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ABSTRACT

We show that the range of a contractive projection on a Lebesgue-Bochner space
of Hilbert valued functions L,(H) is isometric to a ¢p-direct sum of Hilbert-
valued Lp-spaces. We explicit the structure of contractive projections. As a
consequence for every 1 < p < oo the class C, of ¢p-direct sums of Hilbert-
valued Lp-spaces is axiomatizable (in the class of all Banach spaces).
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Introduction

It was a remarkable achievement in the isometric theory of Banach spaces of the
years 1960’s to characterize the contractive linear projections of Lebesgue L, spaces
(p # 2). In the case of L, spaces of a probability space it was done by Douglas [4] in
the case p = 1 and Andd [1] in the case 1 < p < oo, p # 2. They showed that the
range of such a contractive projection is itself isometric to a L, space (for the same p,
but a different measure space); if moreover the projection is positive then its range
is a sublattice of the initial L, space and is lattice isomorphically isometric to a L,
space. This was extended to the non-sigma-finite measure space setting by Tzafriri
([17]). In the case of a probability space, the structure of contractive projections is
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elucidated by Douglas-Andé works: a general contractive projection P on Ly, (€2, 3, i)
has the form R
P=M.PM ' +V (1)

where M, is the multiplication operator by a function ¢ with |e| = 1, Pisa positive
contractive projection, and V = 0 if p > 1, while if p = 1, then V is a contraction
from L, into the range R(P) of P which vanishes on the band generated by R(P).
Moreover P is a weighted conditional expectation, i.e. there exist a sub-sigma algebra
B, an element B € B and a nonnegative function w € L? such that E(w? | B) = 1
and R

Pf=wEQ1pf- -wP™'|B)

for every f € L, (in particular if P1 =1 then P is a conditional expectation). This
last formula can also be written

Pf=uwE,(1pfw " | B)

where E, is the conditional expectation relative to the measure v = w? - u. If we
denote by S the isometric isomorphism f — w- f of L,(Q, %, v) onto L,(Q2, X, v) and
by Mp the multiplication operator by the indicator function 1p, we have:

P =SMgE,( | B)S~". (2)

The structure of contractive projections in the non-sigma finite case was treated by
Bernau and Lacey ([3]); their main result can be rephrased in saying that if we
assume (as we may) that the measure space (2, 3, p) is localizable ([7]) then formulas
(1) and (2) are still valid; now w is some Y-measurable positive function, v = w? - u
and B is some semi-finite sigma-subalgebra of X.

The task of extending these results to various classical spaces was considered by
numerous authors; see the recent survey paper [15] and the references inside. Here
we are more specifically interested in the case of vector-valued Lebesgue L, spaces,
in particular mixed norm spaces L,(L,). Since the survey paper [5] on this specific
subject, several partial results appeared. In particular B. Randrianantoanina ([14])
succeeded in solving thoroughly the complex sequential case £,({,) using hermitian
operator techniques introduced in the subject by Kalton and Wood. More recently
the case of finite dimensional real Banach spaces with C? norm was considered by the
authors of [12]; under some additional conditions on the dual norm (in particular it is
assumed to be C? on the complementary set of the coordinate hyperplanes associated
to a distinguished basis) the contractively complemented subspaces are shown to
be necessarily generated by a block-basis of the given basis. This can be applied
in particular to the real spaces £} (¢;"), when 2 < p,q < oo (or by duality when
1 < p,q < 2), obtaining the same description of their contractively complemented
subspaces as in the complex case [16].

In the present paper we examine the case of Lebesgue spaces of Hilbert valued
functions L,(H); this is done in the most general case (without any assumption of
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sigma-finiteness of L,-space or separability of the Hilbert space; in fact we have in
mind some applications to the ultrapowers of such spaces, which are neither separable
nor sigma-finite). It turns out that the range of a contractive projection is a £,-direct
sum of spaces of the type L,(H). More precisely:

Theorem 0.1. Let 1 < p < oo, p # 2; H be a Hilbert space and L, = L,(2, 3, ).
The range of every contractive projection P : L,(H) — L,(H) is isometric to a
Lp-direct sum of Hilbert-valued Ly-spaces, i.e.

R(P) =1 (@D Ly(00 B pis H),
el

where (£;); is a family of pairwise almost disjoint members of ¥, each B; is a sub-

sigma-algebra of the trace 3; of ¥ on ;; p; is the trace on €; of the measure p;

and the Hilbert spaces H; have Hilbertian dimension not greater than the Hilbertian

dimension of H.
Conversely a £y-sum (D, Lp(Qi, X, s Hl))e embeds isometrically into L, (H),
where L, = (@,c; Lp(Qi, Bi,pi)), and H = (B¢, Hi)b' Hence a contractively

complemented subspace of a £,-direct sum of Hilbert-valued L,-spaces is still a £,-
direct sum of Hilbert-valued L,-spaces. In other words:

Corollary 0.2. The class C, of {,-direct sums of Hilbert-valued L,-spaces is stable
under contractive projections.

The structure of the contractive projection P can be easily explained in the case
where the space H is separable (the non-separable case is analogous and will be
described in Section 5). Recall that given two Banach spaces X, Y, a family of
operators T, : X — Y is said to be strong-operator >-measurable if for every = € X,
the map w +— T, x is ¥-measurable as a map Q — Y. If moreover Esssup,, ||T.,] < oo,
such a measurable family induces a bounded linear map T' from L, (2, %, p; X) into
L,(9,%, 1;Y) by the equation:

(Tf)(W) = Tw(fw)

