element of F and G

are cellular. Then, there exists a sequence ffig
1

i=1 of homeomorphisms from S3 onto

S3 such that, for each i, fi+1 j (S
3� IntMi) = fi j (S

3� IntMi), and ffi(Mi)g
1

i=1 is

a de�ning sequence for G.
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Let K be a wild knot whose wild subset is a totally disconnected subset T of S3.

There exist an n-fold cyclic covering q : Kn ! S3�T branched over the tame subset

K�T of K: If j : S3�T ! S3 denotes the inclusion map, then the composition jÆq is

a spread (in Fox sense [8]) satisfying the conditions listed in [8] granting the existence

and unicity of the Fox completion bq : bKn ! S3 of the spread j Æ q . The branched

covering bq : bKn ! S3 is an n-fold cyclic covering branched over the knot K: The map

bq is induced by a cyclic action by homeomorphisms in the topological space bKn. The

�xed point set of this action is the preimage bq�1(K). Moreover bq�1(T ) is a totally

disconnected subset of bKn. If bKn turns out to be a 3-manifold then bq�1(K) is a

wild knot with wild subset bq�1(T ): The space bKn is the Freudenthal compacti�cation

of Kn. This follows from the following direct generalization of the Compacti�cation

Theorem of Fox ( [8], page 249):

Theorem 6. Let f : X ! B be a branched covering. Assume X and B are T1,

connected, locally connected, locally compact, with base numerable and regular, but

not compact.Let bB be the Freudenthal compacti�cation of B, and let j be the inclusion

j : B � bB . Let g : Y ! bB be the branched covering which is the Fox completion of

j Æ f : X ! bB. Then, Y is the Freudenthal compacti�cation of X if bB has a basis

such that, for each basic open set W , the number of components of f�1(W ) is �nite.

3. Description of �

In Figure 2 we see a 3-ball with two holes B. Consider B embedded in S3 = R3+1.

Call B�1 the closure of the connected component of S3 � B containing 1: The

outer boundary B \ B�1 is called S+. It bounds a ball bB containing B: The other

two boundary components of B are denoted S�
0
, S�

1
. They bound balls bB0, bB1,

respectively. In B is embedded a surface F . The boundary of F intersects each

component of the boundary of B in two disjoint arcs. The boundary of F minus the

interior of these six arcs is denoted by R.

Suppose the orientation preserving similarity of R3 mapping S+ onto S�i , takes

F \ S+ onto F \ S�i . Use this similarity �i to de�ne Bi = �i(B), and the surface

Fi = �i(F ) inside Bi, i = 0; 1. Continue this process to in�nity.

In this way, for every word e in the alphabet f0; 1g, we have a punctured ball

Be contained in a ball bBe, with an outer boundary component S+e and two inside

boundaries S�e0, S
�

e1, and an embedded surface Fe: The union of the balls bBe; such

that the length of the word e is j; is denoted by bBj . The intersection \1j=0
bBj is a

Cantor set T tamely embedded in S3: The union F�1[eFe[T , where F�1 is the disk

in B�1 shown in Figure 3, is the disk �. Clearly, the interior of � is PL embedded

in S3. The boundary of � is a wild knot K with wild subset T:

For subsequent applications (section 7) the union of the punctured balls Be such

that the length of the word e is j is denoted by Bj . The intersection Bj \�, denoted

by �j , is called the j-level of �: It consists of 2j twisted bands like the one depicted
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Figure 2: The ball Be

in Figure 2.

Figure 3

4. The cyclic coverings of B

First, we construct an n-fold cyclic covering of B branched over R as follows. After

some deformation B; F; and R are shown in Figure 4. Cutting B open along F

we obtain the standard sheet H shown in Figure 5. The n-fold cyclic covering of B

branched over R is obtained by pasting n copies of the standard sheet H cyclically
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around R. In �gure 6 we see the case n = 3. Denote this n-fold cyclic covering

by p : X ! B, branched over R. The manifold X is a handlebody of genus n � 1

(bounded by eS+) minus the interior of two disjoint handlebodies bX0, bX1 of genus

n�1, bounded by eS�
0
, eS�

1
. The manifold X is embedded in S3 as shown in Figure 6.

