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ABSTRACT

In this paper certain criteria for reduced pairs of bounded closed convex set are
presented. Some examples of reduced and not reduced pairs are enclosed.
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Let X = (X, τ) be a topological vector space over the field R. Let K(X) [B(X)]
be a family of all nonempty compact [bounded closed ] convex subsets of X. For any
A,B ⊂ X the Minkowski sum is defined by A + B = {a + b | a ∈ A and b ∈ B}.
Since A + B is not always closed [4],[9] we define A

·
+ B = A + B for A,B ∈ B(X).

It was showed in [9] that for A,B,C ∈ B(X) the inclusion A
·
+ B ⊂ B

·
+ C implies

A ⊂ C. From this it follows that B(X) together with “
·
+” is a semigroup satisfying

the law of cancellation, i.e. A
·
+ B = B

·
+ C implies A = C.

For (A,B), (C,D) ∈ B2(X), let (A,B) ∼ (C,D) if and only if A ⊂ C, B ⊂ D and
(A,B) ∼ (C,D). The relation “∼” is an equivalence relation in B2(X) and “≤” is
an ordering in the equivalence class [A,B] of any pair (A,B). It should be mentioned
that the space K(X)/∼, K(X) = {A ∈ B(X) | A is compact}, plays important role
in quasidifferential calculus [2].

The set A ∈ B(X) is called a polytope if A is convex hull of a finite set. If
A,B ∈ B(X) then A ∨ B is the convex hull of A ∪ B.

It was proved in [6] that if A,B ∈ K(X), then there exists minimal element (C,D)
in [A,B] such that (C,D) ≤ (A,B). From [3], [8] we know that if (A,B), (C,D) ∈
K2(X), are two minimal pairs in [A,B] and dimX ≤ 2 then C + x, D = B + x.
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Let (A,B) ∈ B2(X). The pair (A,B) is called reduced if for any (C,D) ∈ [A,B]

there exists M ∈ B(X) such that C = A
·
+ M and D = B

·
+ M. Let us notice that

every reduced pair is minimal. Every minimal pair is reduced in X = R (see, [6]).
Let A ∈ K(X), f ∈ X∗. Then HfA = {x ∈ A | f(x) = maxy∈A f(y)}.
The set A ∈ B(X) is called a summand of B ∈ B(X) if there exists M ∈ B(X)

such that B = A
·
+ M.

W. Weil has proved in [11] the following lemma.

Lemma. Let A,B ∈ K(Rn) and A be a convex polytope.Then A is a summand of
B if an only if each one-dimensional face HfA is contained in a translate of the
corresponding face HfB.

Theorem 1. Let A, B ∈ K(Rn) and A be a convex polytope such that card HfB = 1
for each one-dimensional face HfA. Then the pair (A,B) is reduced.

Proof . Let (C,D ∈ [A,B]. Then A + D = B + C. Let f ∈ (Rn)∗ and HfA be one-
dimensional face of A. Then, by virtue of the formula of the addition of faces, we
have

HfA + HfD = HfB + HfC.

According to the assumption, HfB = {b} for some b ∈ R
n. Then HfA ⊂ b−d+HfC,

where d ∈ HfD. Applying Lemma, we obtain that C = A + M for some M ∈ K(Rn).
Hence, from the law of cancellation, it follows that D = B + M.

Theorem 2. Let A,B ∈ K(R2) be a reduced pair. Then card HfB = 1 for each
one-dimensional face HfA.

Proof . Let us assume that dim HfB = dim HfA = 1 for some f ∈ (R2)∗. Then
there exists an interval I and a triangle T such that length of I is not greater than
both lengths of HfA and HfB, and H−fT = I. If HfT = {b} then Hf (A + T ) =
HfA+b, H−f (A+T ) = H−fA+I, Hf (B+T ) = HfB+b and H−f (B+T ) = H−fB+I.
Hence I is a summand of both A+T and B +T , and A+T = A′ + I, B +T = B′ + I
for some A′, B′ ∈ K(R2). Then A′, B′) ∈ [A,B], and since HfA is not a summand of
HfA′ then A is not a summand of A′. Therefore, (A,B) is not reduced.

Proposition 1. Let (A,B), (C,D), (E,F ) ∈ B2(X) and A = C
·
+ E, B = D

·
+ F. If

the pair (A,B) is reduced then both (C,D) and (E,F ) are reduced.

Proof . Let (C ′, D′) ∈ [C,D]. Then C ′ ·
+ D = C

·
+ D′, and we have

A
·
+ D

·
+ F

·
+ D′ = A

·
+ B

·
+ D′ = C

·
+ E

·
+ B

·
+ D′ = E

·
+ B

·
+ C ′ ·

+ D.

