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ABSTRACT

We show that the range of a contractive projection on a Lebesgue-Bochner space
of Hilbert valued functions Lp(H) is isometric to a `p-direct sum of Hilbert-
valued Lp-spaces. We explicit the structure of contractive projections. As a
consequence for every 1 < p < ∞ the class Cp of `p-direct sums of Hilbert-
valued Lp-spaces is axiomatizable (in the class of all Banach spaces).
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Introduction

It was a remarkable achievement in the isometric theory of Banach spaces of the
years 1960’s to characterize the contractive linear projections of Lebesgue Lp spaces
(p 6= 2). In the case of Lp spaces of a probability space it was done by Douglas [4] in
the case p = 1 and Andô [1] in the case 1 < p < ∞, p 6= 2. They showed that the
range of such a contractive projection is itself isometric to a Lp space (for the same p,
but a different measure space); if moreover the projection is positive then its range
is a sublattice of the initial Lp space and is lattice isomorphically isometric to a Lp

space. This was extended to the non-sigma-finite measure space setting by Tzafriri
([17]). In the case of a probability space, the structure of contractive projections is
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elucidated by Douglas-Andô works: a general contractive projection P on Lp(Ω,Σ, µ)
has the form

P = MεP̂M
−1
ε + V (1)

where Mε is the multiplication operator by a function ε with |ε| = 1, P̂ is a positive
contractive projection, and V = 0 if p > 1, while if p = 1, then V is a contraction
from L1 into the range R(P ) of P which vanishes on the band generated by R(P ).
Moreover P̂ is a weighted conditional expectation, i.e. there exist a sub-sigma algebra
B, an element B ∈ B and a nonnegative function w ∈ Lp such that E(wp | B) = 1
and

P̂ f = wE(1Bf · wp−1 | B)

for every f ∈ Lp (in particular if P1 = 1 then P is a conditional expectation). This
last formula can also be written

P̂ f = wEν(1Bfw
−1 | B)

where Eν is the conditional expectation relative to the measure ν = wp · µ. If we
denote by S the isometric isomorphism f 7→ w · f of Lp(Ω,Σ, ν) onto Lp(Ω,Σ, ν) and
by MB the multiplication operator by the indicator function 1B , we have:

P̂ = SMBEν( | B)S−1. (2)

The structure of contractive projections in the non-sigma finite case was treated by
Bernau and Lacey ([3]); their main result can be rephrased in saying that if we
assume (as we may) that the measure space (Ω,Σ, µ) is localizable ([7]) then formulas
(1) and (2) are still valid; now w is some Σ-measurable positive function, ν = wp · µ
and B is some semi-finite sigma-subalgebra of Σ.

The task of extending these results to various classical spaces was considered by
numerous authors; see the recent survey paper [15] and the references inside. Here
we are more specifically interested in the case of vector-valued Lebesgue Lp spaces,
in particular mixed norm spaces Lp(Lq). Since the survey paper [5] on this specific
subject, several partial results appeared. In particular B. Randrianantoanina ([14])
succeeded in solving thoroughly the complex sequential case `p(`q) using hermitian
operator techniques introduced in the subject by Kalton and Wood. More recently
the case of finite dimensional real Banach spaces with C2 norm was considered by the
authors of [12]; under some additional conditions on the dual norm (in particular it is
assumed to be C2 on the complementary set of the coordinate hyperplanes associated
to a distinguished basis) the contractively complemented subspaces are shown to
be necessarily generated by a block-basis of the given basis. This can be applied
in particular to the real spaces `np (`mq ), when 2 < p, q < ∞ (or by duality when
1 < p, q < 2), obtaining the same description of their contractively complemented
subspaces as in the complex case [16].

In the present paper we examine the case of Lebesgue spaces of Hilbert valued
functions Lp(H); this is done in the most general case (without any assumption of
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sigma-finiteness of Lp-space or separability of the Hilbert space; in fact we have in
mind some applications to the ultrapowers of such spaces, which are neither separable
nor sigma-finite). It turns out that the range of a contractive projection is a `p-direct
sum of spaces of the type Lp(H). More precisely:

Theorem 0.1. Let 1 ≤ p < ∞, p 6= 2; H be a Hilbert space and Lp = Lp(Ω,Σ, µ).
The range of every contractive projection P : Lp(H) → Lp(H) is isometric to a
`p-direct sum of Hilbert-valued Lp-spaces, i.e.

R(P ) ≈1

(⊕
i∈I

Lp(Ωi,Bi, µi;Hi)
)

`p

where (Ωi)i is a family of pairwise almost disjoint members of Σ, each Bi is a sub-
sigma-algebra of the trace Σi of Σ on Ωi; µi is the trace on Ωi of the measure µ;
and the Hilbert spaces Hi have Hilbertian dimension not greater than the Hilbertian
dimension of H.

Conversely a `p-sum
(⊕

i∈I Lp(Ωi,Σi, µi;Hi)
)
`p

embeds isometrically into Lp(H),

where Lp =
(⊕

i∈I Lp(Ωi,Bi, µi)
)
`p

and H =
(⊕

i∈I Hi

)
`2

. Hence a contractively
complemented subspace of a `p-direct sum of Hilbert-valued Lp-spaces is still a `p-
direct sum of Hilbert-valued Lp-spaces. In other words:

Corollary 0.2. The class Cp of `p-direct sums of Hilbert-valued Lp-spaces is stable
under contractive projections.

The structure of the contractive projection P can be easily explained in the case
where the space H is separable (the non-separable case is analogous and will be
described in Section 5). Recall that given two Banach spaces X, Y , a family of
operators Tω : X → Y is said to be strong-operator Σ-measurable if for every x ∈ X,
the map ω 7→ Tωx is Σ-measurable as a map Ω → Y . If moreover Ess supω ‖Tω‖ <∞,
such a measurable family induces a bounded linear map T from Lp(Ω,Σ, µ;X) into
Lp(Ω,Σ, µ;Y ) by the equation:

(Tf)(ω) = Tω(fω)

Theorem 0.3. Under the conditions of Thm. 0.1, if moreover H is separable, then

P =
∑
i∈I

Si(P̃i ⊗ IdHi)S
]
iMΩi + V

where P̃i is a positive contractive projection in Lp(Ωi,Σi, µi); Si is an isometric em-
bedding of Lp(Ωi,Σi, µi;Hi) into Lp(Ωi,Σi, µi;H) associated with a (strong-operator)-
measurable family (Si,ω)ω∈Ωi

of isometric embeddings Hi → H, while S]
i is associ-

ated with the adjoint family (S∗i,ω)ω∈Ωi
of projections H → Hi; MΩi

: Lp(Ω;H) →
Lp(Ωi;Hi) is the multiplication operator by the indicator function 1Ωi ; and V = 0 if
p > 1, while if p = 1 then V is a contraction of L1(Ω,Σ, µ;H) vanishing on every
L1(Ωi,Σi, µi;H) and taking values in the range of P .
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Let us present shortly an application of the Thm. 0.1 which was in fact our main
motivation for starting this study. If X,Y are Banach spaces, we say that X is an
ultraroot of Y if Y is isometric to some ultrapower of X. Recall that a Banach
space X embeds canonically isometrically in every of its ultrapowers XU , and that
if X is reflexive, then this canonical image is contractively complemented in XU . As
a consequence of Thm. 0.1 we see that every ultraroot of a Lp(H) space, p > 1 is a
member of Cp. By Cor. 0.2 the same is true for ultraroots of members of Cp. On the
other hand it was proved in [13] that every ultraproduct of Lp(H) spaces is isometric
to a `p-direct sum of Hilbert-valued Lp-spaces. More generally every ultraproduct of
members of Cp is itself isometric to a member of Cp. Hence we obtain:

Corollary 0.4. For every 1 < p <∞ the class Cp of `p-direct sums of Hilbert-valued
Lp-spaces is stable under ultraproducts and ultraroots.

In other words the class Cp is axiomatizable in the sense of Henson-Iovino [9] in
their language of normed spaces structures (see [9], Thm. 13.8).

The paper is organized as follows: after a section devoted to definitions, notations
and a general result on orthogonally complemented subspaces of Lp(H), we have two
sections of preliminary results distinguishing the case p = 1 (Section 2) from the case
p > 1 (Section 3). In these sections it is proved that if f belongs to the range of a
contractive projection P , then the whole subspace Zf := L∞(Ω) · f is preserved by P
(i.e. PZf ⊂ Zf ) which suggests clearly a possible reduction to the scalar case. It is also
proved that the “orthogonal projection” onto Zf preserves the range of P . This allows
to find an “orthogonal system” in R(P ) which generates ZP := L∞(Σ) ·R(P ) over
L∞(Σ) which will furnish the orthogonal bases of the Hilbert spaces Hi of Thm. 0.1.
Section 4 is devoted to the proof of Thm. 0.1; a key point consists in proving that
the different subalgebras of Σ given by the scalar theorem (applied to each Zf ) are
induced by the same sigma-subalgebra F of Σ. Finally Thm 0.3 is proved in Section 5
(in a more general version not requiring separability).

1. General preliminaries

1.1. Definitions and notations

Let 1 ≤ p < ∞, H be an Hilbert space and (Ω,Σ, µ) be a measure space. In the
following we denote (when there is no ambiguity) by Lp(H) the Lebesgue-Bochner
space Lp(Ω,Σ, µ;H) of classes of H-valued p-integrable functions (for µ-a.e. equal-
ity). Similarly L∞(H) will be the space of classes of Bochner measurable, essentially
bounded H-valued functions. These spaces can be defined directly from the Banach
lattices Lp (resp. L∞) and the Hilbert space H, but we adopt the functional point
of view for the simplicity of the exposition. In the case where (Ω,Σ, µ) is not sigma-
finite, it is preferable to suppose that this measure space is localizable: the measure µ
is semifinite (every set in Σ of positive measure contains a further one of positive and
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finite measure) and L∞(Ω,Σ, µ) is order complete. In particular every family (Ai)i∈I

in Σ has a supremum A, denoted by
∨

i∈I Ai. The set A is defined (up to a µ-null
set) by the conditions:

A⊃̇Ai for every i ∈ I,
If B ∈ Σ and B⊃̇Ai for every i ∈ I then B⊃̇A,

where B⊃̇A means µ(A\B) = 0 (define similarly A⊂̇B and A=̇B). We say that B,C
are almost disjoint if A ∩B=̇∅.