The covering p is induced by 2�=n rotation about the axis E. The closure of S3 �X

is denoted by X�1.

Figure 4

5. Proof of Theorem 1

For each word e in the alphabet f0; 1g take a copy pe : Xe ! Be of p : X ! B. Place

Xei inside bXei by identifying the boundary component eS+ei of Xei with the boundary

component eS�ei of Xe in such a way that the arcs A+

ei in
eS+ei are identi�ed with the

arcs A�ei in
eS�ei . Continue in this way up to in�nity. Denote by Mj the union of the

manifolds bXe such that the length of the word e is j: Thus M0 = X , M1 = bX0 [
bX1,

M2 = bX00 [
bX01 [

bX10 [
bX11:We obtain a manifold Kn such that Kn = X�1 [e Xe

= S3 � \1j=1Mj . The coverings pe : Xe ! Be match together to produce the n-fold

cyclic covering qn : Kn ! S3 � T branched over the tame subset K � T of K and

induced by the 2�=n rotation about the axis E.

We assume Xei placed inside bXei in such a careful way that each connected com-

ponent of the intersection Hn = \1j=0Mj is a n-pod with the n-valent point lying

in the axis E and such that its intersection with planes orthogonal to E is either

empty or consists of just one point for each leg of the n-pod. The sequence fMig
1

i=0
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Figure 5: The standard sheet H

is a de�ning sequence of a monotone, upper semi-continuous decomposition Gn of S3

whose non degenerate elements are the connected component of the intersection Hn:

We have:

Lemma 7. The decomposition space of Gn is S3 for each n � 2, and the image of

Hn = \1j=0Mj in the decomposition space is a (wildly embedded) Antoine�s Cantor

set.

We will defer the proof of this Lemma to the next section.

Corollary 8. The Freudenthal compacti�cation of Kn is S3 for each n � 2, and the

end space of Kn is a (wildly embedded) Antoine�s Cantor set.

Proof. If we denote by fn : S3 ! S3 the decomposition map of Gn, then fn(Hn)

is a Cantor set eTn in S3: Then fn j Kn : Kn ! fn(Kn) is a homeomorphism and

S3�fn(Kn) = eTn which is totally disconnected. By Theorem 4, S3 is the Freudenthal

compacti�cation of Kn.

Since by Theorem 4 the Freudenthal compacti�cation of S3 � T is S3, and by

Corollary 8, the Freudenthal compacti�cation of Kn is S3, then the n-fold cyclic

covering qn : Kn ! S3 � T branched over the tame subset K � T of K and induced

by the 2�=n rotation about the axis E, extends to an n-fold cyclic covering bqn :

( bKn = S3) ! S3 branched over the knot K: The map bqn is induced by a cyclic

action by homeomorphisms in the topological space ( bKn = S3). This action is the

projection,under fn; of the 2�=n rotation about the axis E, because this rotation
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Figure 6: The case n = 3

preserves the elements of the decomposition Gn:The �xed point set of this action is

then the set fn(E) which coincides with bqn
�1
(K): Moreover bqn

�1
(T ) = eTn. Consider

the connected components of the preimage of the interior of the disk �. The closure

of any of these connected components is a disk whose boundary is the wild knot

bqn
�1
(K). The wild subset of bqn

�1
(K) is eTn, which, by Lemma 7, is an Antoine�s

Cantor set. Therefore the knot bqn
�1(K) is not trivial. Hence, the knot K is not

trivial either.

Suppose � is a 2-sphere in S3 cutting K transversally in two points. Then �

cannot separare T; because it lifts to a sphere �n in bKn, and �n cannot separate the

Antoine�s Cantor set eTn. It follows that the 3-ball C bounded by � and not containing

T , lifts to a 3-ball Cn in bKn. The induced n-fold branched covering Cn ! C, branched

over a tame arc is then trivial. This shows that the knot K is prime. To complete the

proof of Theorem 1 we have yet to prove Lemma 7 (section 6) and show that there

are uncountably many inequivalent knots like K (section 7).

