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ABSTRACT

Following the ideas of D. Serre and J. Shearer in [16], we prove in this paper
the existence of a weak solution of the Cauchy problem for the second order
quasilinear hyperbolic equation

φtt − σ′(φx)φxx + F (φ) = 0, (x, t) ∈ R× [0, +∞[,

where F (φ) is a suitable source term.
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1. Introduction and main results.

This paper presents a study of the initial values problem for the second order quasi-
linear equation

φtt − σ′(φx)φxx + F (φ) = 0, (x, t) ∈ R× [0,+∞[, (1)
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Filipa Caetano Weak solutions to the Cauchy problem

following the work of J. P. Dias and M. Figueira, who studied this problem in [4],
considering particular F and σ, namely

F (φ) = φ3 and σ(u) = u+
u3

3
. (2)

Previously, P. Marcati and R. Natalini proved in [9] a result of existence of a
Lipschitz continuous solution to the Cauchy problem for equation (1) with bounded,
compactly supported initial data, in the L∞ framework, by using an approximating
scheme of Lax-Friedrichs kind, and imposing some restrictions on F , namely F (0) = 0
and F ′ bounded.

Here, we generalize these authors’ work and we prove the existence of weak solution
for equation (1), with initial data

φ(x, 0) = φ0(x) ∈ H3(R), φt(x, 0) = φ1(x) ∈ H2(R).

To this purpose, we follow the method of D. Serre and J. Shearer ([16]), who
proved, by using the compensated compactness method developed by F. Murat,
L. Tartar and R. DiPerna ([11], [18], [5]) and Lη Young measures, the existence
of weak solution to the Cauchy problem for the hyperbolic system of conservation
laws {

ut − vx = 0,
vt − σ′(u)ux = 0.

(3)

We consider F : R −→ R a smooth function such that F (0) = 0, F ′(φ) ≥ 0,

∀φ ∈ R, and |F (φ)| ≤ c1|φp|, for some c1 > 0, p ≥ 1. We put G(φ) =
∫ φ

0

F (θ)dθ.

The function σ : R −→ R is in the same conditions of [16], a smooth function such
that σ(0) = 0 and satisfying the following hypotheses:

H1 ∃ c > 0 : σ′(u) ≥ c, ∀u ∈ R;

H2 σ′′(λ) 6= 0, ∀λ ∈ R, or ∃ λ0 ∈ R : σ′′(λ0) = 0, σ′′(λ) 6= 0, ∀λ 6= λ0;

H3
σ′′

(σ′)5/4
,

σ′′′

(σ′)7/4
∈ L2(R);

σ′′

(σ′)3/2
,
σ′′′

(σ′)2
∈ L∞(R);

H4 We define Σ(u) =
∫ u

0

σ(s)ds.
σ(u)
Σ(u)

−→ 0, |u| → +∞ and there are m and q,

q > 1/2, such that (σ′(u))q ≤ m(1 + Σ(u)).

We point out that, under these hypotheses, G(φ) ≥ 0, ∀φ, and Σ(u) ≥ cu
2

2 . It is
easy to check that the functions F and σ defined by (2) satisfy all these conditions
and that H3–H4 hold for any σ with a suitable polynomial like behaviour.
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The Cauchy problem for equation (1) will be considered in the following equivalent
formulation: we put u = φx, v = φt; then (1) reduces to the quasilinear system{

ut − vx = 0,
vt − σ′(u)ux + F (φ) = 0, φ(x, t) =

∫ t
0
v(x, τ)dτ + φ0(x).

(4)

We consider the Cauchy problem for this system with initial data

u(·, 0) = φ0x(·, 0) = u0, v(·, 0) = φ1(·, 0) = v0, (5)

φ0 ∈ H3(R), u0, v0 ∈ H2(R). (6)

Let

E(u, v) =
∫

R

v2(x)
2

+ Σ(u(x))dx

be the energy functional and, setting η(u, v) =
v2

2
+ Σ(u), we consider

Lη =
{
(u, v) ∈ (L1

loc(R))2 : E(u, v) < +∞
}

the space of functions with finite energy. Let L∞([0,+∞[;Lη) be the space of
the pairs of functions (u, v), defined a. e. and measurable in [0,+∞[×R, such that
(u(t), v(t)) ∈ Lη, a. e. t ∈ [0,+∞[, and ess sup

[0,+∞[

E(u(t), v(t)) < +∞.

A pair of functions (u, v) ∈ L∞([0,+∞[;Lη) is called a weak solution of the
Cauchy problem (4), (5), if

∫
R

∫ +∞

0

(uϕt − vϕx)dxdt+
∫

R
u0ϕ(x, 0)dx+∫

R

∫ +∞

0

(vψt − σ(u)ψx − F (φ)ψ)dxdt+
∫

R
v0ψ(x, 0)dx = 0, (7)

for any ϕ,ψ ∈ C∞0 (R× [0,+∞[).
A pair of functions p, q : R2 −→ R is an entropy-entropy flux pair for the

system (4), if all smooth solutions (u, v) of (4) also satisfy

p(u, v)t + q(u, v)x +∇p · (0, F (φ)) = 0.

It is sufficient that p and q satisfy

∇p(u, v) · ∇f(u, v) = ∇q(u, v), ∀ (u, v) ∈ R2, (8)

where f(u, v) = (−v,−σ(u)) .
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We call (u, v) a weak entropy solution of (4), (5), if (u, v) is a weak solution
that also satisfies

p(u, v)t + q(u, v)x +∇p(u, v) · (0, F (φ)) ≤ 0, (9)

in the sense of distributions in R×]0,+∞[, for any convex entropy p of flux q.