To every f ∈ Lp(H) we associate its “random norm” N(f) ∈ L+
p defined by

N(f)(ω) = ‖f(ω)‖H , its vectorial function support VS(f) = Supp(N(f)) and its
“random direction”, i.e. the element uf of L∞(H) defined by uf (ω) = f(ω)

N(f)(ω) if
ω ∈ VS(f), = 0 if ω 6∈ VS(f). If M ⊂ Lp(H) we set VS(M) =

∨
{VS(f) | f ∈ M}.

If f ∈ Lp(H), g ∈ Lq(H) we define their random scalar product 〈〈f, g〉〉 ∈ Lr (where
1
r = 1

p + 1
q ) by 〈〈f |g〉〉(ω) = 〈f(ω)|g(ω)〉H , where 〈· | ·〉H denotes the scalar product in

H (which we suppose left linear, right antilinear in the complex case). When p, q are
conjugate ( 1

p + 1
q = 1), we obtain a sesquilinear pairing

〈f, g〉 =
∫

Ω

〈〈f | g〉〉dµ (3)

which gives rise to a canonical antilinear identification of Lq(H) with Lp(H)∗ (if
1 < p, q <∞; the case p = 1, q = ∞ is more delicate); it is the usual duality pairing
in the real spaces case. We have also

∀f ∈ Lp(H), 〈〈f |uf 〉〉 = N(f).

We say that two elements f, g ∈ Lp(H) are orthogonal, and we write f ⊥ g if 〈〈f |
g〉〉 = 0. A related notation is the following. We set

{ f ⊥ g } = {ω ∈ Ω | 〈〈f | g〉〉(ω) = 0 }

We have then f ⊥ g ⇐⇒ { f ⊥ g }=̇Ω.
Let H, K two Hilbert spaces. We say that a linear operator T : Lp(H) → Lp(K)

is Σ-modular iff T (ϕ.f) = ϕ.Tf for every f ∈ Lp(H) and ϕ ∈ L∞(Ω,Σ, µ). It is
modularly contractive, resp. modularly isometric iff N(Tf) ≤ N(f), resp. N(Tf) =
N(f) for every f ∈ Lp(H): it is then automatically Σ-modular (and, of course,
contractive, resp. isometric). If H is separable, then a modularly contractive, resp.
modularly isometric operator T is associated with a measurable family of contractions,
resp. isometries Tω : H → K.

Let F be a sub-sigma-algebra of Σ; a linear subspace Z of Lp(H) is a L∞(F)-
submodule iff ϕ · f ∈ Z for every f ∈ Z and ϕ ∈ L∞(Ω,F , µ). To every f ∈ Lp(H)
we associate the bounded Σ-modular operator:

Ef : Lp(H) → Lp(H), g 7→ 〈〈g|uf 〉〉uf .
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We have N(Efg) = |〈〈g|uf 〉〉|1VS(f) ≤ N(g), hence Ef is modularly contractive.
We have clearly Ef (f) = N(f)uf = f . Consequently for every ϕ ∈ L∞, we have

Ef ((ϕN(f)) · uf ) = Ef (ϕf) = ϕf = (ϕN(f)) · uf

and by density we deduce that Ef (ψ · uf ) = ψ · uf for every ψ ∈ Lp. In particular
Ef (Efg) = Efg, so Ef is a projection (with range R(Ef ) = Lp(Ω).uf ). It is not hard
to see that R(Ef ) is exactly the closed L∞(Σ)-submodule generated by f . Note also
that if f, g ∈ Lp(H),

f ⊥ g ⇐⇒ Efg = 0 ⇐⇒ Egf = 0.

1.2. Orthogonal projections

We end this section by considering a special class of contractive projections, namely
the orthogonal ones. A projectionQ in Lp(H) is said to be orthogonal if (f−Qf) ⊥ Qf
for every f ∈ Lp(H). Such a projection is trivially modularly contractive since

N(f)2 = N(Qf)2 +N((I −Q)f)2 ≥ N(Qf)2.

Note that by polarization we have for every f, g ∈ Lp(H):

〈〈f | g〉〉 = 〈〈Qf | Qg〉〉+ 〈〈(I −Q)f | (I −Q)g〉〉

Replacing g by Qg, we have

〈〈f | Qg〉〉 = 〈〈Qf | Qg〉〉

that is (I −Q)f ⊥ Qg; hence kerQ = R(I −Q) ⊥ R(Q).
Conversely if f ⊥ R(I −Q) then f −Qf ⊥ R(I −Q) and in particular f −Qf ⊥

f −Qf , i.e. f = Qf ∈ R(Q). Hence R(Q) = kerQ⊥ := {f ∈ Lp(H) | f ⊥ kerQ} and
similarly (exchanging the roles of Q and I −Q) we have: kerQ = R(Q)⊥.

If A is a subset of Lp(H) then A⊥ is a closed L∞(Σ)-submodule of Lp(H). In par-
ticular the range of any orthogonal projection in Lp(H) is a closed L∞(Σ)-submodule.
The converse is true:

Lemma 1.1. If Z is a closed L∞(Σ)-submodule of Lp(Ω,Σ, µ;H) there exists a unique
orthogonal projection QZ in Lp(H) with range Z.

Proof. Let (fα)α∈A be a maximal family of pairwise orthogonal non zero elements of
Z. For every family (ϕα)α in Lp(Ω) and every finite subset B of A we have∥∥∥∑

α∈B

ϕαufα

∥∥∥
Lp(H)

=
∥∥∥N(∑

α∈B

ϕαufα

)∥∥∥
p

=
∥∥∥(∑

α∈B

1VS(fα)|ϕα|2
)1/2∥∥∥

p
.

Revista Matemática Complutense
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Hence, by Cauchy’s criterion,
∑

α∈A ϕαufα
converges in Lp(H) iff (

∑
α∈A 1VS(fα)

|ϕα|2)1/2 exists in Lp and∥∥∥∑
α∈A

ϕαufα

∥∥∥
Lp(H)

=
∥∥∥(∑

α∈A

1VS(fα)|ϕα|2
)1/2∥∥∥

p
.

If now f ∈ Lp(H) and B is a finite subset of A we have

N
(∑

α∈B

〈〈f |ufα〉〉ufα

)2

=
∑
α∈B

|〈〈f |ufα〉〉|2

=
〈〈
f,

∑
α∈B

〈〈f |ufα
〉〉ufα

〉〉
≤ N(f)N

(∑
α∈B

〈〈f |ufα
〉〉ufα

)
,

whence

N
(∑

α∈B

〈〈f |ufα
〉〉ufα

)
=

(∑
α∈B

|〈〈f |ufα
〉〉|2

)1/2

≤ N(f),

so (∑
α∈A

|〈〈f |ufα〉〉|2
)1/2

≤ N(f).

Consequently Qf :=
∑

α∈A〈〈f |ufα
〉〉ufα

=
∑

α∈AEfα
f converges in Lp(H) (with

‖Qf‖ ≤ ‖f‖). Since R(Efα
) is the closed L∞(Σ)-submodule generated by fα, we

have R(Efα) ⊂ Z for each α and consequently Qf ∈ Z for every f ∈ Lp(H). The
map Q is modular for the action of L∞(Ω), and clearly Qfβ = fβ for every β ∈ A. It
results easily that Qf = f for every f =

∑
α∈A ϕαufα

(when this series converges),
i.e. Q is a contractive projection in Lp(H) with range

R(Q) =
{ ∑

α∈A

ϕαufα

∣∣∣ (∑
α

|ϕα|2
)1/2

∈ Lp(Ω)
}

=
{ ∑

α∈A

ψαfα

∣∣∣ (∑
α

|ψα|2N(fα)2
)1/2

∈ Lp(Ω)
}
.

Since clearly 〈〈Qf |fα〉〉 = 〈〈f |fα〉〉 for every α ∈ A we have (f − Qf) ⊥ fα for every
α ∈ A. By maximality of the system (fα) we deduce that

f = Qf for every f ∈ Z

so R(Q) contains Z, hence coincides with Z. Note also that f − Qf ⊥ Z for all
f ∈ Lp(H), and so Q is orthogonal.

The unicity of the orthogonal projection onto Z is a consequence of the fact that
its image and kernel are uniquely determined (R(Q) = Z and kerQ = Z⊥).
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2. Preliminary results: the case p = 1

Lemma 2.1. Let P be a contractive projection in L1(H). Then for every f ∈ R(P )
we have

PEf = EfPEf

Proof. For every ϕ ∈ L1(Ω) with 0 ≤ ϕ ≤ N(f) we have

‖f‖ − ‖ϕ · uf‖ =
∫
N(f) dµ−

∫
N(ϕuf ) dµ =

∫
(N(f)− ϕ) dµ

= ‖(N(f)− ϕ) · uf‖ =‖f − ϕ.uf‖
≥ ‖P (f − ϕ · uf )‖ = ‖f − P (ϕ · uf )‖
≥ ‖f‖ − ‖P (ϕ.uf )‖
≥ ‖f‖ − ‖ϕ · uf‖.

Hence all the inequalities are equalities, and in particular

‖f − P (ϕ · uf )‖ = ‖f‖ − ‖P (ϕ · uf )‖,

that is, ∫
N(f − P (ϕ · uf )) dµ =

∫
[N(f)−N(P (ϕ · uf ))] dµ.