6. Proof of Lemma 7

The proof of Lemma 7, for n � 2, is mutatis mutandis the same as the one given

in[4], Theorem 3.1. The case n = 2 is a variation of [3], section 3. However, after

having worked out the details of the proof, I discovered the following fact. Consider

the upper semi-continuous decomposition G1
n of S3 described by Bing in [4],pages

85-86, and having a de�ning sequence whose �rst two stages are depicted in Figure 7

(which is the mirror image of Figure 2 in [4]).Call H1
n the union of the non degenerate
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Figure 7

elements of G1
n: Then we have:

Theorem 9. The open, 3-manifolds S3 � Hn and S3 �H1
n are homeomorphic, for

n � 2: Therefore their Freudenthal compacti�cations are homeomorphic.Thus, the

decompositions Gn and G1
n of S3 are equivalent.

Remark 10. Then this common Freudenthal compacti�cation, which is the decom-

position space of G1
n, (or of Gn) is S3; by ([4], Theorem 3.1). As we said above,

an analogous argument shows the same, directly, for the decomposition space of Gn:

The proof of Theorem 9 shows that the involution de�ned in[12], coincides with the

involution de�ned in ( [4], Theorem 3.1). Moreover, the proof of Theorem 9 shows

also that the cyclic actions, for n � 2, de�ned in this paper, and giving rise to the

n-fold cyclic coverings of S3 branched over K; coincide with the cyclic actions de�ned

in ([4], Theorem 3.1):

Proof. The proof consists in constructing the branching set of the cyclic action in

S3 � H1
n and showing that this branching set is precisely our original K � T: See

Figures 7, 8 and 9 and compare with sections 4 and 5.

The fact that S3� eTn is not simply connected is contained in [4], page 89. (By

computing �1(S
3� eTn) directly, one can give an alternative proof (see[6]).) Moreover

eTn is not separated by any 2-sphere, because bXe0 and bXe1 (Figure 6) are not separated

by any 2-sphere. Thus eTn is an Antoine�s Cantor set.
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Figure 8

Figure 9

7. Uncountably many inequivalent knots

The disk � is by no means unique. An uncountable set of examples might be obtained

by di�erent procedures. Here is one (other examples, in section 9).
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Consider the mirror image B� of B. Construct � as above but substituting any

number of B�e for Be. In this way we obtain a set S containing uncountably many

disks like �; all having the same properties as �. It is clear that this construction

amounts to substitute an arbitrary number of the left handed twists in the disk � of

Figure 1, by right handed twists. None of the arguments in this paper su�ers from

this substitution, and therefore for this uncountable set of disks the theorems in this

paper remain true. Only remains to see that in this set S there are uncountably many

di�erent topological types. We now prove this.

Let � be a member of S. Recall the construction of � in section 3. Here we are

using B or B�. The j-level of � will consists of 2j twisted bands: lj(�) twisted

bands like the (-1)-band of Figure 2, and rj(�) twisted bands like the mirror image

of Figure 2, a (+1)-band.

Theorem 11. Let �, �1 be two members of the set S, such that l0(�) = l0(�
1) = 1,

r0(�) = r0(�
1) = 0: Suppose that for some level j � 1, lj(�) = rj(�

1) = 2j and

rj(�) = lj(�
1) = 0: Then the knots K, K1, bounding �, �1, are inequivalent, i.e.

there is no homeomorphism f from S3 onto S3 taking K onto K1:

Proof. On the contrary: assume such f exists. It induces a homeomorphism g from

S3�T onto S3�T 1 taking K�T onto K1�T 1: Then g lifts to a homeomorphism eg

from the 2-fold covering K2 of S
3 � T branched over K � T onto the 2-fold covering

K1
2 of S3 � T 1 branched over K1 � T 1:The manifold K2 is S3 � \1j=0Mj where

fMjg
1

j=0 is a de�ning sequence such that each component of Mj is a solid torus.

Call fNjg
1

j=0 the corresponding de�ning sequence forK1
2 . The decomposition spaces

of the decompositions F and G , de�ned respectively by fMjg
1

j=0 and fNjg
1

j=0,

are the Freudenthal compacti�cations of K2 and K1
2 . Since the homeomorphism eg

extends to these Freudenthal compacti�cations sending ends to ends, it follows that

F and G are equivalent decompositions. On the other hand, it is obvious that the

elements of F and G are cellular (see [7]). Then Theorem 5 grants the existence of

a sequence ffig
1

i=0 of homeomorphisms from S3 onto S3 such that, for each i � 0 ,

fi+1 j (S
3 � IntMi) = fi j (S

3 � IntMi), and ffi(Mi)g
1

i=0 is a de�ning sequence for

G.