We present now the main result of this work:

Theorem 1.1. We assume the above conditions for F and σ. If u0 and v0 satisfy (6)
and (u0, v0) ∈ Lη, then there is a global weak solution (u,v) of the Cauchy problem (4),
(5) in L∞([0,+∞[;Lη) that satisfies the entropy inequality (9) for the entropy-entropy
flux pair defined by

p(u, v) = η(u, v) =
v2

2
+ Σ(u), q(u, v) = −vσ(u). (10)

To prove this result, we consider a sequence of viscosity functions (uε, vε), solutions
of the approximated system{

uεt − vεx = 0,
vεt − σ′(uε)uεx + F (φε) = ε∆vε, φε(x, t) =

∫ t
0
vε(x, τ)dτ + φ0(x),

(11)

which is obtained by adding the viscosity parameter ε∆φt to the second member
of (1).

In section 2 we prove the existence of global solution (uε, vε) in C([0,+∞[;
H2(R)2) ∩ C1([0,+∞[;L2(R)2) of the Cauchy problem for system (11), with initial
data

uε(·, 0) = φ0x = u0, vε(·, 0) = φ1 = v0, (12)

In section 3 we derive energy estimates for the approximated solutions uε and vε,
which allow us to conclude that the sequence (uε, vε)ε is bounded in L2

loc(R× [0,+∞[)
and so we may consider a subsequence (uε′ , vε′)ε′ converging weakly to (u, v) ∈
(L2

loc(R× [0,+∞[))2. Our aim is to prove that the pair (u, v) is a global weak solution
of the Cauchy problem (4), (5).

If we write the weak formulation of (11), (12),∫
R

∫ +∞

0

(uεϕt − vεϕx)dxdt+
∫

R
u0 ϕ(x, 0)dx+∫

R

∫ +∞

0

(vεψt − σ(uε)ψx − F (φε)ψ)dxdt+
∫

R
v0 ψ(x, 0)dx =

− ε

∫
R

∫ +∞

0

vεψxx, (13)
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we see that, if (uε′ , vε′) ⇀ (u, v), weakly in L2
loc(R× [0,+∞[)2, the linear terms in the

previous equation clearly converge to the correspondent terms in the equation (7).
But the uniform bound in L2 is not enough to warrant the strong local convergence
of the subsequence (uε′ , vε′)ε′ , and the weak convergence doesn’t allow us to pass to
the limit the nonlinear terms σ(uε) and F (φε). We use the associated Young measure
to represent the weak limit of the nonlinear compositions g(uε, vε), of continuous
functions g with (uε, vε). Since L∞ estimates are not available in this case, we follow
Serre and Shearer’s method ([16]), who used Lη Young measures and a class of slowly
growing entropy-entropy flux pairs to prove the existence of solution of the Cauchy
problem for equation (3) with physical viscosity. The Young measure gives a criteria
to know when the weak convergence is, in fact, strong, which happens if the measure
is a Dirac mass. The theory of compensated compactness provides the compacity
conditions to conclude the strong local convergence of (uε′ , vε′)ε′ . By applying Murat’s
lemma and div-curl lemma, we derive Tartar’s equation. The results obtained by Serre
and Shearer imply the reduction of the support of the Young measure.

2. The approximated problem.

In this section we consider the Cauchy problem for the approximated system (11),
with initial data defined by (12), where φ0 ∈ H3(R), φ1 ∈ H2(R), and σ and F as
described above.

We will prove that the Cauchy problem for the nonlinear parabolic equation

φtt − σ′(φx)φxx + F (φ) = ε4φt, x ∈ R, t ≥ 0, (14)

with initial data
φ(·, 0) = φ0, φt(·, 0) = φ1, (15)

has a unique global solution

φε ∈ C([0,+∞[;H3(R)) ∩ C1([0,+∞[;H2(R)) ∩ C2([0,+∞[;L2(R)).

In this conditions, if we put uε = φεx, vε = φεt, we conclude that (uε, vε) ∈
C([0,+∞[;H2(R)2)∩C1([0,+∞[;L2(R)2) is the unique solution of the Cauchy prob-
lem (11), (12).

The proof that we present here generalizes to R the results obtained by J. Green-
berg, R. Mac Camy and V. Mizel ([8]) for the viscoelasticity equations in the interval
[0, 1], and follows these authors and J. P. Dias’ ideas, who proves in [3] a result of
global existence of strong solution for a similar problem in two space dimensions,
considering radial symmetric initial data.

By using a classical fix point method, we begin to prove the following result of
local existence:
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Theorem 2.1. Let φ0 ∈ H3(R) and φ1 ∈ H2(R). Then, there exists T0 > 0
such that the Cauchy problem (14), (15) has a unique solution in C([0, T0];H3(R))∩
C1([0, T0];H2(R)) ∩ C2([0, T0];L2(R)).

Proof. For simplicity, we consider ε = 1. Let us assume that φ0 ∈ H3(R), φ1 ∈ H2(R),
and let (S(t))t≥0 be the semigroup of operators of H−1(R) associated to the heat
equation in R.

We will use the following result (cf. [2], [13]):

If ϕ ∈ H1(R), there exists c > 0 such that

φ(t) = S(t)ϕ ∈ C([0,+∞[;H1(R)) ∩ C1([0,+∞[;H−1(R))

satisfies

‖∇φ(t)‖L2(R) ≤
c√
2t
‖ϕ‖L2(R), ∀ t > 0, (16)

‖∆φ(t)‖L2(R) ≤
c√
2t
‖∇ϕ‖L2(R), ∀ t > 0. (17)

Let us put, for t > 0,

ψ̃(t) =
∫ t

0

S(τ)φ1dτ + φ0.

We have

ψ̃t = S(t)φ1, ψ̃x =
∫ t

0

S(τ)φ1xdτ + φ0x,

ψ̃xx =
∫ t

0

S(τ)φ1xxdτ + φ0xx

and, since φ1x ∈ H1(R),

∆ψ̃x(t) =
∫ t

0

∆(S(τ)φ1x)dτ + φ0xxx =
∫ t

0

∂

∂τ
(S(τ)φ1x)dτ + φ0xxx

= S(t)φ1x − φ1x + φ0xxx (cf. [2]).