Theorem 0.3. Under the conditions of Thm. 0.1, if moreover H is separable, then

P=>"S(P;®Idy,)Si Mo, +V
el

where 131' 1s a positive contractive projection in Lp(Qi7 i, 1i); Si is an isometric em-
bedding of L, 24, pi; Hi) into Ly(Q;, 3, wi; H) associated with a (strong-operator)-
measurable family (S; w)weq, of isometric embeddings H; — H, while S’f 18 associ-
ated with the adjoint family (S}, )weq, of projections H — H;; Mo, : Ly(Q;H) —
L,(Q; H;) is the multiplication operator by the indicator function 1q,; and V =0 if
p > 1, while if p = 1 then V is a contraction of L1(Q, %, u; H) vanishing on every
L1(Q, %5, pi; H) and taking values in the range of P.
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Let us present shortly an application of the Thm. 0.1 which was in fact our main
motivation for starting this study. If X,Y are Banach spaces, we say that X is an
ultraroot of Y if Y is isometric to some ultrapower of X. Recall that a Banach
space X embeds canonically isometrically in every of its ultrapowers X;;, and that
if X is reflexive, then this canonical image is contractively complemented in X;,. As
a consequence of Thm. 0.1 we see that every ultraroot of a L,(H) space, p > 1 is a
member of C,. By Cor. 0.2 the same is true for ultraroots of members of C,. On the
other hand it was proved in [13] that every ultraproduct of L,(H) spaces is isometric
to a f,-direct sum of Hilbert-valued L,-spaces. More generally every ultraproduct of
members of C, is itself isometric to a member of C,. Hence we obtain:

Corollary 0.4. For every 1 < p < oo the class C, of £,-direct sums of Hilbert-valued
L,-spaces is stable under ultraproducts and ultraroots.

In other words the class C, is aziomatizable in the sense of Henson-Iovino [9] in
their language of normed spaces structures (see [9], Thm. 13.8).

The paper is organized as follows: after a section devoted to definitions, notations
and a general result on orthogonally complemented subspaces of L, (H), we have two
sections of preliminary results distinguishing the case p = 1 (Section 2) from the case
p > 1 (Section 3). In these sections it is proved that if f belongs to the range of a
contractive projection P, then the whole subspace Z; := Lo (1) - f is preserved by P
(i.e. PZ§ C Zy) which suggests clearly a possible reduction to the scalar case. It is also
proved that the “orthogonal projection” onto Z; preserves the range of P. This allows
to find an “orthogonal system” in R(P) which generates Zp := Loo(X) - R(P) over
Lo (%) which will furnish the orthogonal bases of the Hilbert spaces H; of Thm. 0.1.
Section 4 is devoted to the proof of Thm. 0.1; a key point consists in proving that
the different subalgebras of ¥ given by the scalar theorem (applied to each Zy) are
induced by the same sigma-subalgebra F of .. Finally Thm 0.3 is proved in Section 5
(in a more general version not requiring separability).

1. General preliminaries

1.1. Definitions and notations

Let 1 < p < 0o, H be an Hilbert space and (2,%, ) be a measure space. In the
following we denote (when there is no ambiguity) by L,(H) the Lebesgue-Bochner
space L,(2, %, u; H) of classes of H-valued p-integrable functions (for p-a.e. equal-
ity). Similarly L, (H) will be the space of classes of Bochner measurable, essentially
bounded H-valued functions. These spaces can be defined directly from the Banach
lattices L, (resp. L) and the Hilbert space H, but we adopt the functional point
of view for the simplicity of the exposition. In the case where (2, X, 1) is not sigma-
finite, it is preferable to suppose that this measure space is localizable: the measure p
is semifinite (every set in ¥ of positive measure contains a further one of positive and
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finite measure) and L. (£, ¥, ) is order complete. In particular every family (A;)iecr
in ¥ has a supremum A, denoted by \/,.; A;. The set A is defined (up to a p-null
set) by the conditions:

ADA; for every i € I,
If B € Y and BDA; for every i € I then BDA,

where BDA means u(A\ B) = 0 (define similarly ACB and A=B). We say that B, C
are almost disjoint if A N B=0.

To every f € L,(H) we associate its “random norm” N(f) € L} defined by
N(f)(w) = || f(w)|la, its vectorial function support VS(f) = Supp(N(f)) and its

“random direction”, i.e. the element uy of Loo(H) defined by uy(w) = % if

weVS(f),=0ifw¢& VS(f). U M C L,(H) weset VS(M) =V{VS(f) | fe M}
If feL,(H), g€ Ly(H) we define their random scalar product {(f,g)) € L, (where
1= % + %) by (flg)(w) = (f(w)|g(w))m, where (-|-) g denotes the scalar product in
H (which we suppose left linear, right antilinear in the complex case). When p, g are
conjugate (]lg + % = 1), we obtain a sesquilinear pairing

(fg) = / (f | 9)du 3)

which gives rise to a canonical antilinear identification of Ly(H) with L,(H)* (if
1 < p,q < oo; the case p =1, ¢ = oo is more delicate); it is the usual duality pairing
in the real spaces case. We have also

Vi€ Ly(H), {flus) = N(f).

We say that two elements f,g € L,(H) are orthogonal, and we write f L g if {f |
g) = 0. A related notation is the following. We set

{(fLlgy={wecQ[{flg(w)=0}

We have then f 1L g < {fLg}=Q.

Let H, K two Hilbert spaces. We say that a linear operator T': L,(H) — L,(K)
is X-modular iff T(p.f) = p.Tf for every f € L,(H) and ¢ € Loo(,2, ). It is
modularly contractive, resp. modularly isometric ifft N(Tf) < N(f), resp. N(Tf) =
N(f) for every f € L,(H): it is then automatically X-modular (and, of course,
contractive, resp. isometric). If H is separable, then a modularly contractive, resp.
modularly isometric operator T is associated with a measurable family of contractions,
resp. isometries T, : H — K.

Let F be a sub-sigma-algebra of ¥; a linear subspace Z of L,(H) is a Loo(F)-
submodule iff ¢ - f € Z for every f € Z and ¢ € Loo(Q, F, ). To every f € L,(H)
we associate the bounded Y-modular operator:

Ep: Ly(H) — Ly(H), g {glus) uy.
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We have N(Eyg) = [{{glus))|1vsr) < N(g), hence Ey is modularly contractive.
We have clearly E¢(f) = N(f)uy = f. Consequently for every ¢ € Lo, we have

Ei((pN(f)) -ug) = Ef(of) = of = (¢N(f)) - uy

and by density we deduce that E;(¢ - uy) = ¢ - uy for every ¢ € L,. In particular
E;(E;g) = Erg, so Ey is a projection (with range R(E;) = L,(Q).uy). It is not hard
to see that R(Ey) is exactly the closed L (X)-submodule generated by f. Note also
that if f,g € L,(H),

flg < E;g=0 <<= E;f=0.