Claim 12. The sequence ffig
1

i=0 can be choosen to satisfy the additional condition

fi(Mi) = Ni for each integer i � 0.

Assume the claim is true. Then, since S3 � IntM1 and S3 � IntN1 are both,

by the hypothesis l0(�) = l0(�
1) = 1 , r0(�) = r0(�

1) = 0, the exterior of the

link L of Figure 11, it follows that f1 is an orientation-preserving homeomorphism

from S3 onto S3 because L is not amphicheiral. Thus, all the homeomorphisms fi
are orientation-preserving.Let Y be a component of Mj�1: Then Y contains exactly

two components Y0; Y1 of Mj : Let Z be fj�1(Y ): This is a component of Nj�1; which

contains exactly two components Z0; Z1 of Nj :The homeomorphism fj , that agrees

with fj�1 outside Mj�1 must take S
3� Int( Y0[Y1) onto S

3� Int(Z0[Z1):However

this is imposible because S3 � Int( Y0 [ Y1) is, by the hypothesis lj(�) = 2j , the
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exterior of the link L, while S3� Int( Z0 [Z1) is, by the hypothesis rj(�
1) = 2j , the

exterior of the link L� where L� denotes the mirror image of L . We have arrived to

a contradiction and therefore the homeomorphism f does not exist.

Proof of Claim. We have two de�ning sequences fNjg
1

j=0 and ffi(Mi)g
1

i=0 for G.

Call H the union of the non degenerate elements of G: Denoteffi(Mi)g
1

i=0by fMig
1

i=0:

We want to prove that there exist a sequence fgig
1

i=0 of homeomorphisms from S3

onto S3 such that, for each i � 0 , gi+1 j (S
3 � IntMi) = gi j (S

3 � IntMi), and

gi(Mi) = Ni: The proof follows the same lines as [13], Theorem 2 (see also Theorem

3).

We use the same argument of [13],1197-1198 to assume that (BdM0)\(BdN0) = ;.

Since M0 and N0 both have exactly one component, it follows that M0 and N0 will

be nested, since both contain H:

We now show that they are concentric. Suppose then that M0 contains in its

interior N0: InsideM0 there are two components V1 and V2 of M1. As before, we may

assume that they do not intersect BdN0 . Since they cannot be inM0�N0 (otherwise

they do not intersect H), both they must be contained inside N0. Since M0� Int(V1
[V2) is the exterior of the standard link of Figure 12 (or its mirror image), and ad hoc

argument implies that BdN0 is parallel to BdM0.We now complete the construction

of g0 by shoving M0 onto N0:

Assume, by induction, that gi�1exists. We may assume then that Mi�1 = Ni�1:

We need to construct a homeomorphism F of S3 which is identity in S3�IntMi�1 and

such that F (Mi) = Ni: Working as above, inside each component of Mi�1 = Ni�1;

we may assume that the components of Mi and Ni have disjoint boundaries. Since

all of them contain points of H in their interiors, and the number of components in

Mi and in Ni is the same, they must be nested. And they must be concentric by the

same argument used above. The claim is then proved.

Let h : N ! f+1;�1g be a function. Let �(h) be a members of the set S, such

that l0(�) = l0(�
1) = 1 , r0(�) = r0(�

1) = 0 and such that all the bands in level

j � 1, are h(j)�bands:

Corollary 13. The subset f�(h) 2 S : 8h : N ! f+1;�1gg is uncountable. Two

arbitrary members of the subset have inequivalent boundaries. These boundaries

satisfy the statement of Theorem 1.

This completes the proof of Theorem 1.

8. Pasting together solid horned spheres

Consider the regular neighbourhood Ne of Fe in Be (rel. Re) shown in Figure 10. The

union of the sets Ne; for all e, together with a regular neighbourhood N�1 of F�1 in

B�1 (rel. R�1),and together with T is a 3-ball C. The boundary of C is a 2-sphere in

S3 which is the celebrated Alexander horned sphere A (see [3], for instance; see also

[5]). The equator K separates A in two copies of �, �+ and and ��. The equator
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K contains the Cantor set T which is the wild part of A. The set (S3 � C) [ A is

the solid horned sphere H of Bing [3], page 355, or Alexander crumpled cube. Since

the manifold bKn = S3 can be constructed pasting together n copies of H cyclically

around the equator K;we have the following Corollary.