Hence, ψ̃ ∈ C([0,+∞[;H3(R)), ψ̃x ∈ C([0,+∞[;H2(R)) and ψ̃t ∈ C([0,+∞[;
H2(R)).

Let us consider, for T > 0,

XT = {ψ ∈ C([0, T ];H3(R)) ∩ C1([0, T ];H2(R)) : ‖ψ − ψ̃‖XT
≤M},

where ‖ψ‖XT
= max

[0,T ]
‖ψ(t)‖H3(R) + max

[0,T ]
‖ψt(t)‖H2(R) and M is a positive constant

such that ‖ψ̃‖ ≤M . We will prove that there exists T0 > 0 such that the problem
∂

∂t
φt −∆φt = f(φ), f(φ) = σ′(φx)φxx − F (φ),

φ(·, 0) = φ0, φt(·, 0) = φ1,
(18)
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has a solution φ ∈ XT0 .
In order to do this, we consider, for a given ψ ∈ XT , the linear problem in XT

∂

∂t
φt −∆φt = f(ψ),

φ(·, 0) = φ0, φt(·, 0) = φ1.
(19)

Since (f(ψ))x = σ′(ψx)ψxxx + σ′′(ψx)ψ2
xx − F ′(ψ)ψx, and due to the inclusion

H1(R) ⊆ L∞(R), we conclude that f(ψ) ∈ C([0, T ];H1(R)) and so (19) has a unique
solution φ = T (ψ) in [0, T ],

φ(t) =
∫ t

0

φt(τ)dτ + φ0,

where

φt(t) = S(t)φ1 +
∫ t

0

S(t− τ) (f(ψ)) (τ)dτ.

Next, we prove that there exists T ′ > 0 such that, for each T < T ′, T (XT ) ⊆ XT .
Let ψ ∈ XT and 0 < t ≤ T . For φ = T (ψ) defined as above, we conclude from (16)
and (17) that

‖φt(t)− ψ̃t(t)‖H2(R) =
∥∥∥∥∫ t

0

S(t− τ) (f(ψ)) (τ)dτ
∥∥∥∥
H2(R)

≤
∫ t

0

1√
2(t− τ)

‖ (f(ψ)) (τ)‖H1(R)dτ ≤ g(t)C(M) (20)

and

‖φ(t)− ψ̃(t)‖H2(R) =
∥∥∥∥∫ t

0

(φt(τ)− ψ̃t(τ))dτ
∥∥∥∥
H2(R)

≤
∫ t

0

‖φt(τ)− ψ̃t(τ)‖H2(R)dτ ≤ g(t)C(M), (21)

where g is an increasing continuous function such that g(0) = 0 and C(M) is a
continuous function of M.

In order to estimate ‖φx(t)− ψ̃x(t)‖H2(R), we point out that

∂

∂t

[(
∂

∂t
−∆

)
φx

]
=

∂

∂x

[(
∂

∂t
−∆

)
φt

]
= (f(ψ))x ,

and so

φxt −∆φx =
∫ t

0

(f(ψ))x (τ)dτ + φ1x −∆φ0x.
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As a consequence of the above considerations, we obtain

(φx − ψ̃x)−∆(φx − ψ̃x) = φx − φxt + φ1x −∆φ0x +
∫ t

0

(f(ψ))x (τ)dτ

−
∫ t

0

S(τ)φ1xdτ − φ0x + S(t)φ1x − φ1x + ∆φ0x

= φx − φ0x + S(t)φ1x − φxt +
∫ t

0

(f(ψ))x (τ)dτ −
∫ t

0

S(τ)φ1xdτ

= φx − φ0x −
∫ t

0

S(t− τ) (f(ψ))x (τ)dτ

+
∫ t

0

(f(ψ))x (τ)dτ −
∫ t

0

S(τ)φ1xdτ = h,

which allow us to conclude that (φx− ψ̃x)−∆(φx− ψ̃x) ∈ L2(R), because h ∈ L2(R),
since, again by (16) and (17), we deduce that

‖(φx − ψ̃x)−∆(φx − ψ̃x)‖L2(R) = ‖h‖L2(R) ≤

≤ ‖φx − φ0x‖L2(R) +
∫ t

0

‖S(t− τ) (f(ψ))x (τ)‖L2(R)dτ

+
∫ t

0

‖ (f(ψ))x (τ)‖L2(R)dτ +
∫ t

0

‖S(τ)φ1x‖L2(R)dτ

≤ g(t)C(M), (22)

because

‖φx − φ0x‖L2(R) =
∥∥∥∥∫ t

0

φtx(τ)dτ
∥∥∥∥
L2(R)

≤
∫ t

0

‖φtx(τ)‖L2(R)dτ ≤

≤
∫ t

0

‖φtx(τ)− S(τ)φ1x‖L2(R)dτ +
∫ t

0

‖S(τ)φ1x‖L2(R)dτ

≤ g(t)C(M).

By Fourier transform we obtain

‖φx − ψ̃x‖H2(R) ≤ c‖(φx − ψ̃x)−∆(φx − ψ̃x)‖L2(R) ≤ g(t)C(M). (23)

We can now choose T ′ > 0 such that g(T ′)C(M) ≤ M and, from (20), (21) and
(23), we obtain

‖φ(t)− ψ̃(t)‖H3(R) ≤M, ‖φt(t)− ψ̃t(t)‖H2(R) ≤M,

for all 0 < t < T ′. Hence, if 0 < T < T ′, T (XT ) ⊆ XT .
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Now we have that, for given ψ,ψ ∈ XT (T < T ′), φ = T (ψ) and φ = T (ψ) satisfy

‖φ(t)− φ(t)‖H2(R) + ‖φt(t)− φt(t)‖H2(R) ≤

≤
∫ t

0

‖φt(τ)− φt(τ)‖H2(R)dτ +
∫ t

0

1√
2(t− τ)

‖(f(ψ)(τ)− f(ψ)(τ))‖H1(R)dτ

≤ g(T )C(M)
(

max
[0,T ]

‖ψ(t)− ψ(t)‖H3(R) + max
[0,T ]

‖ψt(t)− ψt(t)‖H2(R)

)
.