Note that the function in the left-hand integral is greater than the one in the right-
hand integral. Thus,

N(f − P (ϕ · uf )) = N(f)−N(P (ϕ · uf ))

(equality as elements of L1(Ω)). Since H is strictly convex this implies that

P (ϕ · uf ) = α · f

for some α ∈ L+
∞(Ω). Hence

EfP (ϕ · uf ) = Ef (α · f) = α · f = P (ϕ · uf ).

This property has been proved for ϕ ∈ L1(Ω) with 0 ≤ ϕ ≤ N(f); it is extended by
linearity and density to every ϕ ∈ L1(Ω). In particular if we take ϕ = 〈〈h|uf 〉〉, we
obtain

∀h ∈ L1(H), EfPEfh = PEfh,

that is, EfPEf = PEf .

Lemma 2.2. Let P be a contractive projection in L1(H). Then for every f, g ∈ R(P )
we have: Egf ∈ R(P ). In other words EgP = PEgP .
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Proof. We have (f−Egf) ⊥ g, while (by Lemma 2.1) Egf−PEgf = Eg(f−PEgf) ∈
L1(Ω) · ug. Hence (f − Egf) ⊥ (Egf − PEgf). It results that

N(f − PEgf) = [N(f − Egf)2 +N((Egf − PEgf)2]1/2 ≥ N(f − Egf). (4)

Hence:

‖f − PEgf‖ ≥ ‖f − Egf‖
≥ ‖P (f − Egf)‖
= ‖f − PEgf‖

Hence the inequalities are equalities. In view of (4), the equality ‖f − PEgf‖ =
‖f − Egf‖ implies

N(f − PEgf) = [N(f − Egf)2 +N((Egf − PEgf)2]1/2 = N(f − Egf),

which implies in turn that N(Egf − PEgf) = 0, that is Egf = PEgf . So Egf ∈
R(P ).

3. Preliminary results: the case p > 1

Notations. Let p∗ be the conjugate exponent of p. If T : Lp(H) → Lp(H) is a
bounded operator, we define its adjoint T ∗ : Lp∗(H) → Lp∗(H) by

∀f ∈ Lp∗(H),∀g ∈ Lp(H) 〈T ∗f, g〉 = 〈f, Tg〉,

where 〈 ·, · 〉 denotes the sesquilinear pairing given by eq. (3).
If f ∈ Lp(H), f 6= 0, let Jf ∈ Lp∗(H) be the unique norm-one element such that

〈f, Jf〉 = ‖f‖. In fact it will be easier to consider the (p−1)-homogeneous functional
Jp(h) = ‖h‖p−1J(h). We have Jp(h) = N(h)p−1 ·uh = N(h)p−2h, hence Jp is random
direction preserving. Note that pJp is the derivative of the pth power of the norm.

Lemma 3.1. Let 1 < p < ∞, p 6= 2, and P be a contractive projection in Lp(H).
Then for every f, g ∈ R(P ) the function F (f, g) := sgn〈〈g | f〉〉f + γp1{f⊥g}N(f)ug

belongs to R(P ), where γp is a positive constant depending only on p.

Proof. a) Case 2 < p <∞.
Recall that since Lp(H) is smooth the duality map J maps R(P ) into R(P ∗) (see

e.g. [6, Lemma 4.8]); hence Jp(f + tg) ∈ R(P ∗) for every t ≥ 0. The derivative
∂
∂tJp(f + tg) exists at t = 0 (since the norm to the power p is twice differentiable)
and it belongs to R(P ∗) too. We have

∂

∂t
Jp(f + tg) = N(f + tg)p−2g +

(
p− 2

2
∂

∂t
N(f + tg)2

)
N(f + tg)p−4(f + tg).
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Hence

A(f, g) :=
∂

∂t
Jp(f + tg) |t=0 = N(f)p−2g + (p− 2)Re(〈〈f | g〉〉)N(f)p−4f

= N(f)p−2[g + (p− 2) Re( 〈〈uf , g〉〉 )uf ] ∈ R(P ∗)
(5)

In the complex case, replacing f by if , we obtain

B(f, g) := N(f)p−2[g − i(p− 2) Im( 〈〈uf , g〉〉 )uf ] ∈ R(P ∗) (5bis)

adding
N(f)p−2[2g + (p− 2)〈〈g, uf 〉〉uf ] ∈ R(P ∗)

With Efg = 〈〈g, uf 〉〉uf we obtain

N(f)p−2[2(g − Efg) + pEfg] ∈ R(P ∗).

In the case of a real space (5) is valid without the symbol Re and we obtain

N(f)p−2[(g − Efg) + (p− 1)Efg] ∈ R(P ∗).

If h ∈ R(P ∗) then Jp∗h = N(h)p∗−1uh ∈ R(P ), hence if we set Tg = αp(g − Efg) +
Efg, with αp = 2

p in the complex case, αp = 1
p−1 in the real case, we obtain:

Φ(g) := N(f)(p−2)(p∗−1)N(Tg)(p∗−1)uTg ∈ R(P ).

Since T is Σ-modular we have uT (ϕ·uh) = 1Supp ϕ · uTh for every h ∈ Lp(H) and
ϕ ∈ Lp, and more generally uT k(ϕ·uh) = 1Supp ϕ · uT kh for every k ≥ 1. It is easily
deduced that: uT kΦ(g) = 1VS(f) · uT k+1g for every k ≥ 0. Then

uΦn(g) = uΦ(Φn−1(g)) = 1VS(f) · uTΦn−1(g)

= 1VS(f) · uTΦ(Φn−2(g)) = 1VS(f) · uT 2Φn−2(g) · · ·
= 1VS(f) · uT ng

(6)

for every n ≥ 1. If Efg(ω) 6= 0 we have

uT ng(ω) =
αn

p (g − Efg)(ω) + Efg(ω)
N(αn

p (g − Efg) + Efg)(ω)
−→ Efg(ω)

N(Efg)(ω)
= uEf g(ω) (7)

(norm convergence in H) while if Efg(ω) = 0

uT ng(ω) =
(g − Efg)(ω)

N((g − Efg))(ω)
= u(g−Ef g)(ω) = ug(ω). (7’)

Since g − Efg ⊥ Efg we have N(Tg) ≤ N(g). Hence

N(Φ(g)) = N(f)2−p∗N(Tg)p∗−1 ≤ N(f)2−p∗N(g)p∗−1. (8)
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In particular
N(Φ(g)) ≤ max(N(f), N(g)). (9)

Reiterating (8) we obtain for every n ≥ 1

N(Φn(g)) ≤ N(f)(2−p∗)Σ
n−1
k=0 (p∗−1)k

N(g)(p∗−1)n

= N(f)1−(p∗−1)n

N(g)(p∗−1)n

.

Since 0 < p∗ − 1 < 1 we obtain

lim
n→∞

N(Φn(g)) ≤ 1VS(g)N(f). (10)

We try now to be more precise. If Efg(ω) = 0 we have N(Tg)(ω) = αpN(g)(ω).
Hence

N(Φ(g))(ω) = N(f)(ω)2−p∗(αpN(g)(ω))p∗−1.

Moreover, since in this case uΦn(g)(ω) = ug(ω), we have EfΦn(g)(ω) = 0 for every n,
and we can reiterate. We obtain

N(Φn(g))(ω) = (αp∗−1
p N(f)(ω)(2−p∗))Σ

n−1
k=0 (p∗−1)k

N(g)(ω)(p∗−1)n

.

Hence

lim
n→∞

N(Φn(g))(ω) = α(p∗−1)/(2−p∗)
p 1VS(g)(ω)N(f)(ω)

= α1/(p−2)
p 1VS(g)(ω)N(f)(ω).

(11)

If now Ef (g)(ω) 6= 0, we have also Ef (Φn(g))(ω) 6= 0 for every n ≥ 0. Set

βn(ω) =
N(EfΦn(g))(ω)
N(Φn(g))(ω)

We have then
N(TΦn(g))(ω) ≥ βn(ω)N(Φn(g))(ω)

and consequently:

N(Φn+1(g))(ω) ≥ N(f)2−p∗(βn(ω)N(Φn(g)(ω))p∗−1. (12)

On the other hand

βn(ω) = |〈〈uΦn(g), uf 〉〉(ω)| = |〈〈uT n(g), uf 〉〉(ω)| = N(EfT
n(g))(ω)

N(Tn(g))(ω)
=

N(Efg)(ω)
N(Tn(g))(ω)

and sinceN(Tng) = (α2n
p N(g−Efg)2+N(Efg)2)1/2 ↘ N(Efg) pointwise (as αp < 1)

we have βn(ω) ↗ 1 on the set {ω | Efg(ω) 6= 0}. Reiterating (12) from the step n = n0

we obtain then

lim
n→∞

N(Φn(g))(ω) ≥ (βn0(ω))1/(p−2)1VS(Φn0 (g))(ω)N(f)(ω)
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and letting n0 →∞, we have, since VS(Φn(g)) = VS(g) ∩VS(f) for every n,

lim
n→∞

N(Φn(g))(ω) ≥ 1VS(g)(ω)N(f)(ω). (13)

From (6), (7), (7’), and (11), (10), (13) we deduce that

Φn(g) → N(f)[uEf (g) + α1/(p−2)
p 1{f⊥g}ug ] (14)

almost everywhere in H-norm, hence in Lp(H)-norm by (9) and Lebesgue’s Theorem.
Hence the right-hand member of (14) belongs to R(P ). Since uEf g = sgn〈〈g | f〉〉uf

the right member of (14) can be written

sgn〈〈g | f〉〉f + γp1{f⊥g}N(f)ug = Fp(f, g) (15)

where we have set γp = α
1/(p−2)
p .

b) Case 1 < p < 2.
This case is treated by duality. Set γp = γp∗−1

p∗ and define Fp(f, g) by the for-
mula (15). If g = Jp∗g

′, f = Jp∗h
′ with f ′, g′ ∈ Lp∗(H) we have

sgn〈〈g | f〉〉 = sgn〈〈g′ | f ′〉〉.

Hence
sgn〈〈g | f〉〉f = Jp∗(sgn〈〈g′ | f ′〉〉f ′)

and similarly
N(f) = N(Jp∗f

′) = N(f ′)p∗−1.