Corollary 14. The result of pasting cyclically together, around the equator K; n

copies of the Alexander crumpled cube H is S3, for n � 2:

Figure 10

Remark 15. Bing showed in [3] that the double of H is S3: There has been a great

deal of research on this topic.

9. Generalizations

An uncountable set of disks � all satisfying Theorem 1 has been constructed in section

7. There are di�erent methods of constructing examples. Here we suggest some.

If instead of substituting left handed twists, as we have done in section 7, we put

an arbitrary number of full twists (right of left handed), then none of the arguments

in this paper su�ers from this substitution, and therefore for this uncountable set of

disks the theorems in this paper remain true. Only remains to see that in this set S

there are uncountably many di�erent topological types.

If besides the above modi�cations we put an arbitrary number of half twists in an

arbitrary number of the bands showed in Figure 1, we again have an uncountable set of

disks for which the theorems in this paper still remain true.The addition of the twists
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Figure 11

amounts to paste together the manifolds Xe using di�erent sewing homeomorphisms.

However the resulting open 3-manifold still embedds in S3 and therefore the above

arguments apply with trivial changes.

Figure 12
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If instead of the strongly invertible link L of Figure 12, which is the basis for

the constructions in this paper, we use other strongly invertible links of three or

more trivial components we can realize mutatis mutandis the same construction as

before. The real diÆcult point is to show that the Freudenthal compacti�cations

of the open 3-manifolds, thus obtained, is S3(or just a closed 3-manifold). This is

a relevant diÆcult question, that might be tackled using Bing methods, only if the

open 3-manifold embedds in S3:

10. Some more results

Assume N is an arbitrary knot in S3: Consider the connected sum N#K of N and

the wild knot K. Then the n-fold cyclic covering (N#K)n of S3 branched over N#K

is homeomorpic to the n-fold cyclic covering Nn of S3 branched over N: In fact, this

covering is the connected sum Nn#Kn, but Kn is homeomorphic to S3: We then

have:

Theorem 16. If M is a closed, oriented 3-manifold which is an n-fold cyclic

branched covering of S3; then it is an n-fold cyclic covering of S3branched over a wild

knot, in uncountably many di�erent ways.

Take the sphere S3 as the boundary of the 4-ball D4: Push the interior of �

slightly inside D4 and call the resulting properly embedded disc b�: Then, we have:

Theorem 17. (1) (D4; b�) is not the standard pair of disks. (2) There are uncountably

many such pairs of disks. (3) The n-fold cyclic coverings of D4 branched over b� is

D4:(4) The double of (D4; b�) is the standard pair (S4; S2) of spheres.

Proof.

(1) (D4; b�) is not the standard pair of disks because the boundary is not standard.

(2)A homeomorphism between two pairs would give a homeomorphism between

their boundaries.

(3) The proof in [4], Theorem 3.1, can be modi�ed to cover this case.The n-fold

cyclic covering of D4 branched over b� is presented as a decomposition space. This

decomposition of D4 is similar to Gn; only that the handlebodies in the de�ning

sequence of Gn are 4-dimensional. They enjoy the same mobility that allows Bing to

obtain his result. We left the details to the reader.

(4)(D4; b�) can be de�ned precisely as follows. Take a collar S3� [0; 1] in D4 such

that BdD4 is identi�ed with S3�f0g. Then b� is Bd�� [0; 1][��f1g. In the double

of (D4; b�) the 2-sphere 2b� is then the boundary of the doble of � � [0; 1] (double

constructed along the part � � f0g of the boundary of � � [0; 1]). Then 2b� is the

boundary of a regular neighbourhood N of � in D4: Inside N take a locally �nite set

of mutually disjoint 4-balls containing in their interiors the bands of �: Inside these

balls, and simultaneously, undo the bands by an isotopy which is the identity outside

343
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the 4-balls. Now it is clear that the boundary of the so modi�ed N is the standard

2-sphere.
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