If we proceed in the same way that we did to obtain (22), we get that

‖φx(t)− φx(t)‖H2(R) ≤

g(T )C(M)
(

max
[0,T ]

‖ψ(t)− ψ(t)‖H3(R) + max
[0,T ]

‖ψt(t)− ψt(t)‖H2(R)

)
. (24)

Hence

max
[0,T ]

‖φ(t)− φ(t)‖H3(R) + max
[0,T ]

‖φt(t)− φt(t)‖H2(R)

≤ g(T )C(M)
(

max
[0,T ]

‖ψ(t)− ψ(t)‖H3(R) + max
[0,T ]

‖ψt(t)− ψt(t)‖H2(R)

)
,

and we can choose T0 < T ′ such that g(T0)C(M) < 1 and so T : XT0 −→ XT0 is a
strict contraction in the complete normed space XT0 , hence it has a unique fix point
φ = T (φ), which is the unique solution of the Cauchy problem (14), (15).

Remark. Using the same notations as above, we point out that T0 depends only on
M which depends only on the initial data φ0 and φ1. In consequence, since T0 < T ′,
g(T0)C(M) < 1 and g(T ′)C(M) ≤ M , we conclude that there is a minimal instant
TM > 0 such that the Cauchy problem for equation (14) has solution in [0, TM ],
whatever the functions φ0 and φ1 such that ‖φ0‖ ≤ M , ‖φ1‖ ≤ M that we consider
for initial data are.

We present now the main result of this section:

Theorem 2.2. Given φ0 ∈ H3(R) and φ1 ∈ H2(R), the Cauchy problem (14), (15)
has a unique solution in C([0,+∞[;H3(R))∩C1([0,+∞[;H2(R))∩C2([0,+∞[;L2(R)).

In order to prove this result we will obtain the following estimate for a solution φ
of (14), (15):

‖φ(t)‖H3(R) + ‖φt(t)‖H2(R) + ‖φtt(t)‖L2(R) ≤ c(t), (25)

where c(t) is a positive continuous function.
Let φ ∈ C([0, T [;H3(R)) ∩ C1([0, T [;H2(R)) ∩ C2([0, T [;L2(R)) be a solution

of (14), (15) in [0, T [.
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By multiplying equation (14) by φt, integrating in R, integrating by parts and
integrating in [0, t], (0 < t < T ), we obtain∫

R

(
φt

2

2
+ Σ(φx) +G(φ)

)
(x, t)dx+

∫ t

0

∫
R
φtx

2(x, τ)dxdτ = C, (26)

where C depends only on the initial data φ0 and φ1.
We now assume that φ ∈ C2([0, T [;H2(R)) (cf. [10]). By multiplying equation (14)

by φxx, integrating in R and integrating by parts, we get

−
∫

R

d

dt
(φtxφx) +

∫
R
φtx

2 −
∫

R
σ′(φx)φxx2 −

∫
R
F ′(φ)φx2 =

d

dt

(∫
R

φxx
2

2

)
.

Integrating in [0, t], we obtain

∫
R

φxx
2

2
(x, t)dx =

−
∫

R
(φtxφx)(x, t)dx+

∫ t

0

∫
R

(
φtx

2 − σ′(φx)φxx2 − F ′(φ)φx2
)
dxdτ + C.

Hence, by (26) and since σ′(u) > 0, F ′(φ) ≥ 0, ∀ u, ∀ φ,∫
R

φxx
2

2
≤ −

∫
R
φtxφx + C =

∫
R
φtφxx + C

≤
∫

R
φt

2 +
∫

R

φxx
2

4
+ C ≤

∫
R

φxx
2

4
+ C,

and so ∫
R
φxx

2(x, t)dx ≤ C. (27)

As we have

c

∫
R

φx
2

2
≤
∫

R
Σ(φx),

from (26) and (27) we deduce that

‖φx(·, t)‖H1(R) ≤ C and so ‖φx(·, t)‖L∞(R) ≤ C.

From (26) we also obtain that φ(t) =
∫ t

0

φt(τ)dτ + φ0 is such that ‖φ‖L2R ≤ c(t),

and then
‖φ(·, t)‖H2(R) ≤ c(t). (28)
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Now we derivate equation (14) in order to t, multiply by φtt, integrate in R and
integrate by parts. We get

d

dt

(∫
R

φtt
2

2

)
+
∫

R
σ′(φx)φtxφttx = −

∫
R
F ′(φ)φtφtt −

∫
R
φ2
ttx.

By the previous estimates and from (26) and (28) we obtain∣∣∣∣∫
R
σ′(φx)φtxφttx

∣∣∣∣ ≤ ∫
R
(σ′(φx))2

φtx
2

2
+
∫

R

φttx
2

2

≤ c1

∫
R

φtx
2

2
+
∫

R

φttx
2

2
,∣∣∣∣∫

R
F ′(φ)φtφtt

∣∣∣∣ ≤ ∫
R

φtt
2

2
+
∫

R

(F ′(φ))2φt2

2

≤
∫

R

φtt
2

2
+ c(t),

and, again by (26),

d

dt

∫
R

φtt
2

2
+
∫

R
φtxφttx ≤ c(t) +

∫
R
φtt

2 + c1

∫
R
φtx

2.