1.2. Orthogonal projections

We end this section by considering a special class of contractive projections, namely
the orthogonal ones. A projection @ in L, (H) is said to be orthogonal if (f—Qf) L Qf
for every f € L,(H). Such a projection is trivially modularly contractive since

N(f)? =N(@Qf)?+N(I-Q)f)* = NQf)>

Note that by polarization we have for every f,g € L,(H):

(f19h=(Qf Qa) + (I -Q)f [ (I -Q)g)

Replacing g by Qg, we have

(f1Qg) =(Qf [ Qg)

that is (I — Q)f L Qg; hence kerQ = R(I — Q) L R(Q).

Conversely if f L R(I — Q) then f — Qf L R(I — Q) and in particular f — Qf L
f—Qf,ie. f=Qf € R(Q). Hence R(Q) =kerQ* := {f € L,(H) | f L kerQ} and
similarly (exchanging the roles of @ and I — Q) we have: ker @ = R(Q)*.

If A is a subset of L,(H) then A+ is a closed Lo (%)-submodule of L,(H). In par-
ticular the range of any orthogonal projection in L,(H) is a closed Ly, (X)-submodule.
The converse is true:

Lemma 1.1. If Z is a closed Lo (2)-submodule of L,(Q, X, u; H) there exists a unique
orthogonal projection Qz in L,(H) with range Z.

Proof. Let (fa)aca be a maximal family of pairwise orthogonal non zero elements of
Z. For every family (pq)q in L,(9) and every finite subset B of A we have

1/2
15 sl g = P ), = IS v,
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Hence, by Cauchy’s criterion, » ., @auy, converges in L,(H) iff (3°,c4 1vs(s.)

|90a|2)1/2 exists in L, and

1/2
2
H > pauy, = H(E 1vs(f.)lpal ) H :
a€A Ly (H) acA p

If now f € L,(H) and B is a finite subset of A we have

N(Z<<f|uf ufa) ST Flug, )]

a€EB acB

= (1. S Wl hur, ) < NON (S (g, ez, ).

aeB aeB
whence
N W) = (It ?) " < vep),
a€EB aEB
SO P
(St R) ™ < v,
acA

Consequently Qf := > ca(flur. Nus, = > qca Ey.f converges in L,(H) (with
NQfI < |Ifll).- Since R(Ey,) is the closed Lo (X)-submodule generated by f,, we
have R(Ey,) C Z for each o and consequently Qf € Z for every f € L,(H). The
map () is modular for the action of Lo (f2), and clearly Qfs = f3 for every € A. It
results easily that Qf = f for every f = > .4 ®aty, (When this series converges),
i.e. ) is a contractive projection in L,(H) with range

={ X pause | (Sheult) " e 1o}
(Salv(?) e L@}

={ > vata
acA

Since clearly (Qf|fa) = (f|fa) for every o € A we have (f — Qf) L f, for every

a € A. By maximality of the system (f,) we deduce that

f=Qf forevery f e Z

so R(Q) contains Z, hence coincides with Z. Note also that f — Qf L Z for all
feLy,(H), and so @ is orthogonal.

The unicity of the orthogonal projection onto Z is a consequence of the fact that
its image and kernel are uniquely determined (R(Q) = Z and ker Q = Z1). O
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2. Preliminary results: the case p =1

Lemma 2.1. Let P be a contractive projection in Li(H). Then for every f € R(P)
we have
PE; = E;PE;

Proof. For every ¢ € L1(92) with 0 < ¢ < N(f) we have

nm—Wmm:/Mﬁw—/Mwmw:/wm—ww

= [[(N(f) =) -usll =If = p-usll

> |P(f =e-upll = If = Ple-uy)ll
> I = 1P(pup)l

> 1A =Ml - ugll-

Hence all the inequalities are equalities, and in particular

If = Ple-up)ll =1l = 1P(p-upll,
that is,

/NU—HWW”W:/WW—NWWWMMM

Note that the function in the left-hand integral is greater than the one in the right-
hand integral. Thus,

N(f = P(p-ug)) = N(f) = N(P(¢-uy))
(equality as elements of Lq(2)). Since H is strictly convex this implies that
Plp-up)=a-f
for some o € LT (). Hence
EgP(¢-ug) = Ef(a-f) = f=P(p-uy).

This property has been proved for ¢ € L1(2) with 0 < ¢ < N(f); it is extended by
linearity and density to every ¢ € L;(2). In particular if we take ¢ = (h|uy)), we
obtain

VhELl(H), EfPth:Pth,

that is, By PEy = PEy. O

Lemma 2.2. Let P be a contractive projection in L1(H). Then for every f,g € R(P)
we have: Egf € R(P). In other words EqP = PE,P.
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Proof. We have (f —E,f) L g, while (by Lemma 2.1) E,f —PE,f = E,(f —PE,f) €
L1(2) - ug. Hence (f — Egf) L (Eqf — PEgf). It results that

N(f = PEyf) = [N(f = Eof)* + N((Eyf — PEgf)*]'* > N(f = Egf).  (4)
Hence:

If = PEGfI| = |[f — Egfll
> ||P(f = Egf)ll
= |lf = PE,f||

Hence the inequalities are equalities. In view of (4), the equality | f — PE,f|| =
If — Eq | implies

N(f — PEyf) = [N(f — Egf)* + N(Eyf — PE,f)’]"/? = N(f — E,f),

which implies in turn that N(E,f — PE,f) = 0, that is E,f = PE,f. So E,f €
R(P). O

3. Preliminary results: the case p > 1

Notations. Let p, be the conjugate exponent of p. If T : L,(H) — L,(H) is a
bounded operator, we define its adjoint 7% : L, (H) — L, (H) by

where (-, -) denotes the sesquilinear pairing given by eq. (3).

If feL,(H), f#0,let Jf € L, (H) be the unique norm-one element such that
(f, Jf) =|Ifl]- In fact it will be easier to consider the (p — 1)-homogeneous functional
Jp(h) = ||h]|P~1J(R). We have J,(h) = N(h)P~!-uy = N(h)P~2h, hence J, is random
direction preserving. Note that p.J, is the derivative of the ™ power of the norm.

Lemma 3.1. Let 1 < p < o0, p # 2, and P be a contractive projection in L,(H).

Then for every f,g € R(P) the function F(f,g) :=sgn{{g | f)f +vpLlirigN(f)ug
belongs to R(P), where 7y, is a positive constant depending only on p.