Hence
N(f)ug = N(f ′)p∗−1ug = Jp∗(N(f ′)ug′).

Finally, since {f ⊥ g} = {f ′ ⊥ g′} and Jp∗ is additive on elements with disjoint
functional supports, and positively homogeneous of degree p∗ − 1,

Fp(f, g) = Jp∗(Fp∗(f
′, g′)).

Then since f ′ = Jpf, g
′ = Jpg belong to R(P ∗), the function Fp∗(f

′, g′)) belongs to
R(P ∗) too by the case (a), and Fp(f, g) belongs to R(P ).

Corollary 3.2. Let p and P be as in Lemma 3.1. Then for every f, g ∈ R(P ) the
three elements sgn〈〈g | f〉〉f , 1{f⊥g}f and 1{f⊥g}N(f)ug belong to R(P ).

Proof. The set Λ of scalars λ such that the set {ω ∈ VS(f) | 〈〈g|f〉〉(ω)
〈〈f |f〉〉(ω) = −λ }

has positive measure is at most countable. This set is also the set of λ’s such that
{(g + λf) ⊥ f} ∩ VS(f) has positive measure. Choose a sequence (εn) of positive
numbers not in Λ ∪ (−Λ) which converges to 0. Then by Lemma 3.1

sgn〈〈g ± εnf | f〉〉f ∈ R(P )
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for every n ≥ 1. Since

sgn〈〈g ± εnf | f〉〉(ω) →

{
sgn〈〈g | f〉〉(ω) if 〈〈g | f〉〉(ω) 6= 0,
±1 if 〈〈g | f〉〉(ω) = 0 and f(ω) 6= 0,

we have
sgn〈〈g | f〉〉f ± 1{f⊥g}f = lim

n
sgn〈〈g ± εnf | f〉〉f ∈ R(P )

and consequently sgn〈〈g | f〉〉f and 1{f⊥g}f belong to R(P ). Then Fp(f, g)− sgn〈〈g |
f〉〉f = γp1{f⊥g}N(f)ug belongs to R(P ) too.

Corollary 3.3. Let p and P be as in Lemma 3.1. Then for every f, g ∈ R(P ) we
have 1VS(g)f ∈ R(P ).

Proof. By Cor. 3.2, h := G(f, g) := 1{f⊥g}N(f)ug belongs to R(P ). Then G(h, f) =
1{f⊥g}1{ug 6=0}N(f)uf = 1VS(g)∩{f⊥g}f belongs to R(P ) too. By Cor. 3.2, f −
1{f⊥g}f = 1{f 6⊥g}f ∈ R(P ), thus 1VS(g)f = 1{f 6⊥g}f + 1VS(g)∩{f⊥g}f ∈ R(P ).

Remark 3.4. In the complex case, for every f, g ∈ R(P ) the elements sgn(Re〈〈g | f〉〉)f
and 1{sgn(Re〈〈g|f〉〉)=0}f belong to R(P ) too. Indeed, Lp(H) is a real Hilbert-valued
Lp(K) space, where K is the real vector space H equipped with the scalar product
(x, y)K = Re(x | y)H . As a consequence, the element 1{Re〈〈g|f〉〉>0}f = 1

2 (sgnRe〈〈g |
f〉〉+ 1{sgn(Re〈〈g|f〉〉) 6=0})f belongs to R(P ).

Lemma 3.5. Let p and P be as in Lemma 3.1. For every f, g ∈ R(P ) denote by Σf,g

the σ-field generated by the element 〈〈g|f〉〉
〈〈f |f〉〉 . Then for every Σf,g-measurable function ϕ

such that ϕ ·N(f) ∈ Lp(Ω,Σ, µ), the element ϕ · f belongs to R(P ).

Proof. Since R(P ) is a closed linear subspace, it is sufficient to prove this for indicator
functions of Σf,g-measurable sets. The sigma-algebra Σf,g is generated by the sets{Re〈〈g|f〉〉

〈〈f |f〉〉 > λ
}
,
{
−Re〈〈g|f〉〉

〈〈f |f〉〉 > λ
}
,
{ Im〈〈g|f〉〉

〈〈f |f〉〉 > λ
}
, and

{
− Im〈〈g|f〉〉

〈〈f |f〉〉 > λ
}
, λ ∈ R+. If

Af,g,λ =
{ Re〈〈g|f〉〉

〈〈f |f〉〉 > λ
}

we have Af,g,λ = {Re〈〈g − λf | f〉〉 > 0}, hence 1Af,g,λ
f ∈

R(P ) by Rem. 3.4. The conclusion is the same for the three others kinds of sets
(replacing g by −g or ±ig). Now if 1Bf ∈ R(P ) then Af,g,λ ∩ B = Af ′,g,λ with
f ′ = 1Bf , hence 1Af,g,λ∩Bf = 1Af′,g,λ

f ′ ∈ R(P ). It results that the class C of
the sets A ∈ Σ such that 1Af ∈ R(P ) contains finite intersections of sets of the
four preceding types. Since C is closed by complementation and monotone limits, it
contains the sigma-algebra Σf,g.

Corollary 3.6. Let p and P be as in Lemma 3.1. For every f ∈ R(P ) we have
EfP = PEf .
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Proof. Let g ∈ R(P ). Applying Lemma 3.5 to the function ϕ = 〈〈g|f〉〉
〈〈f |f〉〉 we obtain

that Efg ∈ R(P ). Hence for every h ∈ Lp(H), we have EfPh ∈ R(P ), i.e. EfPh =
PEfPh; thus EfP = PEfP . Similarly, reasoning with the contractive projection P ∗

in Lp∗(H), and the element Jpf of R(P ∗), we have EJpfP
∗ = P ∗EJpfP

∗. Dualizing
we obtain PE∗

Jpf = PE∗
JpfP . We claim that E∗

f = EJpf . This will show that
PEf = PEfP = EfP . Let us show this claim. Since uJpf = uf , we have for every
g ∈ Lp(H) and h′ ∈ Lp∗(H)

〈Efg, h
′〉 =

∫
〈〈Efg, h

′〉〉 dµ =
∫
〈〈〈〈g, uf 〉〉uf , h

′〉〉 dµ

=
∫
〈〈g, uf 〉〉〈〈uf , h

′〉〉 dµ

=
∫
〈〈g, 〈〈h′, uf 〉〉uf 〉〉 dµ

=
∫
〈〈g,EJpfh

′〉〉 dµ = 〈g,EJpfh
′〉

Remark. The preceding proof of Cor. 3.6 is essentially a real one. In the complex
case it can be replaced by a shorter one, of more algebraic nature, due to Arazy and
Friedman in the context of spaces Cp (see [2]). It seemed interesting to us to reproduce
this proof in the Annex (see §6), after simplifying it considerably by eliminating the
unnecessary non-commutative apparatus.

4. The range of a contractive projection

This section is devoted to the proof of Thm. 0.1, which consists in four lemmas.

Lemma 4.1. The closed L∞(Σ)-module Z generated by R(P ) in Lp(H) is generated
(as L∞-module) by a family (fα)α∈A of pairwise orthogonal elements of R(P ). We
have in fact a Schauder (orthogonal) decomposition

Z =
⊕
α∈A

Lp(Ω) · ufα

Proof. Let (fα)α∈A be a maximal family of pairwise orthogonal non zero elements of
R(P ) and Z0 be the closed L∞(Σ)-submodule generated by the family (fα)α∈A. Let
QZ0 be the orthogonal projection onto Z0. By the proof of Lemma 1.1 we know that
QZ0 =

∑
α∈AEfα (convergence in strong operator topology). Hence, by Lemma 2.2

if p = 1, resp. Cor. 3.6 if p > 1, QZ0f ∈ R(P ) for every f ∈ R(P ). Since QZ0

is orthogonal and fα ∈ R(QZ0) we have (f − QZ0f) ⊥ fα for every α ∈ A. By
maximality of the system (fα) we deduce that

f = QZ0f for every f ∈ R(P )
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i.e. QZ0P = P . Then Z0 = R(QZ0) is a closed L∞-module containing R(P ) and gen-
erated by a subset of R(P ); hence it coincides with the closed L∞-module generated
by R(P ).

Lemma 4.2. There exists a sub-σ-algebra F of Σ containing the vectorial function
supports of all elements of R(P ) such that for every f ∈ R(P ) and ϕ ∈ Lp(Ω,Σ, µ),
the product ϕ · uf belongs to R(P ) iff 1VS(f)N(f)−1ϕ is F-measurable. In particular
R(P ) is a L∞(Ω,F , µ)-submodule.

Proof. Since PEf = EfPEf by Lemma 2.1 (if p = 1) or by Cor. 3.6 (if p > 1), we
have P (ϕ · uf ) ∈ Lp(Ω) · uf for every f ∈ R(P ) and ϕ ∈ Lp(Ω,Σ, µ). We may write
P (ϕ · uf ) = (P̃fϕ) · uf , with Supp(P̃fϕ) ⊂ VS(f). Clearly P̃f is linear, P̃ 2

f = P̃f and

‖P̃fϕ‖p = ‖P (ϕ · uf )‖ ≤ ‖ϕ · uf‖ ≤ ‖ϕ‖p,

hence P̃f is a contractive projection in Lp(Ω,Σ, µ). Moreover P̃f (N(f)) = N(f) and
P̃fψ = 0 for every ψ ∈ Lp(Ω,Σ, µ) disjoint from N(f).

It results from Douglas’ theorem (in case p = 1) or Andô’s theorem (in case p > 1)
that P̃f is positive and

P̃f (ϕ) = N(f)EFf
νf

(
1Supp(N(f))ϕ

N(f)

)
where EFf

νf is the conditional expectation with respect to some subalgebra Ff of
Σ containing VS(f) and to the measure νf = N(f)p dµ. (We may assume that
Ω \VS(f) is an atom of Ff ). In particular Lp(Ω,Σ, µ) ·uf ∩R(P ) = Lp(Ω,Ff , νf ) · f
is a L∞(Ω,Ff , µ)-module.