Integrating the above inequality in [0, t], we have∫
R

φtt
2

2
+
∫

R

φtx
2

2
≤ c(t) +

∫ t

0

(∫
R

φtt
2

2
+ c1

∫
R

φtx
2

2

)
,

and by Gronwall’s lemma we conclude that∫
R

φtt
2

2
(x, t) +

∫
R

φtx
2

2
(x, t) ≤ c(t). (29)

Since φ is a solution of equation (14) and |F (φ)| ≤ c1|φ|p (p ≥ 1), we have∫
R
(F (φ))2 ≤ c1

2

∫
R
φ2p ≤ c(t)

and then ∫
R
φtxx

2(x, t) ≤ c(t). (30)

We estimate now φxxx. In order to do this, we use the following result, due to
Gagliardo and Nirenberg (cf. [7]):

If φ ∈ H3(R), then φxx ∈ L4(R) and

‖φxx‖L4(R) ≤ c‖φxxx‖L2(R)
1/4‖φxx‖L2(R)

3/4
.
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If we derivate equation (14) in order to x, multiply by φxxx, integrate in R and
integrate by parts, we obtain

− d

dt

(∫
R
φtxxφxx

)
+
∫

R
φtxx

2 −
∫

R
σ′′(φx)φxx2φxxx

−
∫

R
σ′(φx)φxxx2 +

∫
R
F ′(φ)φxφxxx =

d

dt

(∫
R

φxxx
2

2

)
,

and so

d

dt

(∫
R

φxxx
2

2

)
≤ − d

dt

(∫
R
φtxxφxx

)
+
∫

R
φtxx

2 +
∫

R
F ′(φ)φxφxxx −

∫
R
σ′′(φx)φxx2φxxx. (31)

Now, from (27) and Gagliardo-Nirenberg inequality, we have∣∣∣∣∫
R
σ′′(φx)φxx2φxxx

∣∣∣∣ ≤ ‖σ′′(φx)‖L∞(R)‖φxx‖2L4(R)‖φxxx‖L2(R)

≤ c‖φxxx‖3/2L2(R)‖φxx‖
3/2
L2(R) ≤ c

(
1 + ‖φxxx‖2L2(R)

)
.

By integrating inequality (31) in [0, t], we obtain∫
R

φxxx
2

2
(x, t) ≤ c(t)

∫ t

0

∫
R
φxxx

2(x, τ)dxdτ + c(t),

and, again by Gronwall’s lemma,∫
R

φxxx
2

2
(x, t) ≤ c(t). (32)

From (26), (28), (29), (30) and (32) we deduce (25).

Proof of Theorem 2.2. Let T ∗ = sup{T > 0 : ∃ φ ∈ XT , solution of (14), (15)}. By
theorem 2.1, T ∗ > 0, and by the property of unicity we can consider a maximal
solution of (14), (15),

φ ∈ C([0, T ∗[;H3(R)) ∩ C1([0, T ∗[;H2(R)) ∩ C2([0, T ∗[;L2(R)).

If T ∗ < +∞, from (25), we have that ∀ 0 < t < T ∗,

‖φ(t)‖H3(R) + ‖φt(t)‖H2(R) + ‖φtt(t)‖L2(R) ≤ c(t) ≤ M∗,

where M∗ = max
[0,T∗]

c(t). According to the remark that follows the proof of Theorem 2.1,

there exists TM∗ such that, for all 0 < t < TM∗ , the Cauchy problem for equation (14)
with initial data φ(·, t), φt(·, t), has a solution in [0, TM∗ ]. In these conditions, it is
possible to extend the solution φ into a bigger time interval, which contradicts the
definition of T ∗. Hence, T ∗ = +∞.
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3. Young measures and reduction of their support.

We begin this section with the following energy estimates:

Lemma 3.1. The approximated solutions uε and vε satisfy, for all t > 0,∫
R

(
vε

2

2
+ Σ(uε) +G(φε)

)
(x, t)dx ≤

∫
R

(
v0

2

2
+ Σ(u0) +G(φ0)

)
(x)dx, (33)

ε

∫ t

0

∫
R
(σ′(uε)uεx

2 + vεx
2)(x, τ)dxdτ ≤

3
∫

R

(
v0

2

2
+ Σ(u0) +G(φ0)

)
(x)dx+ ε2

∫
R
u0x

2(x)dx.
(34)

Proof. By multiplying the first equation of (11) by σ(uε), the second by vε and adding
both equations, we obtain, since vε = φεt,

d

dt

(
vε

2

2

)
+
d

dt
(Σ(uε))− (σ′(uε)vε)x +

d

dt
(G(φε)) = ε∆vεvε.

Integrating the above equation in R and then by parts, we get∫
R

d

dt

(
vε

2

2
+ Σ(uε) +G(φε)

)
+ ε

∫
R
vεx

2 = 0.

If we now integrate this equation in [0, t], we obtain∫
R

(
vε

2

2
+ Σ(uε) +G(φε)

)
(x, t)dx+ ε

∫ t

0

∫
R
vεx

2(x, τ)dxdτ =∫
R

(
v0

2

2
+ Σ(u0) +G(φ0)

)
(x)dx, (35)

and (33) follows.

In order to prove (34), we follow Serre and Shearer’s ideas ([16]). Since vεx = uεt,
we have ∆vε = uεxt and φεxx = uεx. Hence, if we multiply the second equation
of (11) by uεx and integrate in R× [0, t], we have∫ t

0

∫
R
(uεxvεt − σ′(uε)uεx

2) =
∫ t

0

∫
R
F ′(φε)φεx

2 + ε

∫ t

0

∫
R

d

dt

(
uεx

2

2

)
,

and, since uεxt = vεxx, we get∫ t

0

∫
R
uεxvεt =

∫ t

0

∫
R
((vεuεx)t − vεuεxt) =

∫
R
vεuεx|t0 +

∫ t

0

∫
R
vεx

2,
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and then∫
R
vεuεx|t0 +

∫ t

0

∫
R
vεx

2 − ε

2

∫
R
uεx

2|t0 =
∫ t

0

∫
R
σ′(uε)uεx

2 +
∫ t

0

∫
R
F ′(φε)φεx

2.

Since F ′(φ) ≥ 0, from the above equality we have∫ t

0

∫
R
σ′(uε)uεx

2 ≤
∫ t

0

∫
R
σ′(uε)uεx

2 +
∫ t

0

∫
R
F ′(φε)φεx

2 ≤(∫
R
uεx

2(t)
)(1/2)(∫

R
vε

2(t)
)(1/2)

−
∫

R
v0u0x +

∫ t

0

∫
R
vεx

2 − ε

2

∫
R
uεx

2|t0 ≤

1
2ε

∫
R
vε

2(t) +
1
2ε

∫
R
v0

2 + ε

∫
R
u0x

2 +
∫ t

0

∫
R
vεx

2.