Proof. a) Case 2 < p < oo.

Recall that since L,(H) is smooth the duality map J maps R(P) into R(P*) (see
e.g. [6, Lemma 4.8]); hence J,(f + tg) € R(P*) for every t > 0. The derivative
2 J,(f + tg) exists at t = 0 (since the norm to the power p is twice differentiable)
and it belongs to R(P*) too. We have

Gyt 10 = N7+ 197204 (P52 SN 40 ) N(S 41907 (f +19)
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Hence

A(f.9) = S +19) limo = N(PP g + (o — ) Re(((f [ )N (F)

(5)
= N(f)P2[g+ (p — 2) Re({us, 9)) ) us] € R(P")
In the complex case, replacing f by if, we obtain
B(f.g9) == N(f)P"*lg —i(p — 2) Im( (uy, 9)) ) us] € R(P*) (5bis)

adding
N(f)P72129 + (p = 2)(g, uy)) uys] € R(P*)
With E¢g = (g, uy)) us we obtain
N(f)'=22(g — Erg) + pErg] € R(P").

In the case of a real space (5) is valid without the symbol Re and we obtain

N(f)P~*[(g — Erg) + (p — 1)Eyg) € R(P*).

If h € R(P*) then J, h = N(h)P~'u), € R(P), hence if we set Tg = a,(g — Erg) +

E¢g, with o, = 2 in the complex case, op = p%l in the real case, we obtain:

p
B(g) = N(f)(p_Q)(”*—1)N(Tg)(p*—1)uTg € R(P).

Since T is ¥-modular we have up(p.u,) = Lsuppy - urn for every h € L,(H) and
¢ € Ly, and more generally urr(,.q,) = lsuppy - Urry, for every k > 1. It is easily
deduced that: urkgg) = lvs(y) - Urk+14 for every k > 0. Then

Ugn(g) = Udp(an—1(g)) = LVs(f) " UTdn—1(g)
= 1vs(y) - ura@n—2(g)) = lvs(y) - urzen—2(g) - (6)

= Llvs(y) - urng

for every n > 1. If Efg(w) # 0 we have

o9 —Erg)(w) + Erg(w) Erglw)
) Nagly— Brg) + Br)@)  NEpg)@) e )
(norm convergence in H) while if E¢g(w) =0
wrny ) = s = gy () = () ™)
Since g — Efg L Eyg we have N(T'g) < N(g). Hence
N(®(g)) = N(f)* P N(Tg)"~" < N(f)* 7" N(g)" . (8)
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In particular
N(®(g)) < max(N(f), N(9)). (9)

Reiterating (8) we obtain for every n > 1
N(®"(g)) < N(f)(Q—p*)EZ;S(p*—1)kN(g)(p*—1)" — N(f)l—(p*—l)"N(g)(p*—l)"'
Since 0 < p, — 1 < 1 we obtain

i N(8"(9)) < Lysip) N (f). (10)

n—oo

We try now to be more precise. If Erg(w) = 0 we have N(Tg)(w) = o, N(g)(w).
Hence

N(®(g))(w) = N(f)(w)* (o N (g)(w))" .
Moreover, since in this case ugn(g)(w) = ug(w), we have E;®"(g)(w) = 0 for every n,
and we can reiterate. We obtain
_ _ n-lo _qyk 1y
N(2"(9))(w) = (e "IN (f)(w)Z7P)) im0 @ =D7N (g) (w) P =D
Hence

lim N(®"(g))(w) = aP+ =1/ 1yg ) (W)N(f)(w)
noo (11)
= Oé;/(pfz)1vs(g)(w)N(f)(w)'

If now Ef(g)(w) # 0, we have also Ef(®"(g))(w) # 0 for every n > 0. Set

N(E;2"(9))(w)

) = “N(org)) w)

We have then
N(T2"(9))(w) = Br(w)N(2"(g))(w)

and consequently:
N (" (g))(w) = N(f)* 7P (Ba(w)N (D" (g)(w))" . (12)
On the other hand

82(6) = oty 47 )] = e g ) )] = S O ),
and since N(T"g) = (a2"N(g—Efg)*>+N(Erg)*)'/? \, N(Esg) pointwise (as c, < 1)
we have (), (w) /" 1ontheset {w | Efg(w) # 0}. Reiterating (12) from the step n = ng
we obtain then

lim N(@"(9))(@) 2 (B (@) PP 1vs(@,, () (@)N () (w)

n—oo
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and letting ng — oo, we have, since VS(®,(g)) = VS(g) N VS(f) for every n,

lim N($"(9))(w) > Lvs () (@)N(F)(w). (13)

n—oo

From (6), (7), (7’), and (11), (10), (13) we deduce that

"(g) = N(f)[um, o) + ap P D151 gpug] (14)

almost everywhere in H-norm, hence in L, (H)-norm by (9) and Lebesgue’s Theorem.
Hence the right-hand member of (14) belongs to R(P). Since ug,, = sgn{{g | f)us
the right member of (14) can be written

sgnf(g | NS +wlisigN(flug = Fp(f.9) (15)

where we have set 7, = 04;1,/ (®=2),

b) Case 1 <p < 2.
This case is treated by duality. Set v, = 71’,’:_1 and define F,(f,g) by the for-
mula (15). If g = J,, ¢, f = Jp A with f', ¢’ € L, (H) we have

sgn{(g | f)) = sen(g" | f')-

Hence
sgnflg | f)f = Jp.(sgndg’ [ D)
and similarly
N(f)=N(Jp-f") = N(f')>-~.
Hence
N(f)ug = N(f/)p*_lug =Jp. (N(fl)ug’)~
Finally, since {f L g} = {f’ L ¢’} and J,, is additive on elements with disjoint
functional supports, and positively homogeneous of degree p, — 1,

Fp(f,9) = Jp. (Fp. (f,9))-

Then since f' = J,f, g’ = Jpg belong to R(P*), the function F,, (f’,¢')) belongs to
R(P*) too by the case (a), and F,(f,g) belongs to R(P). O

Corollary 3.2. Let p and P be as in Lemma 3.1. Then for every f,g € R(P) the
three elements sgn{(g | f) f, Lipigrf and 11 oy N(f)uy belong to R(P).