Let us denote Efψ = EFf
νf (1VS(f)ψ), we have then P (ψ · f) = Ef (ψ) · f for every

ψ ∈ L∞(Ω,Σ, µ). Let now f, g ∈ R(P ). If g = h · uf with h ∈ Lp(Ω) then h
N(f) is

Ff -measurable and for every ϕ ∈ L∞(Ω,Σ, µ) we have

Eg(ϕ) · g = P (ϕh · uf ) = N(f)Ef
( ϕ · h
N(f)

)
· uf = hEf (ϕ) · uf = Ef (ϕ) · g,

Hence
Eg(ϕ) = 1VS(g).Ef (ϕ) = 1Supp hEf (ϕ). (16)

Let now g be a general element of R(P ). For every ϕ ∈ L∞(Ω) the equation

P (ϕ · (f + g)) = P (ϕ · f) + P (ϕ · g)

is equivalent to
Ef+g(ϕ) · (f + g) = Ef (ϕ) · f + Eg(ϕ) · g. (17)
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Let g = h · uf + g′ be the orthogonal decomposition, i.e. h = 〈〈g | uf 〉〉 and g′ ⊥ f .
Note that h · uf = Efg ∈ R(P ). Set A = VS(f), B = VS(g) and B′ = VS(g′).
Taking the images of both sides of (17) by the orthogonal projection I − Ef we
obtain

Ef+g(ϕ) · g′ = Eg(ϕ) · g′,
hence 1B′Ef+g(ϕ) = 1B′Eg(ϕ). Then by (17) again, 1B′Ef+g(ϕ)f = 1B′Ef (ϕ)f and
finally

1A∩B′Ef+g(ϕ) = 1A∩B′Ef (ϕ) = 1A∩B′Eg(ϕ). (18)

On the other hand similarly to (17) we have

Eh·uf−g(ϕ) · (h · uf − g) = Ehuf (ϕ) · huf − Eg(ϕ) · g.

Since h · uf − g = −g′ we deduce that

1Ω\B′Ehuf (ϕ) · huf = 1Ω\B′Eg(ϕ) · g,

hence
1B\B′Ehuf (ϕ) = 1B\B′Eg(ϕ). (19)

We have Ehuf (ϕ) = 1Supp hEf (ϕ) by eq. (16). Hence since B \B′ ⊂ Supph, eq. (19)
gives

1B\B′Ef (ϕ) = 1B\B′Eg(ϕ)

which together with eq. (18) gives

1A∩BEf (ϕ) = 1A∩BEg(ϕ)

for every ϕ ∈ L∞(Ω,Σ, µ). In particular

1VS(f)∩VS(g) = 1VS(f)∩VS(g)Eg(1VS(g))

= 1VS(f)∩VS(g)Ef (1VS(g))

= 1VS(f)∩VS(g)Ef (1VS(f)∩VS(g)),

hence
Ef (1VS(f)∩VS(g)) ≥ 1VS(f)∩VS(g)

and since Ef is a contraction in Lp(Ω,Σ, N(f)p · µ) we have in fact

Ef (1VS(f)∩VS(g)) = 1VS(f)∩VS(g),

that is, VS(f) ∩ VS(g) ∈ Ff . In particular 1VS(g) · f = 1VS(f)∩VS(g) · f ∈ R(P ).
More generally for every A ∈ Fg its trace VS(f) ∩ A belongs to Ff (as is easily
seen by treating separately the cases A ⊂ VS(g) and A = Ω \ VS(g)). Let F be
the σ-algebra consisting of sets A ∈ Σ such that A ∩VS(f) belongs to Ff for every
f ∈ R(P ). Then for every f ∈ R(P ) and ϕ ∈ L0(Ω,Σ, µ) the function 1VS(f)ϕ is F
measurable iff it is Ff -measurable, and the Lemma follows.
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Lemma 4.3. There is a weight w ∈ L0(Ω,Σ, µ) with support VS(R(P )) such that
for every f ∈ R(P ), w−1N(f) is F-measurable.

Proof. a) First we claim that for every f, g ∈ R(P ) then 1VS(f)
N(g)
N(f) is F-measurable.

Since Efg = 〈〈g | uf 〉〉uf ∈ R(P ) by Lemma 2.2, it results from Lemma 4.2 that
N(f)−1〈〈g | uf 〉〉 = N(f)−2〈〈g | f〉〉 is F-measurable; hence its absolute value N(f)−2

|〈〈g | f〉〉| is F-measurable, and similarly N(g)−2|〈〈f | g〉〉| is F-measurable too. Then
the ratio of these functions, that is 1Supp〈〈g|f〉〉N(g)2N(f)−2 is F-measurable, and
so is its square root 1Supp〈〈g|f〉〉N(g)N(f)−1. Replacing g by gε = g + εf , ε > 0
we obtain that 1Supp〈〈gε|f〉〉N(gε)N(f)−1 is F measurable. When ε → 0 we have
gε → g, N(gε) → N(g) (in Lp-norm) and Supp〈〈gε | f〉〉 → SuppN(f) = VS(f) (in
probability). At the limit 1VS(f)

N(g)
N(f) is F-measurable.

b) Let (fi)i∈I be a maximal family of non zero elements in R(P ) with pairwise
almost disjoint functional supports VS(fi). Then VS(R(P )) =

∨
i∈I VS(fi): if f ∈

R(P ) then, since S =
∨

i∈I VS(fi) belongs to F , so does its complementary set Sc,
and thus 1Scf ∈ R(P ); then, by maximality of the family (fi), we have 1Sc .f = 0,
that is, f = 1S · f . We set w =

∑
i∈I N(fi) (which converges in L0(Ω,Σ, µ)): this

is a Σ-measurable weight with support VS(R(P )). For every f ∈ R(P ) and every
i ∈ I, 1VS(fi)w

−1N(f) = 1VS(fi)N(fi)−1N(f) is F-measurable; hence w−1N(f) =∑
i∈I 1VS(fi)w

−1N(f) is F-measurable.

We can now give the

Proof of the Thm. 0.1. Consider the new measure ν = wp · µ, which has support
ΩP = VS(R(P )) and set T : Lp(ΩP ,ΣP , µ) → Lp(ΩP ,ΣP , ν), defined by Tf = w−1f
(we denote by ΣP the trace of Σ on ΩP ). Then T is an isometry; Y := (T⊗IdH)(R(P ))
is a L∞(FP )-module isometric to R(P ) and for every f ∈ Y its new random norm
Ñ(f) = w−1N(f) belongs to Lp(ΩP ,FP , ν). It results from an argument in [13] that
Y is isometric to

(⊕
i∈I Lp(Ωi,F|Ωi

, ν|Ωi
;Hi)

)
`p

, for some families (Ωi) of pairwise

almost disjoint sets in F and (Hi) of Hilbert spaces. Set then ŵi = (E(1Ωi
·wp | F))1/p,

and define an isometry Si : Lp(Ωi,F|Ωi
, ν|Ωi

) → Lp(Ωi,F|Ωi
, µ|Ωi

) by Sif = ŵi · f .
Then each Si⊗IdHi is an onto isometry Lp(Ωi,F|Ωi

, ν|Ωi
;Hi) → Lp(Ωi,F|Ωi

, µ|Ωi
;Hi);

the collection of these isometries induces an isometry of the corresponding `p-direct
sums. The proof of Thm. 0.1 is complete.

Let us finally adapt to the present situation the argument of [13] for the commodity
of the reader (and for further reference in Section 5).

Lemma 4.4. Let (Ω,Σ, ν) be a localizable measure space, F be a sub-sigma algebra
such that (Ω,F , ν) is still localizable and H be a Hilbert space. Let Y be a closed
L∞(F)-submodule of Lp(Ω,Σ, ν;H) such that for every f ∈ Y its random norm N(f)
is F-measurable. Then there exist a family (Ωi)i∈I of pairwise almost disjoint mem-
bers of F , a family (Hi) of Hilbert spaces (of lower Hilbertian dimension than H) and
a random norm preserving isometry from Y onto

(⊕
i∈I Lp(Ωi,F|Ωi

, ν|Ωi
;Hi)

)
`p

.
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Proof. Note that by an elementary polarization argument all the scalar products
〈〈f | g〉〉, f, g ∈ Y are F-measurable. Hence for every f ∈ Y , the projection Ef

restricts to a projection from Y onto Lp(Ω,F) · uf . It results that for every closed
L∞(F)-submodule Z of Y there is an orthogonal projection from Y onto Z (which is
the restriction of the orthogonal projection from Lp(Ω,Σ;H) onto the closed L∞(Σ)-
submodule generated by Z). In particular Y = Z ⊕ (Z⊥ ∩ Y ).

Remark that if A ∈ F is ν-sigma-finite and M ⊂ Y is a closed L∞(F)-submodule
such that VS(M) ⊃ A then there exists g ∈ M such that VS(g) = A: take a maxi-
mal family (gn) in M of norm-one elements with almost disjoint functional supports
included in A; this family is necessarily at most countable and

∨
n VS(gn) = A; then

set g =
∑

n 2−ngn.
Now we claim that for every A ∈ F , A ⊂ VS(Y ) with positive measure, there

exists a F-measurable subset B of A of positive measure and a family of pairwise
orthogonal element (fγ)α∈ΓB

, such that VS(fγ) = B for every γ ∈ ΓB , which
generates 1B · Y as closed L∞(F)-submodule. For, let A′ ⊂ A be a sigma-finite
F-measurable subset with positive measure, and (gγ)γ∈Γ be a maximal family of
pairwise orthogonal elements of Y with VS(gγ) = A′. If this family generates
1A′ .Y as closed L∞(F)-submodule we can take B = A′. If not, consider the set
M = { f ∈ Y | f ⊥ gγ ,∀γ ∈ Γ }. Then M is a closed L∞(F)-submodule of Y ,
and VS(M) 6⊃ A′ by the maximality of (gγ)γ∈Γ (and the preceding remark). Let
B = A′ \VS(M), then (1Bgγ)γ∈Γ is a maximal family in 1B · Y of nonzero, pairwise
orthogonal elements of 1B ·Y . Consequently it generates 1B ·Y as L∞(F)-submodule,
and moreover VS(1Bgγ) = B for every γ ∈ Γ.