Hence,

ε

∫ t

0

∫
R
σ′(uε)uεx

2 ≤ 1
2

∫
R
vε

2(t) +
1
2

∫
R
v0

2 + ε2
∫

R
u0x

2 + ε

∫ t

0

∫
R
vεx

2.

The estimate (34) follows then from (35).

We now present the theorem of existence of Young measures. For the proof and
more details concerning this subject, we refer to [1] and [17].

Let M(Ω) be the space of finite real Radon measures on Ω.

Theorem 3.2 (Young measures and representation of weak limits). Let
η : Rm −→ R be a continuous positive function such that 1

η(λ) → 0, |λ| → +∞,
and Uε = (U1ε, . . . , Umε) a sequence defined a. e. in R × [0,+∞[ such that, for all
compact set K ⊆ R × [0,+∞[, ∃ CK > 0 :

∫
K
η(Uε(x, t))dxdt ≤ CK . Then there

is a subsequence (Uε′)ε′ and a weakly measurable family of nonnegative measures of
M(Rm), {νx,t}(x,t)∈R×[0,+∞[, with mass equal to one a. e. (x, t) ∈ R× [0,+∞[, such
that

(i) For any continuous function g : Rm −→ R such that g(λ)
η(λ) → 0, |λ| → +∞, let

ḡ(x, t) =
∫

Rm

g(λ)dνx,t(λ).

Then ḡ ∈ L1
loc(R × [0,+∞[) and g(Uε′) ⇀ ḡ in the weak topology of L1

loc(R ×
[0,+∞[) induced by Cc(R × [0,+∞[), the space of continuous functions with
compact support in R× [0,+∞[.

(ii) If |λ|q
η(λ) → 0, |λ| → +∞, and if the support of νx,t is a point a. e. (x, t) ∈ R ×

[0,+∞[, then Uε′ → Ū(x, t) =
∫

Rm λdνx,t(λ) in Lqloc(R× [0,+∞[), νx,t = δŪ(x,t)

and, if g is in the same conditions as above, g(Uε′) → g(Ū) in L1
loc(R×[0,+∞[).
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Let η(u, v) =
v2

2
+ Σ(u), ∀ u, v ∈ R. Since the approximated solutions uε, vε

satisfy the energy estimate (33), for all t > 0, we can we apply the Young mea-
sures theorem and associate to a subsequence (uε′ , vε′)ε′ a family of Young measures
{νx,t}x,t∈R×[0,+∞[ that verify (i) and (ii) of theorem 3.2.

Since
u2

2
+
v2

2
≤ 1
c
Σ(u) +

v2

2
,

it follows from (33) that (uε′ , vε′)ε′ is bounded in L2
loc(R × [0,+∞[), and then we

may consider a subsequence, which will still be called (uε′ , vε′)ε′ , converging weakly
in L2

loc(R × [0,+∞[) to functions (u, v) ∈ (L2
loc(R × [0,+∞[))2. Now, again from

the above inequality, we see that, if the Young measures νx,t are Dirac measures,
then, by (ii) of theorem 3.2, νx,t = δ(u(x,t),v(x,t)) and (uε′ , vε′) → (u, v), strongly in
Lqloc(R× [0,+∞[), for all q < 2.

Following [16], we state now Tartar’s equation for two classes of entropy-entropy
flux pairs, solutions of a Goursat problem for system (39). Since we don’t have
L∞ estimates for the approximated solutions (uε, vε), we can only use the above Lη

Young measures and, in particular, in Tartar’s equation below, we are restricted to
use entropy-entropy flux pairs (p, q) that verify (ii) of theorem 3.2, which means that
|p/η|, |q/η| → 0.

Let (p, q) be an entropy-entropy flux pair. We have{
pu + qv = 0,
σ′(u)pv + qu = 0.

(36)

Since σ′(u) ≥ c > 0, we can define a smooth increasing function

z(u) =
∫ u

0

√
σ′(s)ds.

We change to a Riemann coordinate system (w1, w2) by defining

w1(u, v) = v + z(u), w2(u, v) = v − z(u).

As in [17] we also consider the change of variables (p, q) −→ (P,Q), defined by

p =
1
2
(σ′)−1/4(P +Q), (37)

q =
1
2
(σ′)1/4(P −Q), (38)

and rewrite equation (36) in the new coordinates:{
Pw1 = aQ,

Qw2 = −aP,
(39)
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where a = a(w1 − w2) = σ′′(z−1(w1−w2
2 ))/8(σ′(z−1(w1−w2

2 )))3/2.
We consider entropy-entropy flux pairs (p, q), given by (37), (38), where P and

Q are solutions of a Goursat problem related to equation (39). The Goursat prob-
lem consists in solving system (39), with data in the lines w1 = w1 and w2 = w2,
(w1, w2) ∈ R2:

P (w1, w2) = g(w2), Q(w1, w2) = h(w1).

If g and h are regular then the Goursat problem has a unique solution (P,Q) with
the same regularity and if g has his support contained in the set {w2 ∈ R : w2 > w2},
w2 ∈ R, then P and Q have their supports contained in the halfplane {(w1, w2) ∈
R2 : w2 ≥ w2}. For details concerning Goursat problem we refer [14] and [16].

We now state Tartar’s equation, which is deduced by applying div-curl lemma to
p1(uε, vε), q1(uε, vε), p2(uε, vε) and q2(uε, vε), where (p1, q1) and (p2, q2) are entropy-
entropy flux pairs associated to P and Q, solutions of a Goursat problem for the
system (39) with continuous, compactly supported Goursat data, or solutions of a
Cauchy problem for this system with continuous, compactly supported initial data on
the line w1 − w2 = ξ0, ξ0 constant.