Revista Matemática Complutense
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Hence A
·
+ F

·
+ D′ = B

·
+ E

·
+ C ′. From the assumption, it follows that E

·
+ C ′ =

A
·
+ M and F

·
+ D′ = B

·
+ M for some M ∈ B(X). Then E

·
+ C ′ = C

·
+ E

·
+ M

and F
·
+ D′ = D

·
+ F

·
+ M. Hence C ′ = C

·
+ M and D′ = D

·
+ M.

Proposition 2. Let A,B ∈ B(X). If the pair (A∨B,A+B) is reduced then (A∨B,B)
is also reduced.

Proof . Since (A∨B,A + B) = (A∨B,B) + ({0}, A) then applying Proposition 1 we
obtain our Proposition.

Let A,B ∈ B(X). We call the pair (A,B) convex if A∪B is convex. We call (A,B)
convexly reduced if for any convex pair (C,D) in [A,B] there exists M ∈ B(X) such

that C = A
·
+ M and D = B

·
+ M.

Theorem 3. The convex pair (A,B) ∈ B2(X) is convexly reduced if and only if
(A ∩ B,A ∪ B) is reduced.

Proof . ⇒) Let the pair (A,B) be convexly reduced and (F,G) ∈ [A ∩ B,A ∪ B].
From [4],[10] it follows that there exists (A0, B0) ∈ [A,B] such that A0 ∩ B0 = F

and A0 ∪ B0 = G. From the assumption, A0 = A
·
+ M and B0 = B

·
+ M for some

M ∈ B(X). Then F = A0 ∩ B0 = A ∩ B
·
+ M and G = A0 ∪ B0 = A ∪ B

·
+ M.

Therefore, the pair (A ∩ B,A ∪ B) is reduced.

⇐) Let (A∩B,A∪B) be reduced, (C,D) ∈ [A,B] and C∪D be convex. Then A
·
+

D = B
·
+ C = A∩B

·
+ C∪D = C∩D

·
+ A∪B, [see [10]]. Hence C∩D = A∩B

·
+ M

and C∪D = A∪B
·
+ M for some M ∈ B(X). From the law of cancellation, we obtain

C = A
·
+ M and D = B

·
+ M.

A

B

C

D

The pair (A,B) is convexly reduced and (A,B) ∼ (C,D).
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Theorem 4. Let A,B ∈ B(X). If (A ∨ B,B) is a reduced pair then the pair (A,B)
is reduced.

Proof . Let (C,D) ∈ [A,B]. Then A
·
+ D = B

·
+ C. Therefore,

D
·
+ A ∨ B = (A

·
+ D) ∨ (B

·
+ D) = (B

·
+ C) ∨ (B

·
+ D) = B

·
+ C ∨ D.

Since the pair (A ∨ B,B) is reduced then D = B
·
+ M for some M ∈ B(X). From

the law of cancellation ( [9] ) C = A
·
+ M.

The pair (A,B) is convexly reduced and (A,B) ∼ (C,D). The pair (A,B) is also
reduced and the class [A,B] is convex, that is C∪D is convex for any (C,D) ∈ [A,B]
([4]).

In [5] the following theorem was proved:

Theorem 5. Let A,B ∈ K(Rn) and A be a polytope with nonempty interior. Let
card HfB = 1 for each face HfA such that dim HfA = n − 1. Then the pair (A,B)
is minimal.

For n = 2, Theorem 1 and Theorem 5 have equivalent assumptions , hence Theo-
rem 1 is stronger than Theorem 5. For n = 3, the assumption of Theorem 5 is weaker
than the assumption of Theorem 1. The following example shows that generally we
cannot replace the assumption in Theorem 1 with the assumption from Theorem 5.

Example. Let A = [−1, 1]3 and
B = A∨(0, 0, 3/2)∨(0, 0,−3/2)∨(0, 3/2, 0)∨(0,−3/2, 0)∨(3/2, 0, 0)∨(−3/2, 0, 0). Let
us notice that if dim HfA = 2 then cardHfB = 1. Let I = (1, 0, 0)∨(0, 1, 0). Let A′ =
(A+I)∨ (5/3, 5/3, 0) and B′ = (B +I)∨ (5/3, 5/3, 0). We have (A′, B′) ∼ (A+I,B +
I) ∼ (A,B). Let us notice that HfA′ = (5/3, 5/3, 0) and HfA = (1, 1,−1) ∨ (1, 1, 1)
for f(x, y, z) = x+y. Then A is not a summand of A′. The pair (A,B) is not reduced.
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[5] J. Grzybowski, R. Urbański and M. Wiernowolski, On Common Summands and Anti-
summands of Compact Convex Sets, Bull. Polish. Acad. Sci. Math. 47 (1999), 69-76.
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[9] R. Urbański, A generalization of the Minkowski-R̊adström-Hörmander Theorem, Bull.
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[10] R. Urbański, On minimal convex pairs of convex compact sets, Archiv der Mathematic
67 (1996), 226-238.

[11] W. Weil, Decomposition of convex bodies, Mathematika 21 (1974), 19-25.
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