Proof. The set A of scalars A such that the set {w € VS(f) | éé?llj;iigz; = —\}
has positive measure is at most countable. This set is also the set of A’s such that
{(g + A\f) L f} NVS(f) has positive measure. Choose a sequence (e,) of positive
numbers not in A U (—A) which converges to 0. Then by Lemma 3.1

sgu((g £enf | f))f € R(P)
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for every n > 1. Since

sgnfg | fH(w) if (g | f)(w) #0,
=0

*1 if (g fH(w)

sgn<<g tenf | f>>(w) - { and f(w) #0

we have

sgn{(g | F)f £ 119y f = limsgn{g£enf | f)f € R(P)

and consequently sgn((g | f))f and 155, 4y f belong to R(P). Then F,(f,g) —sgn((g |
INF =119y N(f)ug belongs to R(P) too. O

Corollary 3.3. Let p and P be as in Lemma 3.1. Then for every f,g € R(P) we
have 1ysg(g) f € R(P).

Proof. By Cor. 3.2, h:= G(f,g) := 11 N(f)uy belongs to R(P). Then G(h, f) =
l{fj_g}].{ug#()}N(f)Uf = ]-VS(g)ﬁ{fJ_g}f belongs to R(P) too. By Cor. 3.2, f —
Lpigrf = Lppgrf € R(P), thus 1vs( f = Lispg1f + Lvsnisgyf € R(P). O

Remark 3.4. In the complex case, for every f,g € R(P) the elements sgn(Re{(g | /) f
and 1ggn(Re(g|f))=0}f belong to R(P) too. Indeed, L,(H) is a real Hilbert-valued
L,(K) space, where K is the real vector space H equipped with the scalar product
(z,y)k = Re(z | y)u. As a consequence, the element 1{re(qsy>03f = 3(sgnRe((g |
Fh + Lsan(re(glrn)#0y) f belongs to R(P).

Lemma 3.5. Let p and P be as in Lemma 3.1. For every f,g € R(P) denote by Xy 4

the o-field generated by the element éé?‘% . Then for every Xy 4-measurable function ¢

such that ¢ - N(f) € L,(Q, X, ), the element ¢ - f belongs to R(P).

Proof. Since R(P) is a closed linear subspace, it is sufficient to prove this for indicator
functions of Xy, g—measurable sets. The sigma-algebra X, is generated by the sets

Rellolf) » A}, {—Relalfd 5 5} {Imdolfh 3} and {-I2l) 5 3} A eR,. If

Afgr = Rejﬁlgf‘f > A} we have Ay g\ = {Re{(g — Af | f)) > 0}, hence 1,4, ,f €
R(P) by Rem. 3.4. The conclusion is the same for the three others kinds of sets
(replacing g by —g or +ig). Now if 15f € R(P) then Ay, N B = Ap 4\ with
f' = 1pf, hence 14, .nBf = lAf,,mf' € R(P). It results that the class C of
the sets A € ¥ such that 14f € R(P) contains finite intersections of sets of the
four preceding types. Since C is closed by complementation and monotone limits, it
contains the sigma-algebra ¢ .. O

Corollary 3.6. Let p and P be as in Lemma 3.1. For every f € R(P) we have
E;P = PE;.
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Proof. Let g € R(P). Applying Lemma 3.5 to the function ¢ = gé;l‘)fcii we obtain

that Etg € R(P). Hence for every h € L,(H), we have EyPh € R(P), i.e. EyPh =
PE¢Ph; thus EfP = PE;P. Similarly, reasoning with the contractive projection P*
in L,, (H), and the element J, f of R(P*), we have E; P* = P*E; ;P*. Dualizing
we obtam PEY T = PE* P We claim that Ef = FE;, 5. This will show that
PE; = PEsP = E;P. Let us show this claim. Since u;,; = uy, we have for every
g€ L,(H)and b € L, (H)

(g ) = [(Ero0) dn= [ (g.up)us ) d
— [ s a0 d
— [ o (0 uphus) d
= /<<g,Eprh’>> dp = (g, Eg, 1) =

Remark. The preceding proof of Cor. 3.6 is essentially a real one. In the complex
case it can be replaced by a shorter one, of more algebraic nature, due to Arazy and
Friedman in the context of spaces C), (see [2]). It seemed interesting to us to reproduce
this proof in the Annex (see §6), after simplifying it considerably by eliminating the
unnecessary non-commutative apparatus.

4. The range of a contractive projection

This section is devoted to the proof of Thm. 0.1, which consists in four lemmas.

Lemma 4.1. The closed Lo (X)-module Z generated by R(P) in L,(H) is generated
(as Loo-module) by a family (fo)aca of pairwise orthogonal elements of R(P). We
have in fact a Schauder (orthogonal) decomposition

Z= @ Lp(Q) - uy,

a€cA

Proof. Let (fa)aca be a maximal family of pairwise orthogonal non zero elements of
R(P) and Zj be the closed Ly (X)-submodule generated by the family (fo)aca. Let
@z, be the orthogonal projection onto Zy. By the proof of Lemma 1.1 we know that
Qzy = D_aca Ey, (convergence in strong operator topology). Hence, by Lemma 2.2
if p =1, resp. Cor. 3.6 if p > 1, Qz,f € R(P) for every f € R(P). Since Qg,
is orthogonal and f, € R(Qz,) we have (f — Qz,f) L fo for every a € A. By
maximality of the system (f,) we deduce that

f=Qzf for every f € R(P)
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ie. Qz,P = P. Then Zy = R(Qz,) is a closed Lo,-module containing R(P) and gen-
erated by a subset of R(P); hence it coincides with the closed Loo-module generated
by R(P). O

Lemma 4.2. There exists a sub-c-algebra F of ¥ containing the vectorial function
supports of all elements of R(P) such that for every f € R(P) and ¢ € L,(, X, ),
the product ¢ - uy belongs to R(P) iff 1ys(pN(f) ¢ is F-measurable. In particular
R(P) is a Loo(Q, F, p)-submodule.