Let (p, q) be an entropy-entropy flux pair. In order to apply div-curl lemma,
we must prove that (p(uε, vε))t + (q(uε, vε))x lies in a compact subset of H−1

loc (R ×
[0,+∞[). Multiplying system (11) by (pu(uε, vε), pv(uε, vε)), we obtain

(p(uε, vε))t + (q(uε, vε))x = εpvvεxx − pvF (φε)

= ε(pvvεx)x − ε(puvuεxvεx + pvvvεx
2)− pvF (φε),

where, in the second member, the derivatives refer to the point (uε, vε).
To use Murat’s lemma (cf. [6]) we need to have the following conditions:

M1 (p(uε, vε) + q(uε, vε))ε is uniformly bounded in Lploc(R× [0,+∞[), for some p >
2;

M2 (ε(pvvεx)x)ε is precompact in H−1
loc (R× [0,+∞[);

M3 (ε(puvuεxvεx + pvvvεx
2))ε is uniformly bounded in L1

loc(R× [0,+∞[);

M4 (pvF (φε))ε is uniformly bounded in L1
loc(R× [0,+∞[).

We remark that, if M1 holds, then ((p(uε, vε))t + (q(uε, vε))x)ε is uniformly bound-
ed in W−1,p

loc (R× [0,+∞[), and, in M3 and M4, the bound in L1
loc(R× [0,+∞[) implies

a bound in M(ω), for any open bounded set ω of R× [0,+∞[. Then, if M1–M4 hold,
we can apply Murat’s lemma to ((p(uε, vε))t + (q(uε, vε))x)ε.

Theorem 3.3 (Tartar’s equation). Let (p1, q1) and (p2, q2) be entropy-entropy
flux pairs, given by (37), (38), where P1, Q1, P2 and Q2 are either solutions of
a Goursat problem for system (39), with continuous, compactly supported Goursat
data, or are solutions of a Cauchy problem for the same system, with continuous,
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compactly supported initial data on the line w1 − w2 = ξ0, ξ0 constant. Then p1, q1,
p2 and q2 satisfy Tartar’s equation

< ν, p1q2 − p2q1 >=< ν, p1 >< ν, q2 > − < ν, p2 >< ν, q1 >, (40)

where ν = νx,t is the Young measure associated to the subsequence (uε′ , vε′)ε′ of the
approximated solutions, and < ν, p >=

∫
p(λ)dν(λ).

Proof. In the case of entropy-entropy flux pairs solutions of the Goursat problem,
we have to prove M1–M4 and apply Murat’s lemma and then div-curl lemma. The
proof of M1–M3 is the same as in [17]. To obtain M4 we consider a compact set
K ⊆ R× [0,+∞[. If t > 0, we have

‖φε(·, t)‖2L2(R) =
∫

R
φε

2(x, t)dx ≤ C

∫
R

(∫ t

0

vε(x, τ)dτ
)2

+ φ0
2dx

≤ C‖φ0‖2L2(R) + C

∫
R

∫ t

0

vε
2(x, τ)dxdτ

≤ C + c(t) sup
[0,t]

‖vε(·, τ)‖L2(R).

Then, from (33) follows that ‖φε(·, t)‖L2(R) ≤ c(t), where c is a continuous func-
tion. Since φεx = uε, we also obtain from this estimate that ‖φεx(·, t)‖L2(R) ≤ c.
Then we have ‖φε(·, t)‖H1(R) ≤ c(t) and ‖φε‖L∞(K) ≤ c(t). Since F is continuous, we
have ∫

K

|F (φε)|dxdt ≤ C,

hence (F (φε))ε is uniformly bounded in L1
loc(R× [0,+∞[), and, since (pv(uε, vε))ε is

uniformly bounded in L∞(R× [0,+∞[) (cf. [17]), we obtain M4.
If M1–M4 hold, then Murat’s lemma and div-curl lemma imply Tartar’s equation.
To prove the case where P and Q are solutions of the Cauchy problem, we refer

to [16].

Now, as in [17] for the case where σ′′ is never null, or as in [16] for the case where
σ′′ is null only once, we have the following result:

Theorem 3.4 (Reduction of the support of ν). The Young measure νx,t is a
point mass.

For the proof, see the references indicated above.

4. Convergence of the approximated solutions; Proof of theo-
rem 1.1.

Let (uε, vε) ∈ C([0,+∞[;H2(R)2)∩C1([0,+∞[;L2(R)2) be the solution of the Cauchy
problem for the approximated system (11), with initial data (12).
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Let us consider ϕ and ψ ∈ C∞0 (R× [0,+∞[). By multiplying the first equation of
the system (11) by ϕ, the second by ψ, adding the resulting equations and integrating
by parts in R× [0,+∞[, we obtain that uε and vε satisfy the weak formulation of the
Cauchy problem (11), (12),∫

R

∫ +∞

0

(uεϕt − vεϕx)dxdt+
∫

R
u0 ϕ(x, 0)dx+∫

R

∫ +∞

0

(vεψt − σ(uε)ψx − F (φε)ψ)dxdt+
∫

R
v0 ψ(x, 0)dx =

− ε

∫
R

∫ +∞

0

vεψxxdxdt. (12)

We want to pass to the limit the above equation.
From the previous section we have that the support of the Young measures νx,t is

reduced to a point. Let, for (x, t) ∈ R × [0,+∞[, (u(x, t), v(x, t)) be the support of
the Young measure νx,t. Let p < 2. Since

η(u, v) ≥ c
v2

2
+
u2

2
,

we have

0 ≤ |u|p + |v|p

η(u, v)
≤ C

|u|p + |v|p

v2 + u2
→ 0, |u|+ |v| → +∞.

