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ABSTRACT

We show that the functions in L2(Rn) given by the sum of infinitely sparse
wavelet expansions are regular, i.e. belong to C∞L2(x0), for all x0 ∈ Rn which is
outside a set of vanishing Hausdorff dimension.
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1. Introduction

Let 2nj/2ψ(2jx − k), ψ ∈ F , k ∈ Zn, j ∈ Z be an orthonormal wavelet basis, where
F is a finite set of 2n − 1 wavelets in the Schwartz class.

The purpose of this paper is to study the pointwise regularity of functions

f(x) =
∑
ψ∈F

∑
j

∑
k

αj,k2nj/2ψ(2jx− k), with
∑
j

∑
k

|αj,k|p <∞ ∀p > 0. (1)

This assumption on the sequence (αj,k) (j ∈ Z, k ∈ Zn) can be expressed by
saying that its non-increasing rearrangement α∗0 ≥ α∗1 ≥ · · · has a fast decay at
infinity: α∗` ≤ Cq`

−q for q = 0, 1, 2, . . .
Condition (1) is equivalent to

f ∈
⋂
p>0

Ḃn(1/p−1/2),p
p
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(see [1], [8]), where Ḃs,p
q (s ∈ R, 0 < p, q ≤ ∞) denotes the homogeneous Besov space

on Rn.

As it is well known (see [6], [7]) the smoothness of a function is closely related to
the decay speed of its rearranged wavelet coefficients. In a different context, it was
shown in [6] that if g(x) =

∑
ψ∈F

∑
j

∑
k αj,kψ(2jx − k), where F and (αj,k) are as

above, then the pointwise Hölder exponent of g at x is +∞, for all x ∈ Rn and outside
a set of vanishing Hausdorff dimension.Observe that here wavelets are normalized in
L∞ norm. In terms of Besov spaces, we have in this case g ∈

⋂
p>0 Ḃn/p,p

p . As it is
easily checked, this implies that g belongs to the Wiener algebra and, in particular,
g is continuous in Rn and vanishes at infinity.

The situation is quite different in our case. Indeed, we have the following theorem:

Theorem 1.1. There exists a sparse wavelet series f(x) which is nowhere continuous
and fulfils (1).

The proof is quite simple. Let (xj)j∈N, be dense in Rn with xj = kj2−j , kj ∈ Nn.
Let

f(x) =
∞∑
1

exp(−(log j)2)2nj/2ψ(2j(x− xj)).

Then f is nowhere continuous. Indeed, if f were continuous at y, one would have
|αj,k| = o(1) as 2−j + |y − k2−j | → 0. Here αj,k = exp(−(log j)2)2nj/2 tends to +∞
as j → +∞.

For that reason, we cannot expect to prove regularity in a sense which is governed
by L∞ norms. One should instead use L2 norms (this is quite natural, since the
wavelet are normalized with respect to this norm).

We denote by [·] the entire part and |B(x0, r)| the volume of the ball of radius
r centered at x0. For all s ∈ R and 1 ≤ q ≤ ∞ we denote by T qs (x0) the space of
functions f which satisfy the following conditions: there exists a constant C > 0 and
a polynomial P of degree doP ≤ [s] (P = 0 if s < 0) such that:( ∫

B(x0,r)

|f − P |q dµ
)1/q

≤ Crs, for all 0 < r ≤ 1

where the Lebesgue measure µ on the ball is dx/|B(x0, r)| (with the usual general-
ization if q = ∞ Then T∞s (x0) is the Hölder space Ċs(x0)).

These conditions contrarily to the classical Hölder-type conditions, are stable un-
der various operators (fractional integration, singular integral transformations) and
were first introduced by Calderón and Zygmund, in their study of solutions of elliptic
partial differential equations, in order to obtain pointwise estimates of solutions and
their derivatives (see [3]). Their new results come after they notice and show that a
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differential operator is in some sense a composition of a fractional differentiation with
a singular integral transformation (see [2]).