Let now (Ωi)i∈I be a maximal family of F-measurable almost disjoint subsets of
VS(Y ) of positive measure, such that there exists for each i ∈ I a family (f i

γ)γ∈Γi

of pairwise orthogonal elements with VS(f i
γ) = Ωi for every γ ∈ Γi, which generates

1Ωi
· Y as closed L∞(F)-submodule. By the claim, we have

∨
i∈I Ωi = VS(Y ).

Every f ∈ 1Ωi
· Y can be written f =

∑
γ∈Γi

ϕγf
i
γ with ϕγ ∈ L0((Ωi,F|Ωi

, ν); then
N(f) = (

∑
γ∈Γi

|ϕγ |2N(f i
γ)2)1/2 ∈ Lp(Ωi,F|Ωi

, ν).
Note that, by refining if necessary the “partition” (Ωi) we may suppose that

each Ωi has finite ν-measure. Then, replacing each f i
γ by ufi

γ
= N(f i

γ)−1f i
γ , we

may assume that N(f i
γ) = 1Ωi

. We have then N(f) = (
∑

γ∈Γi
|ϕγ |2)1/2 for each

f =
∑

γ∈Γi
ϕγf

i
γ in 1Ωi

· Y . Let Hi = `2(Γi). Then Ti : Lp(Ωi,F|Ωi
, ν;Hi) → 1Ωi

· Y ,∑
γ∈Γi

ϕγeγ 7→
∑

γ∈Γi
ϕγufi

γ
is an (onto) isometry (preserving the random norm),

and finally Y is isometric to
(⊕

i∈I Lp(Ωi;Hi)
)
`p

.
For proving the assertion about the Hilbertian dimension of Hi, suppose that for

some i ∈ I, the Hilbertian dimension dH of H is strictly smaller than that of Hi, dHi .
We distinguish two cases:

(i) if H is finite dimensional: select a finite subset Γ′i of Γi with cardinality dH +1;
since 〈〈f i

γ | f i
δ〉〉 = 0 for every γ 6= δ ∈ Γ′i, there exists ω ∈ Ω such that

〈〈f i
γ | f i

δ〉〉(ω) = 0, i.e. the vectors f i
γ(ω), γ ∈ Γ′i of H are pairwise orthogonal: a
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contradiction.

(ii) ifH is infinite dimensional: for every x ∈ H the set {γ ∈ Γi | 〈〈f i
γ | 1Ωix〉〉 6= 0} is

at most countable (since
∑

γ |〈〈f i
γ | 1Ωi

x〉〉|2 ≤ N(1Ωi
·x)2 = 1Ωi

‖x‖2), hence ifD
is a dense set inH of cardinality dH , the set { γ ∈ Γi | ∃x ∈ D, 〈〈f i

γ | 1Ωi
x〉〉 6= 0 }

has cardinality dH < dHi
= #Γi. Hence there exists some γ ∈ Γi such that

f i
γ ⊥ 1Ωi

x for every x ∈ D, and thus for every x ∈ H, which means f i
γ = 0, a

contradiction.

Remark 4.5. The final argument in the proof of Lemma 4.4 shows indeed that if
Lp(Ω,Σ, ν;H) embeds in Lp(Ω,Σ, ν;H) by a modularly isometric map then dimH ≤
dimH.

Remark 4.6. In a forthcoming paper ([10]) it will be proved that contractively com-
plemented sublattices of Lp(Lq) are isometric to “abstract Lp(Lq) spaces”, i.e. bands
in Lp(Lq) spaces. Let us show how this permits to deduce shortly the essence of
Thm. 0.1 from Lemma 4.1.

As in the proof of Lemma 4.1 let (fα)α∈A be a maximal family of non zero,
pairwise orthogonal elements of R(P ) and Z =

⊕
α Lp(Ω,Σ, µ) · ufα

be the closed
L∞(Σ)-submodule generated by R(P ). There is clearly a Σ-modular isometry U from
the closed submodule Z onto a band Y of the Banach lattice Lp(Ω,Σ, µ;H) where H
is the discrete Banach lattice `2(A), such that Ueα = N(fα)eα, where (eα)α∈A is a
Hilbertian basis of H. Then P |Z is similar by U to a contractive projection P̂ of Y
which preserves the spaces Yα = Lp(Aα) · eα (where Aα = SuppN(fα)) by Lemma
2.1 if p = 1 and Cor. 3.6 if p > 1, as well as the elements N(fα) · eα. By the classical
(scalar) theorem of Douglas if p = 1, Andô if p > 1, P̂ |Yα

is positive and its image
is a sublattice of Yα. Since Y =

⊕
α Yα is a decomposition in disjoint subbands, P̂ is

itself positive and its range is a sublattice of Y , hence of Lp(H). By the analysis of
contractive projections on sublattices in Lp(Lq)-spaces developed in [10], the range
R(P̂ ) is an abstract Lp(L2)-space, hence by [13] it is Banach-isometric to a `p-direct
sum

⊕
i∈I Lp(Ωi,Hi), where the Hi are Hilbert spaces.

5. Structure of the contractive projections

Theorem 5.1. Let 1 ≤ p < ∞, p 6= 2. For every contractive projection P of
Lp(H) there exist a family (uγ)γ∈Γ of pairwise orthogonal elements of L∞(H), a
positive contractive projection P̃ of Lp(Ω) and, if p = 1, a contractive linear operator
V : L1(H) → L1(H) verifying kerV ⊃ 1AL1(H) where A =

∨
γ∈Γ VS(uγ), and

R(V ) ⊂
∑

γ R(P̃ ) · uγ , such that:

Pf =

{∑
γ P̃ (〈〈f | uγ〉〉)uγ if p 6= 1,∑
γ P̃ (〈〈f | uγ〉〉)uγ + V (f) if p = 1,

(20)
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for every f ∈ Lp(H).
Conversely for every family (uγ)γ∈Γ of pairwise orthogonal elements of L∞(H),

every positive contractive projection P̃ of Lp(Ω) [and every linear contraction V of
L1(H) satisfying the previous conditions of kernel and range in the case p = 1], the
formula (20) defines a contractive projection P of Lp(H).

Moreover if p 6= 1 the inequality N(Pf) ≤ P̃ (N(f)) holds for every f ∈ Lp(H)
[this happens also for a contractive projection of L1(H) for which the operator V of
formula (20) is zero]. (P̃ is a “majorizing Lp-contraction” for P in the terminology
of [8]).

The proof of Thm. 5.1 will require the two following Lemmas, the first of which
is specific to the p = 1 case:

Lemma 5.2. Let P be a contractive projection in L1(H). Then Pf = 0 for every
f ∈ L1(H) with VS(f) ⊂ VS(R(P )) and f ⊥ R(P ).

Proof. Assume that f ⊥ R(P ) and VS(f) ⊂ VS(h) for some h ∈ R(P ). Then
g := Pf + 1(VS(Pf))ch belongs to R(P ) and VS(g) ⊃ VS(f)∪VS(Pf). We have for
every t > 0: ∫

(N(g)2 + t2N(f)2)1/2 dµ = ‖g + tf‖
≥ ‖P (g + tf)‖ = ‖g + tPf‖
= (1 + t)‖Pf‖+ ‖1(VS(Pf))c · h‖
= ‖g‖+ t‖Pf‖.

Hence:

‖Pf‖ ≤ lim
t→0

(
‖g + tf‖ − ‖g‖

t

)
= lim

t→0

∫
(N(g)2 + t2N(f)2)1/2 −N(g)

t
dµ = 0.

Lemma 5.3. Let P be a contractive projection in Lp(H). There exists a positive
contractive projection P̃ on Lp(Ω,Σ, µ) such that P (ϕ · uf ) = (P̃ϕ) · uf for every
f ∈ R(P ) and ϕ ∈ Lp(Ω,Σ, µ).

Proof. Let F be the σ-algebra of Lemma 4.2 and w be the weight of Lemma 4.3.
Define P̃f (ϕ) as in the proof of Lemma 4.2. Recall that for every f ∈ R(P ) the
function w−1N(f) is F-measurable. We have then for every h ∈ L∞(Ω,F , µ):∫

P̃f (ϕ)hN(f)p−1 dµ =
∫

EFN(f)p·µ(N(f)−11VS(f)ϕ)hN(f)p · dµ

=
∫

1VS(f)ϕ · hN(f)p−1 · dµ
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=
∫

(1VS(R(P ))w
−1ϕ) · (1VS(f)h(w−1N(f))p−1)wp · dµ

=
∫

EFwpµ(1VS(R(P ))w
−1ϕ)1VS(f)h(w−1N(f))p−1wp · dµ

=
∫

1VS(f)wEFwpµ(1VS(R(P ))w
−1ϕ)hN(f)p−1dµ.

Hence P̃fϕ = 1VS(f)P̃ϕ if we set P̃ϕ = wEFwp·µ(1VS(R(P ))w
−1ϕ) for every ϕ ∈

Lp(Ω,Σ, µ). Then P̃ is a positive contractive projection in Lp(Ω,Σ, µ) and P (ϕ.uf ) =
P̃ (ϕ) · uf for every f ∈ R(P ) and ϕ ∈ Lp(Ω,Σ, µ).