Then, from property (ii) of the Young measures theorem, we have

u(x, t) =
∫

R2
λ1dνx,t(λ1, λ2), v(x, t) =

∫
R2
λ2dνx,t(λ1, λ2) ∈ Lploc(R× [0,+∞[)

and (uε′ , vε′) → (u, v), strongly in (Lploc(R× [0,+∞[))2. We had previously seen that
a subsequence (uε′ , vε′)ε′ converged, weakly in (L2

loc(R × [0,+∞[))2, to a function
(u, v) ∈ L2

loc(R × [0,+∞[)2, and so, by the unicity of weak limit, we may conclude
that (u, v) = (u, v) ∈ (L2

loc(R× [0,+∞[))2.
Since σ satisfies H4, we have

σ(u)
η(u, v)

→ 0, if |u|+ |v| → +∞,

and again from (ii) we conclude that σ(uε′) → σ(u) in L1
loc(R× [0,+∞[).

Due to what was exposed above, it follows immediately that

lim
ε′→0

∫
R

∫ +∞

0

(uε′ϕt − vε′ϕx)dxdt =
∫

R

∫ +∞

0

(uϕt − vϕx)dxdt, (41)

lim
ε′→0

∫
R

∫ +∞

0

vε′ψtdxdt =
∫

R

∫ +∞

0

vψtdxdt, (42)

lim
ε′→0

∫
R

∫ +∞

0

σ(uε′)ψxdxdt =
∫

R

∫ +∞

0

σ(u)ψxdxdt. (43)
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Now, since∣∣∣∣ε′ ∫
R

∫ +∞

0

vε′ψxxdxdt

∣∣∣∣ ≤ ‖ψxx‖L∞ε′
∫

sup(ψ)

|vε′ |dxdt

≤ ‖ψxx‖L∞(m(sup(ψ)))1/2ε′
(∫

sup(ψ)

vε′
2dxdt

)1/2

,

we obtain, provided that, as a consequence of (33), (vε′)ε′ is uniformly bounded in
L2(sup(ψ)),

lim
ε′→0

ε′
∫

R

∫ +∞

0

vε′ψxxdxdt = 0. (44)

To show that (u, v) is a weak solution of the problem (4), (5), we now study the
limit of ∫

R

∫ +∞

0

F (φε′)ψ dxdt. (45)

Let φ =
∫ t

0

v(x, τ)dτ + φ0 and K ⊆ [a, b]× [0, T ] be a compact set of R× [0,+∞[.

∣∣∣∣∫
K

φε′(x, t)− φ(x, t)dxdt
∣∣∣∣ = ∣∣∣∣∫

K

∫ t

0

vε′(x, τ)− v(x, τ)dτ dxdt
∣∣∣∣

≤
∫ b

a

∫ T

0

∫ T

0

|vε′(x, τ)− v(x, τ)|dτ dxdt

= T

∫ b

a

∫ T

0

|vε′(x, τ)− v(x, τ)|dxdτ

≤ TT 1/q(b− a)1/q‖vε′ − v‖Lp([a,b]×[0,T ]) → 0,

and so φε′ → φ in L1
loc(R × [0,+∞[). Hence, there exists a subsequence, that we

still call φε′ , which converges pointwise, a. e. (x, t) ∈ R × [0,+∞[, to φ. Since F is
continuous, F (φε′(x, t)) → F (φ(x, t)), a. e. (x, t) ∈ R× [0,+∞[.

On the other hand, for t > 0, we show, as we did to obtain property M4 in
section 3, that

‖φε′(·, t)‖L2(R) ≤ c(t), ‖φε′x(·, t)‖L2(R) ≤ c,

which implies that ‖φε′(·, t)‖H1(R) ≤ c(t) and ‖φε′‖L∞(R×[0,t]) ≤ c(t).
Now, we can apply dominated convergence theorem to (45) to obtain

lim
ε′→0

∫
R

∫ +∞

0

F (φε′)ψ dxdt =
∫

R

∫ +∞

0

F (φ)ψ dxdt. (46)

From (41), (42), (43), (44) and (46) we have that u and v satisfy the weak formu-
lation of the Cauchy problem (4), (5), and, from (33), it follows that uε and vε also
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2004, 17; Núm. 1, 147–167



Filipa Caetano Weak solutions to the Cauchy problem

satisfy ∫
R

(
vε

2

2
+ Σ(uε)

)
(x, t) ≤ C, ∀ t > 0.

By passing the above inequality to the limit, we obtain∫
R

(
v2

2
+ Σ(u)

)
(x, t) ≤ C, ∀ t > 0,

and so (u, v) ∈ L∞([0,+∞[;Lη) is a weak solution of the Cauchy problem (4), (5).

To complete the proof of theorem 1.1, we show that the entropy inequality (9) is
satisfied by the entropy-entropy flux pair defined by (10).

Since ∇p(u, v) · ∇f(u, v) = ∇q(u, v), ∀ (u, v) ∈ R2, (f(u, v) = (−v,−σ(u))), if
we multiply system (11) by (∇p)(uε, vε) = (pu(uε, vε), pv(uε, vε)), since puv = 0, we
conclude that

p(uε, vε)t + q(uε, vε)x +∇p (uε, vε) · (0, F (φ)) =

ε(pv(uε, vε)vεx)x − ε(pv(uε, vε))xvεx = ε(pv(uε, vε)vεx)x − εpvv(uε, vε)vεx
2.

Since the second derivative in the equation above is positive, we have that, for
ψ ∈ D(R×]0,+∞[), ψ ≥ 0,

∫
R

∫ +∞

0

(p(uε, vε)ψt + q(uε, vε)ψx − pv(uε, vε)F (φε)ψ) dxdt

− ε

∫
R

∫ +∞

0

(pv(uε, vε))vεxψx ≥ 0.

Now, pv(uε, vε) = vε and ε|vεvεx| = ε1/2ε1/2|vεvεx| ≤ ε1/2
(
vε

2

2 + εvεx
2

2

)
. Hence,

from (33) and (34) follows that the second term in the above inequality converges
to 0. Since p and q are continuous, by passing both members of the above inequality
to the limit, we obtain∫

R

∫ +∞

0

(p(u, v)ψt + q(u, v)ψx − pv(u, v)F (φ)ψ) dxdt ≥ 0.

This finishes the proof of theorem 1.1.
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