Proof. Since PE; = EyPEy by Lemma 2.1 (if p = 1) or by Cor. 3.6 (if p > 1), we
have P(yp - uy) € Lp(2) - uy for every f € R(P) and ¢ € L,(£2,3, ). We may write

P(p-uy) = (Prp) - uy, with Supp(ﬁﬂp) C VS(f). Clearly Py is linear, ﬁf = ﬁf and

1Prellp = [1P(@ - up)ll < llo-upll < llellp,

hence ]5f is a contractive projection in L, (€2, X, 1). Moreover ]Bf(N(f)) = N(f) and
ﬁfw = 0 for every ¢ € L,(Q, %, ) disjoint from N(f).

It results from Douglas’ theorem (in case p = 1) or Ando’s theorem (in case p > 1)
that ﬁf is positive and

5 7 75 ( Isupp(N (1) ¥
Pi(p) = N(f)E./ <N(f)>

where Eyfff is the conditional expectation with respect to some subalgebra F; of
Y containing VS(f) and to the measure vy = N(f)?du. (We may assume that
Q\'VS(f) is an atom of Fy). In particular L,(2, %2, p) -uy N R(P) = L,(Q, Fy,vg)- f
is a Loo (2, Fy, p)-module.

Let us denote Efy = Efff(lvs(f)w), we have then P(v - f) = Ef () - f for every

¥ € Loo(2, 3, p). Let now f,g € R(P). If g = h-uy with h € LP(Q) then w7y is
Fr-measurable and for every ¢ € Lo (Q, X, ) we have
@-h
E(¢) - g = P(ph - uy) = N(f)Ef(W) ~up = hE (p) -uy =E'(¢) - g,
Hence
Eg(@) = 1VS(g)~Ef(90) = 1Supp th(QD)' (16)
Let now g be a general element of R(P). For every ¢ € Lo (f2) the equation
Ple-(f+9))=Ple-f)+Plp-g)
is equivalent to
E™9(p) - (f +9) =E/(p)- f +E(p) - g- (17)
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Let g = h-uy + ¢’ be the orthogonal decomposition, i.e. h = (g | us)) and ¢’ L f.
Note that h-uy = E;g € R(P). Set A = VS(f), B = VS(g) and B’ = VS(¢').
Taking the images of both sides of (17) by the orthogonal projection I — E; we
obtain

Ef9(p) - g =F(p) - ¢,

hence 15/ EfT9(p) = 15/ E9(p). Then by (17) again, 15 E/T9(p)f = 15Ef () f and
finally
Lanp B9 (0) = 1anp B/ (9) = 145 E(9). (18)

On the other hand similarly to (17) we have
EM79(p) - (h-uf — g) = E"I (¢) - huy —E%(p) - g
Since h - uy — g = —g’ we deduce that

1sz\B/Ehuf (@) -huy = 1o\ EI(p) - g,
hence
1\ g E" (p) = 1p\p B (). (19)

We have E"f () = 1gupp nE () by eq. (16). Hence since B\ B’ C Supp h, eq. (19)
gives
1\ 5B/ (¢) = 15 5 E ()

which together with eq. (18) gives
14nsE (¢) = 14nsE9 (p)

for every ¢ € Loo (2,32, ). In particular

Lvs(nnvs(g) = Lvs(nnvs(e B! (Tvs())
= lvs(prvso B (Lvs(y)
= lvs(nvs B (Tvs(pnvs(e)s
hence
E/ (1vs(rynvs(y) = 1vs(pnvs(g)

and since Ef is a contraction in L,(Q, ¥, N(f)P - 1) we have in fact

Ef (Lvs(p)nvs(e) = 1vs(rnvs(e):

that is, VS(f) N VS(g) € Fy. In particular 1yg(y) - f = lvs(pnvs(y) - f € R(P).
More generally for every A € F, its trace VS(f) N A belongs to F; (as is easily
seen by treating separately the cases A C VS(g) and A = Q\ VS(g)). Let F be
the o-algebra consisting of sets A € X such that A N'VS(f) belongs to F; for every
f € R(P). Then for every f € R(P) and ¢ € Lo(£, X, ) the function 1yg(s ¢ is .7-"
measurable iff it is Fy-measurable, and the Lemma follows.
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Lemma 4.3. There is a weight w € Lo(2, X, u) with support VS(R(P)) such that
for every f € R(P), w™N(f) is F-measurable.

Proof. a) First we claim that for every f,g € R(P) then 1yg f)% is F-measurable.
Since Eyg = (g | us)uy € R(P) by Lemma 2.2, it results from Lemma 4.2 that
N(f)" g | us) = N(f)"2(g | f)) is F-measurable; hence its absolute value N (f) >
|{g | f)| is F-measurable, and similarly N(g)~2|{(f | g))| is F-measurable too. Then
the ratio of these functions, that is 1Supp<<g‘f>>N(g)2N(f)_2 is F-measurable, and
so is its square root 1Supp<<g|f>>N(g)N(f)_1. Replacing g by g. = g+ ¢f, € > 0
we obtain that 1Supp<<gs‘f»N(gE)N(f)’l is F measurable. When ¢ — 0 we have
ge — ¢, N(ge) — N(g) (in Lp-norm) and Supp{(g: | f)) — Supp N(f) = VS(f) (in
probability). At the limit 1yg( f)% is F-measurable.

b) Let (fi)icr be a maximal family of non zero elements in R(P) with pairwise
almost disjoint functional supports VS(f;). Then VS(R(P)) = V/,c; VS(fi): if f €
R(P) then, since S = \/,.; VS(f;) belongs to F, so does its complementary set S¢,
and thus 1gcf € R(P); then, by maximality of the family (f;), we have 1ge.f = 0,
that is, f = 15 - f. Weset w = >, ; N(f;) (which converges in Lo(2,%, u)): this
is a ¥-measurable weight with support VS(R(P)). For every f € R(P) and every
i €1, ygisyw *N(f) = Lvs()N(fi) ' N(f) is F-measurable; hence w™'N(f) =
>ier Lvs(gyw N(f) is F-measurable. O

We can now give the

Proof of the Thm. 0.1. Consider the new measure v = wP - u, which has support
Qp =VS(R(P)) and set T : L,(Q2p,Xp, ) — Lp(Qp,Xp,v), defined by T'f =w™! f
(we denote by ¥ p the trace of ¥ on Qp). Then T is an isometry; Y := (T'®Idy)(R(P))
is a Loo (Fp)-module isometric to R(P) and for every f € Y its new random norm
N(f) = w™ N(f) belongs to L,(Qp, Fp,v). It results from an argument in [13] that
Y is isometric to (@iel Lp(Qi7.7:‘Qi7V|Qi;Hi))€p7 for some families (£2;) of pairwise

almost disjoint sets in F and (H;) of Hilbert spaces. Set then w; = (E(1q, -w? | F))'/?,
and define an isometry S; : L, (%, Fia,, Vjo,) — Lp(Q, Fla,, mo,) by Sif = w; - f.
Then each S;®Idpy;, is an onto isometry L, (24, Flo,, Vja,; Hi) — Lp(Q, Fla,, jo,; Hi);
the collection of these isometries induces an isometry of the corresponding ¢,-direct
sums. The proof of Thm. 0.1 is complete. O

Let us finally adapt to the present situation the argument of [13] for the commodity
of the reader (and for further reference in Section 5).