Proof of Thm. 5.1. Let Q be the orthogonal projection from Lp(H) onto the closed
submodule generated by R(P ). It results from Lemma 4.1 that if (fγ)γ∈Γ is a maximal
family of pairwise orthogonal elements of R(P ) then Q =

∑
γ∈ΓEfγ

(convergence for
s.o.t.), hence PQ =

∑
γ∈Γ PEfγ . If p > 1 we know by Cor. 3.6 that EfγP = PEfγ for

every γ, hence P = QP = PQ. If p = 1 let Π : L1(H) → L1(H) the projection defined
by Πf = 1VS(R(P )) ·f , then Π and I−Π are contractive. We have QΠ = ΠQ = Q and
it results from the preceding Lemma 5.2 that P (I − Q)Π = 0. Hence P = PQ + V ,
where V = P (I −Π).

Let us express now PEf when f ∈ R(P ). If P̃ is the positive projection in
Lp(Ω,Σ, µ) defined in Lemma 5.3 we have for every g ∈ Lp(Ω,Σ, µ;H)

PEfg = P (〈〈g | uf 〉〉 · uf ) = P̃ (〈〈g | uf 〉〉) · uf

The formula (20) in Thm. 5.1 is now clear if we set uγ = ufγ .
Conversely given (uγ), P̃ and V , let us prove first that P is a contraction. We

have for every finite subset G of Γ (using the positivity of P̃ ):

N
(∑

γ∈G

P̃ (〈〈f | uγ〉〉)uγ

)
=

(∑
γ∈G

|P̃ (〈〈f | uγ〉〉)|2
)1/2

=
∨{∣∣∣∑

γ∈G

aγP̃ 〈〈f | uγ〉〉
∣∣∣ ∣∣∣ aγ ∈ C,

∑
γ∈G

|aγ |2 ≤ 1
}

≤ P̃
(∨{ ∣∣∣∑

γ∈G

aγ〈〈f | uγ〉〉
∣∣∣ ∣∣∣ aγ ∈ C,

∑
γ∈G

|aγ |2 ≤ 1
})

= P̃
((∑

γ∈G

|〈〈f | uγ〉〉|2
)1/2)

.

Hence ‖
∑

γ∈G P̃ (〈〈f | uγ〉〉)uγ‖p ≤
∫

(
∑

γ∈G|〈〈f | uγ〉〉|2)p/2 dµ and the sum P0f :=∑
γ∈Γ P̃ (〈〈f | uγ〉〉)uγ converges in Lp(H). Moreover

N(P0f) ≤ P̃
((∑

γ∈Γ

|〈〈f | uγ〉〉|2
)1/2)

≤ P̃ (N(1A · f))
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(see section 1.2 and the proof of Lemma 1.1) and

‖P0f‖ ≤ ‖1A · f‖

where A =
∨

γ VS(uγ). That P0 is a projection follows immediately from the fact
that P̃ is. If p = 1 we have to care with the contraction V . Since ‖V f‖ ≤ ‖1Ac · f‖
we obtain ‖Pf‖ ≤ ‖1A · f‖ + ‖1Ac · f‖ = ‖f‖. Then since V P0 = 0, P0V = V , it
follows clearly that P = P0 + V is a projection.

We can now give the structure theorem for contractive projections:

Theorem 5.4. For every contractive projection P of Lp(Ω,Σ, µ;H) (1 ≤ p < ∞,
p 6= 2) there exist:

• a modularly isometric automorphism W of Lp(H);

• a family (Ωi)i∈I of pairwise almost disjoint Σ-measurable subsets of Ω of positive
measure;

• a family (Hi)i∈I of Hilbert spaces;

• for every i ∈ I a (strong operator) measurable family (Ui,ω)ω∈Ω of isometric
embeddings of Hi into H;

• a positive contractive projection P̃ of Lp(Ω,Σ, µ) commuting with the band pro-
jections associated with the sets Ωi;

• and if p = 1 a contraction V from L1(S,Σ|S , µ|S ;H) into R(P ), where S =
Ω \

∨
i Ωi

such that (setting V = 0 if p > 1):

P = WU
(∑

i

P̃MΩi
⊗ IdHi

)
U ]W−1 + V

where MΩi
denotes the multiplication operator by the characteristic function 1Ωi

; U is
the modularly isometric embedding of

⊕
Lp(Ωi,Σ|Ωi

, µ|Ωi
;Hi) into Lp(H) naturally

associated with the family (Ui,ω)i∈I,ω∈Ω by mean of the formula:

(Uf)(ω) = Ui,ω(f(ω)) when ω ∈ Ωi

and similarly U ] : Lp(H) →
⊕
Lp(Ωi,Σ|Ωi

, µ|Ωi
;Hi) is the modularly contractive map

associated with the family (U∗
i,ω)i∈I,ω∈Ω.

Remark 5.5. In fact the families (Ui,ω)ω∈Ω may be chosen locally constant, i.e. there
is a partition of Ωi in Σ-measurable subsets of positive measure on which Ui,ω is
constant.
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Remark 5.6. In the case where H is separable, it is a standard (and easy) fact that
every modularly isometric automorphism W of Lp(H) is associated with a measurable
family (Wω)ω∈Ω of unitary operators on H; so we recover the Theorem 0.3 of the
Introduction.

Proof. By the proof of Thm. 0.1 in Section 4, there are a sub-σalgebra F of Σ, a
family (Ωi)i∈I of pairwise almost disjoint elements of F , a positive weight w on Ω with
support

∨
i∈I Ωi, a family (Hi)i∈I of Hilbert spaces and for every i ∈ I an isometry Ti

from Lp(Ωi,F|Ωi
, ν |Ωi ;Hi) into Lp(Ωi,F|Ωi

, ν|Ωi
;H) such that R(P ) =

⊕
i∈I w·R(Ti)

and moreover N(Tif) = N(f) for all f ∈ Lp(Ωi,F|Ωi
, ν|Ωi

;Hi) (recall that ν = wp ·µ).
Moreover P commutes with the action of L∞(F), in particular with the multiplication
operators MΩi

.
Each Ti extends uniquely to a modularly isometric map T̃i from Lp(Ωi,Σ|Ωi

, ν|Ωi
;

Hi) onto the closed L∞(Σ)-submodule generated by R(Ti) in Lp(Ω,Σ, ν;H): set sim-
ply T̃i(

∑
k ϕkfk) =

∑
k ϕkTi(fk) when ϕ1, . . . , ϕn ∈ L∞(Ωi,Σ|Ωi

) and f1, . . . , fk ∈
Lp(Ωi,F|Ωi

, ν|Ωi
;Hi) and verify that N(

∑
k ϕkTi(fk)) = N(

∑
k ϕkfk) (since Ti pre-

serves the random scalar products).
Now define Si : Lp(Ωi,Σ|Ωi

, µ|Ωi
;Hi) → Lp(Ω,Σ, µ;H) by Sif = wT̃i(w−1f): the

range R(Si) = wR(T̃i) is exactly 1Ωi
· Z, where Z is the closed L∞(Σ)-submodule

generated by R(P ). We can glue up the maps Si and obtain a modularly isomet-
ric embedding S from

⊕
i∈I Lp(Ωi,Σ|Ωi

, µ|Ωi
;Hi) into Lp(Ω,Σ, µ;H), with range

R(S) = Z.
By Lemma 5.3 there exists a positive projection P̃ on Lp(Ω,Σ, µ) such that

P (ϕ.uf ) = (P̃ϕ).uf for every f ∈ R(P ) and ϕ ∈ Lp(Ω,Σ, µ). Note that P̃ is F-
modular, in particular it commutes with every multiplication operator MΩi

, i ∈ I.
If A ∈ F is a ν-integrable subset of Ωi and e ∈ Hi we have Si(1Aw ⊗ e) =

wTi(1A⊗e) ∈ R(P ), and N(Si(1A ·w⊗e)) = N(1A ·w⊗e) = 1A ·w, and consequently
for f = Si(1Aw⊗e) we have f = w ·uf . Thus for every ψ ∈ L∞(Ω,Σ, µ)∩Lp(Ω,Σ, µ)
we have

PSi(ψ1Aw ⊗ e) = P (ψ · wuf ) = P̃ (ψ · w1Ωi
) · uf = P̃ (ψ · w1Ωi

) · w−1Si(1Aw ⊗ e)

= Si(P̃ (ψ · w1Ωi
) · w−1 · 1Aw ⊗ e) = Si(P̃ (ψ · w1Ωi

)1A ⊗ e),

hence by linearity and density we have for every ϕ ∈ Lp(Ωi,Σ|Ωi
, µ|Ωi

) and e ∈ Hi:

PSi(ϕ⊗ e) = Si(P̃ (ϕ)⊗ e),

that is, the restriction of P to 1Ωi
· Z is similar by Si to the projection P̃ ⊗ idHi

;
consequently the restriction of P to Z is similar by S to the projection

∑
i∈I P̃MΩi

⊗
idHi .

In the case where Z = Lp(Ω,Σ, µ;H) we have necessarily dimH = dimHi for
every i ∈ I since Si is a modularly isometric map from Lp(Ωi;Hi) onto 1Ωi

.Z =
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Lp(Ωi;H) (see Remark 4.5). Thus we may assume that Hi = H and the conclusion
of Thm. 5.4 is obtained with W = S and U = Id.