The L2 based criterion for regularity is given by ‖f − P‖L2(B(x0,r)) ≤ Crs, i.e.
f ∈ T 2

s (x0).

Remark. T qs (x0) ⊂ T q′s (x0) if q′ ≤ q. Therefore the condition for q = 2 is weaker than
the condition for q = ∞ (the usual Hölder condition).

We can now state our main result:

Theorem 1.2. If a function f satisfies (1), then there exists a set E∗ ⊂ Rn with
Hausdorff dimension dimh(E∗) = 0 such that, for all x0 6∈ E∗, f ∈ T 2

s (x0) for all
s ≥ 0.

The proof of this Theorem will be given in the following section.

2. Proof of the main result

Theorem 1.2 is an immediate consequence of the following result, which gives in
addition some information on the pointwise regularity of elements in Besov spaces.

For the sake of simplicity, we write Bp instead of Ḃn(1/p−1/2),p
p .

Theorem 2.1. Let 0 < p ≤ 1 and −n/2 ≤ s. Then for all f ∈ Bp, there exists
an exceptional set Ef , with Hausdorff dimension dimH(Ef ) ≤ p(s + n/2), such that
∀x0 6∈ Ef , f ∈ T 2

s (x0).

Remark first that Bp is included in B2 = L2(Rn) (for p ≤ 2) and that L2(Rn) is
included in T 2

s (x0) for s ≤ −n/2.
This proof is a straightforward adaptation of [4].

Proof of Theorem 2.1. The conclusion for s = −n/2 follows directly from the embed-
dings we just mention, thus we can take s > −n/2. To prove this result, we fix an
integer N > max{s, n(1/p− 1/2)} and we use an orthonormal basis 2nj/2ψ(2jx− k)
of compactly supported wavelets with regularity N . The support of ψ is included in
[−M,M ]n.

Then f ∈ Bp if and only if f(x) =
∑
j

∑
k cj,kψj,k(x) where ψj,k(x) =

2nj/2ψ(2jx− k) and the wavelet coefficients of f satisfy

‖f‖p ≡
∑
j

∑
k

|cj,k|p <∞.

Here ‖f‖ denotes the quasi-norm of Bp. Observe that f(x) and λn/2f(λx) have the
same quasi-norm for all λ > 0.
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The exceptional set Ef will be the union of two sets V σ and W σ which we now
define. The norm of x ∈ Rn will be |x| = sup(|x1|, . . . , |xn|). Let β = σ−1, σ = s+n/2
and

V σj =
⋃
k

B(k2−j , |cj,k|β).

We set
V σ = lim sup

j→+∞
V σj .

If x0 6∈ V σ, there exists j0 such that x0 6∈ V σj , for all j ≥ j0. This means that

|x0 − k2−j | > |cj,k|β (j ≥ j0, k ∈ Zn),

i.e.,
|cj,k| < |x0 − k2−j |σ, ∀j ≥ j0, ∀k ∈ Zn. (2)

Lemma 2.2. We have dimH V
σ ≤ pσ.

Indeed, V σj is covered by the balls B(k2−j , |cj,k|β), and we have∑
j

∑
k

|cj,k|βpσ =
∑
j

∑
k

|cj,k|p <∞.

The conclusion directly follows from the definition of the Hausdorff dimension.

The second set W σ is constructed as follows. Let us denote by Λj the collection
of dyadic cubes λ of side length 2−j , and let Λ =

⋃
j(Λj). For every λ ∈ Λj , 4λ is the

cube with same center, and side length 4 · 2−j .
Let

σ(λ) =
∑
λ′⊂4λ

|c(λ′)|p

and Mj be the collection of λ ∈ Λj such that

σ(λ) ≥ 2−pσj .

Finally,
W σ
j =

⋃
λ∈Mj

(λ) and W σ = lim sup
j→∞

W σ
j .

Lemma 2.3. With the setting above we have the majoration: dimHW
σ ≤ pσ.