Lemma 4.4. Let (,%,v) be a localizable measure space, F be a sub-sigma algebra
such that (2, F,v) is still localizable and H be a Hilbert space. Let'Y be a closed
Lo (F)-submodule of L,(Q, X, v; H) such that for every f € Y its random norm N(f)
is F-measurable. Then there exist a family (;)icr of pairwise almost disjoint mem-
bers of F, a family (H;) of Hilbert spaces (of lower Hilbertian dimension than H) and
a random norm preserving isometry from'Y onto (EBZ.GI Lp(Qi7.7:‘Qi7V|Qi;Hi))ep.
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Proof. Note that by an elementary polarization argument all the scalar products
(f 1 g), f,g € Y are F-measurable. Hence for every f € Y, the projection Ej
restricts to a projection from Y onto L,(€Q2, F) - us. It results that for every closed
Lo (F)-submodule Z of Y there is an orthogonal projection from Y onto Z (which is
the restriction of the orthogonal projection from L, (2, ¥; H) onto the closed Lo (X2)-
submodule generated by Z). In particular Y = Z @ (Z+ NY).

Remark that if A € F is v-sigma-finite and M C Y is a closed Lo, (F)-submodule
such that VS(M) D A then there exists g € M such that VS(g) = A: take a maxi-
mal family (g,,) in M of norm-one elements with almost disjoint functional supports
included in A; this family is necessarily at most countable and \/,, VS(g,,) = A; then
set g =2 ,2""gn.

Now we claim that for every A € F, A C VS(Y) with positive measure, there
exists a F-measurable subset B of A of positive measure and a family of pairwise
orthogonal element (f,)aery, such that VS(f,) = B for every v € I'g, which
generates 1p - Y as closed Ly (F)-submodule. For, let A’ C A be a sigma-finite
F-measurable subset with positive measure, and (gy)yer be a maximal family of
pairwise orthogonal elements of Y with VS(g,) = A’. 1If this family generates
14/.Y as closed Lo (F)-submodule we can take B = A’. If not, consider the set
M={feY | fLlg,Vy e} Then M is a closed Lo (F)-submodule of Y,
and VS(M) 2 A’ by the maximality of (g,)yer (and the preceding remark). Let
B = A"\ VS(M), then (1gg,) cr is a maximal family in 15 - Y of nonzero, pairwise
orthogonal elements of 15-Y. Consequently it generates 15-Y as Lo, (F)-submodule,
and moreover VS(1pg,) = B for every v €T

Let now (£2;);e; be a maximal family of F-measurable almost disjoint subsets of
VS(Y) of positive measure, such that there exists for each i € I a family (f%)er,
of pairwise orthogonal elements with VS(f}) = Q; for every v € T';, which generates
1o, - Y as closed Log(F)-submodule. By the claim, we have \/,.;Q; = VS(Y).
Every f € 1o, - Y can be written f = 3°_ . ¢, f) with ¢ € Lo((2:, Flq,,v); then
N(f) = (Zer, [oaPN(£5)*)1? € Ly(Q, Fio, v)-

Note that, by refining if necessary the “partition” (€2;) we may suppose that
each €); has finite v-measure. Then, replacing each f; by upi = N(f;)—l ;" we
may assume that N(f!) = 1g,. We have then N(f) = (> er, ©~]?)1/? for each
f = Zven (p—yff/ in 1Qi -Y. Let Hi = EQ(F,*). Then Tz : Lp(Qi,]:mi,l/;Hi) — 1Qi ~Y,

JeT; PrEy P> Doer, PyUyi is an (onto) isometry (preserving the random norm),
and finally Y is isometric to (B,  Lp(€%; Hi))[ .

For proving the assertion about the Hilbertiafn dimension of H;, suppose that for
some ¢ € I, the Hilbertian dimension dg of H is strictly smaller than that of H;, dy,.
We distinguish two cases:

(i) if H is finite dimensional: select a finite subset I'; of I'; with cardinality dgy + 1;
since (f2 | f3) = 0 for every v # & € T}, there exists w € Q such that
(f2 ] fid(w) =0, i.e. the vectors f!(w), v € I'; of H are pairwise orthogonal: a
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contradiction.

(i) if H is infinite dimensional: for every z € H theset {y € Ts | ((f} | 1q,x)) # 0} is
at most countable (since Z,Y|(<f; | 1g,2)|?> < N(1g,-7)? = 1q,||z|?), hence if D
is a dense set in H of cardinality dp, theset { v € T'; | 3z € D, (f; | 1q,2)) #0}
has cardinality dg < dn, = #I';. Hence there exists some v € I'; such that
ffy 1 1q,x for every z € D, and thus for every x € H, which means ffy =0, a
contradiction. O

Remark 4.5. The final argument in the proof of Lemma 4.4 shows indeed that if
L,(9,%,v;H) embeds in L,(Q2, £, v; H) by a modularly isometric map then dim H <
dim H.

Remark 4.6. In a forthcoming paper ([10]) it will be proved that contractively com-
plemented sublattices of L,(L,) are isometric to “abstract L,(L,) spaces”, i.e. bands
in L,(Ly) spaces. Let us show how this permits to deduce shortly the essence of
Thm. 0.1 from Lemma 4.1.