In the general case we apply Lemma 4.4 to the L∞(Σ) submodule Z⊥. We find a
family (Ω′

j)j∈J of pairwise almost disjoint members of Σ, a family (Kj)j∈J of Hilbert
spaces and a modularly isometric map S′ from (

⊕
j∈J Lp(Ω′

j ,Σ|Ω′
j
, µ|Ω′

j
;Kj))`p

onto
Z⊥. Note that now the sets Ω′

j have no reason to belong to the smaller σ-algebra
F . We have

∨
j Ω′

j = VS(Z⊥). For the commodity of the notation we may assume∨
j Ω′

j = Ω, adding if necessary one extra set Ω′
0 = Ω \

∨
j Ω′

j for which we set
K0 = {0}, the 0-dimensional Hilbert space. Similarly, up to the cost of adding one
extra set Ω0 = Ω \ ΩP and setting H0 = {0}, we may assume that

∨
i Ωi = Ω. We

may also refine the partition (Ω′
j) by setting Ω′

ij = Ωi ∩ Ω′
j and removing the Ω′

ij

which are almost void. This operation gives a doubly indexed family (Ω′
ij)i∈I;j∈Ji

.
For every i ∈ I, j ∈ Ji, set Lij = Hi⊕Kj (direct Hilbertian sum). Then Lp(Ω′

ij ;Hi)
and Lp(Ω′

ij ;Kj) identify naturally to a pair of mutually orthogonal L∞(Σ)-submodules
of Lp(Ω′

ij ;Lij): if u0
ij and u′0ij are the inclusion maps of Hi, resp. Kj into Lij then

U0
ij = id⊗u0

ij and U ′0
ij = id ⊗ u′0ij are the corresponding embeddings of Lp(Ω′

ij ;Hi)
and Lp(Ω′

ij ;Kj) into Lp(Ω′
ij ;Lij). Since u0∗

ij and u′0∗ij are the orthogonal projections
Lij → Hi, resp. Lij → Kj , we see that U0]

ij and U ′0]
ij are the orthogonal projections

(in the sense given in Section 1.2) onto Lp(Ω′
ij ;Hi), resp. Lp(Ω′

ij ;Kj).
Now define W 0

ij : Lp(Ω′
ij ;Lij) → Lp(Ω′

ij ;H) by W 0
ijf = Si(U

0]
ij f) + S′j(U

′0]
ij f): we

have

N(W 0
ijf)2 = N(Si(U

0]
ij f))2 +N(S′i(U

0]
ij f))2 = N(U0]

ij f)2 +N(U ′0]
ij f)2 = N(f)2

since Si and S′i are modularly isometric and have values in orthogonal subspaces
Z, resp. Z⊥. Hence W 0

ij is modularly isometric and R(W 0
ij) = 1Ω′

ij
Z + 1Ω′

ij
Z⊥ =

Lp(Ω′
ij ;H).

We know by the proof of Thm. 5.1 that P = PQ+ V , where Q is the orthogonal
projection onto Z. Since V satisfies the requirements of the theorem, we look only
for a representation of P0 = PQ. From the first part of the proof we know that
P0Si = Si(P̃ ⊗ idHi

); on the other hand P0S
′
j = 0 since R(S′j) ⊂ Z⊥ = kerQ. Hence,

for every f ∈ Lp(Ωij ;Lij),

P0W
0
ijf = P0SiU

0]
ij f + P0S

′
jU

′0]
ij f = Si(P̃ ⊗ idHi

)U0]
ij f = W 0

ijU
0
ij(P̃ ⊗ idHi

)U0]
ij f

i.e. P0 is similar by W 0
ij to U0

ij(P̃MΩ′
ij
⊗ idHi

)U0]
ij .

Since Lp(Ωij ;Lij) is modularly isometric to Lp(Ωij ;H) (byW 0
ij), we have dimLij =

dimH by Rem. 4.5, so we may identify Lij with H by an isomorphism θij . This iso-
morphism induces in turn a modular isometry Θij = Id⊗ θij from Lp(Ω′

ij ;Lij) onto
Lp(Ω′

ij ;H). Set Wij = W 0
ijΘ

−1
ij : then Wij is a modular automorphism of Lp(Ω′

ij ;H).
Let also uij = θij ◦u0

ij be the embedding of Hi into H resulting from this identification
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and Uij = idLp(Ωij)⊗uij = ΘijU
0
ij be the associated embedding of Lp(Ωij ;Hi) into

Lp(Ωij ;H). Since Θ−1
ij = Θ]

ij we see that P0 is similar byWij to Uij(P̃MΩ′
ij
⊗idHi

)U ]
ij .

Finally we glue up the automorphisms Wij to an automorphism W of Lp(Ω;µ;H)
by setting

Wf =
∑
i∈I

∑
j∈Ji

WijMΩ′
ij
f

and similarly we glue up the embeddings Uij to an embedding U of
⊕

i∈I Lp(Ωi;Hi)
into Lp(Ω;H). The maps W and U are still modularly isometric and P0 is similar by
W to U(

∑
i∈I P̃MΩi

⊗ idHi
)U ].

6. Annex: a proof of Corollary 3.6 specific to the complex case

The following proof is an adaptation of that of Thm. 4.1 in [2]. We assume that
2 < p <∞ (the case 1 < p < 2 follows by duality).

If f ∈ R(P ) we introduce besides the projection Ef (defined in §1) the operators
Ff and Gf defined by

Ffg = 1VS(f)cg ; Gfg = 1VS(f)g − Efg.

Then Ef , Gf and Ff are commuting modularly contractive projections in Lp(H) with
Ef + Ff +Gf = I.

Let f, g ∈ R(P ), then the elements A(f, g) and B(f, g) defined in §3 (eqs. (5) and
(5bis) belong to the range of P ∗; so do the sum and difference: Mf (g) := A(f, g) +
B(f, g) and Γf (g) := p

p−2 [A(f, g)−B(f, g)] belong to R(P ∗). Set

Qfg = 〈〈uf , g〉〉uf .

We have then

Mf (g) = N(f)p−2[2g + (p− 2)Efg]

Γf (g) = pN(f)p−2Qfg

Then Mf , resp. Γf are bounded linear, resp. antilinear operators from Lp(H) into
Lp∗(H), and Qf is a contractive antilinear endomorphism of Lp(H) such that Q2

f =
Ef ; moreover:

MfP = P ∗MfP, ΓfP = P ∗ΓfP. (21)

Consider the positive symmetric bounded bilinear form defined on Lp(H) by

(g, h)f := 〈Mf (g), h〉 =
∫
N(f)p−2〈〈(2I + (p− 2)Ef )g | h〉〉 dµ
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Note that Γf = MfQf = QJpfMf and Q∗
f = QJpf ; then Qf is hermitian for (·, ·)f

since

(Qfg, h)f = 〈MfQfg, h〉 = 〈Qfg,Mfh〉
= 〈QJpfMfh, g〉 = 〈MfQfh, g〉 = (Qfh, g)f

On the other hand P is hermitian for (·, ·)f since (using (21))

(Pg, h)f = 〈MfPg, h〉 = 〈P ∗MfPg, h〉 = 〈MfPg, Ph〉 = (Pg, Ph)f

= (Ph, Pg)f = (Ph, g)f = (g, Ph)f

Let Nf be the kernel of the form (·, ·)f : we have g ∈ Nf iff (g, g)f = 0 iff (g, h)f = 0
for all h ∈ Lp(H) (by Cauchy-Schwartz inequality). Then PNf ⊂ Nf since

(Pg, Pg)f = (g, Pg)f = 0 if g ∈ Nf

On the other hand the operator 2 ·1VS(f) +(p−2)Ef maps Lp(H) onto 1VS(f)Lp(H);
hence g ∈ Nf iff 〈N(f)p−2g, h〉 = 0 for every h ∈ 1VS(f)Lp(H) iff N(f)p−2g = 0 iff
1VS(f)g = 0.

We have thus R(Ff ) = Nf and consequently

PFf = FfPFf

Since Lp(H) is a strictly convex Banach space as well as its dual, we have by the
auxiliary Lemma 6.1 below:

PFf = FfP

Let us show that QfP is hermitian for (·, ·)f , using eq. (21) again:

(QfPg, h)f = 〈MfQfPg, h〉 = 〈ΓfPg, h〉
= 〈P ∗ΓfPg, h〉 = 〈ΓfPg, Ph〉
= (QfPg, Ph)f = (QfPh, Pg)f

= (QfPh, g)f

Since Qf and P are separately hermitian for (·, ·)f we have

(QfPg, h)f = (PQfh, g)f ,

hence (PQf −QfP )h ∈ Nf , i.e. (I−Ff )PQf = (I−Ff )QfP . Composing on the left
by Gf and on the right by Qf , or conversely, we obtain

GfPEf = 0 = EfPGf .

Since, on the other hand,

FfPEf = PFfEf = 0 = EfFfP = EfPFf ,
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we obtain

PEf = EfPEf = EfP.

We state now and give a proof of the announced auxiliary Lemma.

Lemma 6.1. Let X be a strictly convex Banach space with strictly convex dual, and
P,Q two contractive projections on X. The following conditions are equivalent:

(i) PQ is a projection.

(ii) PQ = QPQ.

(iii) PQ = PQP .

If moreover the complementary projection Q⊥ is contractive too then PQ = QP .

Proof. If (ii) is verified then (PQ)2 = PQPQ = P ·PQ = PQ; while if (iii) is verified
then (PQ)2 = PQPQ = PQ·Q = PQ. Hence both (ii) and (iii) imply (i) (without any
contractiveness assumption). Conversely if (i) is verified then for every x ∈ R(PQ) we
have x = Qx = PQx (by [2, Prop. 1.1 (iii)]; only the strict convexity of X is needed)
so x ∈ R(P )∩R(Q). Since the converse is trivial, we see that R(PQ) = R(P )∩R(Q);
in particular QPQ = PQ and (ii) is verified. Dualizing we have that P ∗, Q∗ and
Q∗P ∗ are contractive projections in X∗; hence Q∗P ∗ = P ∗Q∗P ∗, so PQ = PQP and
(iii) is verified. Now (iii) implies PQ⊥ = PQ⊥P , and if Q⊥ is contractive this implies
PQ⊥ = Q⊥PQ⊥ by the preceding. Then

Q = PQ+ PQ⊥ = QPQ+Q⊥PQ⊥

which in turn implies QP = PQ = QPQ.

Remark. The final assertion PQ = QP of Lemma 6.1 is stated in [2] (for X = Cp) as
Cor. 1.7 without the assumption that the complementary projectionQ⊥ is contractive.
This statement is not correct: if p 6= 2 it is easy to construct rank 1 contractive
projections P , Q in X = `p or Cp such that PQ = 0 6= QP : choose non zero elements
a, b ∈ X such that their norming functionals Ja, Jb verify 〈Ja, b〉 = 0 and 〈Jb, a〉 6= 0
and set P = a⊗ Ja, Q = b⊗ Jb.
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