Indeed, ∑
λ∈Λj

σ(λ) =
∑
λ′∈Λ

∑
λ∈Λj

4λ⊃λ′

|c(λ′)|p.

Revista Matemática Complutense
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But for every λ′ there exist at most 4n cubes λ ∈ Λj such that λ′ ⊂ 4λ. So,∑
λ∈Λj

σ(λ) =
∑
λ′∈Λ

∑
λ∈Λj

4λ⊃λ′

|c(λ′)|p ≤ 4n
∑
λ∈Λ

|c(λ)|p.

Finally, for any given j we have∑
λ∈Λj

σ(λ) ≤ C ′.

This obviously gives, for a given j,

]Mj ≤ 2pσjC ′.

Since the side length of every λ ∈ Mj is 2−j , it follows that dimHW
σ ≤ pσ as

announced.

We finally set
Ef = V σ ∪W σ

and we show that for every x0 6∈ Ef , we have

f ∈ T 2
s (x0). (3)

To prove (3), we split the wavelet expansion of f into three components, f =
f0 +f1 +f2. Here f0 is the approximation Ej0(f) wich is evidently of class CN , where
N is the regularity of the used wavelet. Obviously this term satisfies (3) if s ≤ N .

The second term f1 is the part of the wavelet expansion which is inside the “cone
of influence”:

f1(x) =
∑
j≥j0

∑
|x0−k2−j |≤4M2−j

cj,k2nj/2ψ(2jx− k).

The following Lemma obviously implies that f1 ∈ T 2
s (x0).

Lemma 2.4. We have f1 ∈ Ċs(Rn) for every x0 6∈ V σ.

Proof. We use (2) and |x0 − k2−j | ≤ 4M2−j . It implies |cj,k|2nj/2 ≤ C ′′2−js and
Lemma 2.4 follows.

Then we treat

f2(x) =
∑
j≥j0

∑
|x0−k2−j |>4M2−j

cj,k2nj/2ψ(2jx− k).

We now define the integer J by

2−J−1 ≤ r < 2−J
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and the integer a by
2a ≤M < 2a+1.

Then we have the following:

Lemma 2.5. If the support of ψ(2j · −k) has a non-empty intersection with B(x0, r)
and if |x0 − k2−j | > 4M2−j, then j ≥ J + a+ 2 and λ(j, k) ⊂ 4QJ , where QJ is the
dyadic cube of side 2−J containing x0.

Proof. The assumptions are |x − k2−j | ≤ 2−jM , |x − x0| ≤ 2−J and |x0 − k2−j | >
4M2−j . But |x0−k2−j | ≤ |x0−x|+|x−k2−j | ≤ 2−jM+2−J . It yields 3M2−j < 2−J

and j ≥ J + a+ 2. Then

|x0 − k2−j | ≤ 2−jM + 2−J ≤ 2−j+a + 2−J ≤ 5
4
2−J (4)

and the conclusion of Lemma 2.5 follows.

Our last Lemma is immediate:

Lemma 2.6. If x0 6∈ W σ, then there exists an integer j0 such that if j ≥ j0 and
x0 ∈ λ(j, k) then σ(λ(j, k)) ≤ 2−pjσ.

We can now finish the proof of Theorem 2.1.
We have

‖f2‖L2(B(x0,r)) ≤
∑

j≥J+a+2

∑
|x0−k2−j |>4M2−j

|cj,k| ‖ψj,k‖L2(B(x0,r))

≤
∑

j≥J+a+2

∑
4M2−j<|x0−k2−j |≤5 2−J/4

|cj,k|

≤ sup
|x0−k2−j |≤ 5

4 2−J

|cj,k|1−p
∑

λ(j,k)⊂4QJ

|cj,k|p

≤ C2−σJ(1−p)2−pJσ = C2−σJ .

In the second and third inequalities we used Lemma 2.5 and (4). In the last
inequality we used that x0 6∈ V σ, x0 6∈W σ, (2) and Lemma 2.6.

Since σ = n
2 + s, Theorem 2.1 is established.
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