As in the proof of Lemma 4.1 let (fy)aca be a maximal family of non zero,
pairwise orthogonal elements of R(P) and Z = @, L,(Q, X, i) - uy, be the closed
L (X)-submodule generated by R(P). There is clearly a Z-modular isometry U from
the closed submodule Z onto a band Y of the Banach lattice L, (£, X, p; H) where H
is the discrete Banach lattice £5(A), such that Ue, = N(fa)eq, where (€q)aca is a
Hilbertian basis of H. Then P |z is similar by U to a contractive projection PofY
which preserves the spaces Y, = L,(Aq) - eo (where A, = Supp N(f,)) by Lemma
2.1if p=1 and Cor. 3.6 if p > 1, as well as the elements N(f,) - e,. By the classical
(scalar) theorem of Douglas if p = 1, Ando if p > 1, p |y, is positive and its image
is a sublattice of Y,. Since Y = @, Y, is a decomposition in disjoint subbands, Pis
itself positive and its range is a sublattice of Y, hence of L,(H). By the analysis of
contractive projections on sublattices in L,(L,)-spaces developed in [10], the range
R(P) is an abstract L, (L2)-space, hence by [13] it is Banach-isometric to a ¢,-direct
sum @, ; Ly(€, H;), where the H; are Hilbert spaces. O

5. Structure of the contractive projections

Theorem 5.1. Let 1 < p < oo, p # 2. For every contractive projection P of
L,(H) there ezist a family (ul)%lﬂ of pairwise orthogonal elements of Lo(H), a
positive contractive projection P of L,(2) and, if p =1, a contractive linear operator

Vi Li(H) — Li(H) verifying ker V. D> 14L1(H) where A = \/_ . VS(uy), and
R(V)c>Z, R(P) - u,, such that:
>, PO | us))uy ifp#1,
Pf= Y 20
g {27P<<<f e V() ifp =1, (20)
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for every f € L,(H).

Conwversely for every family (u,)ycr of pairwise orthogonal elements of Lo (H),
every positive contractive projection P of Lp,(Q) [and every linear contraction V of
Li(H) satisfying the previous conditions of kernel and range in the case p = 1], the
formula (20) defines a contractive projection P of L,(H).

Moreover if p # 1 the inequality N(Pf) < IB(N(f)) holds for every f € L,(H)
[this happens also for a contractive projection of Li(H) for which the operator V of
formula (20) is zero]. (P is a “majorizing Ly-contraction” for P in the terminology

of [8]).

The proof of Thm. 5.1 will require the two following Lemmas, the first of which
is specific to the p = 1 case:

Lemma 5.2. Let P be a contractive projection in Li(H). Then Pf = 0 for every
f € Li(H) with VS(f) C VS(R(P)) and f L R(P).

Proof. Assume that f L R(P) and VS(f) C VS(h) for some h € R(P). Then
g:= Pf+1vs(pyf))h belongs to R(P) and VS(g) D VS(f) UVS(Pf). We have for
every t > 0:

[V + N da = g + 1]
> ||P(g+tf)ll =Illg +tPf]
— (1 OIPF] + [ Lvserry. - bl
= gl + tlPf].

Hence:

lo+ 4=l _ OV FENGR2 NG,

<
”Pf” - %g% ( t t—0 t

Lemma 5.3. Let P be a contractive projection in L,(H). There exists a positive

contractive projection P on L,(Q,%, 1) such that P(p - uy) = (Pyp) - uy for every
f€R(P) and ¢ € L,(Q, X, ).

Proof. Let F be the o-algebra of Lemma 4.2 and w be the weight of Lemma 4.3.

Define Pj(y) as in the proof of Lemma 4.2. Recall that for every f € R(P) the
function w™!N(f) is F-measurable. We have then for every h € Loo (2, F, p):

JPromN @ = [ B (N s NP -

=/1VS(f)<P'hN(f)p_1'd/~L
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— [ Avsinyue) - (vsihle™ NP ur - dy
:/]qu;v”(lvs(R(P))w71<P)1VS(f)h(w71N(f))p71wp'dﬂ
= /1VS(f)wEfp,t(1VS(R(P))U)7190)hN(f)p71du-

Hence ﬁfga = 1vs(f)?<p if we set Py = wEip,M(lvs(R(p))w_lga) for every ¢ €
L,(2,%, 1). Then P is a positive contractive projection in L,(9,%, ) and P(p.us) =
P(p) - uy for every f € R(P) and ¢ € L,(Q, %, p). O

Proof of Thm. 5.1. Let @ be the orthogonal projection from L,(H) onto the closed
submodule generated by R(P). It results from Lemma 4.1 that if (f,)~er is a maximal
family of pairwise orthogonal elements of R(P) then Q = nyer Ej_ (convergence for
s.0.t.), hence PQ = Z'yer PE; . If p > 1 we know by Cor. 3.6 that Ey P = PEy_for
every 7, hence P = QP = PQ. Ifp=1let I1: Ly (H) — L1 (H) the projection defined
by IIf = 1vsr(p)) - f, then Il and I —1II are contractive. We have QII = TIQ = @ and
it results from the preceding Lemma 5.2 that P(I — Q)II = 0. Hence P = PQ + V,
where V = P(I —1I).

Let us express now PE; when f € R(P). If P is the positive projection in
L,(2,%, 1) defined in Lemma 5.3 we have for every g € L,(Q, %, p; H)

PEfg = P({g | us)) -us) = P({g | us)) - us

The formula (20) in Thm. 5.1 is now clear if we set u, = uy. .

Conversely given (u.), P and V', let us prove first that P is a contraction. We
have for every finite subset G of T" (using the positivity of P):

N3 P T ))us) = (EiIP Flune)”
yEG
:\/{]Zavp«f|uw>>Hawe<c,§j|aw|231}

vyeG vyeG
<P(V{[Z et 1ud||ar €€ Yl < 1})
yeG yeG
= B((S s 1wnl) ).
yeG

Hence [, cq PGS T uDus P < J 2 eallf | us)?)P/2du and the sum Pof =
> ver P [ uy)))uy converges in Ly(H). Moreover

N(Rf) < B((SI 1w P) ) < Bv(aa- )

yel’
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(see section 1.2 and the proof of Lemma 1.1) and

[PofIl < [11a- [l

where A = \/_ VS(u,). That Py is a projection follows immediately from the fact
that P is. If p = 1 we have to care with the contraction V. Since |V f]| < ||1ac - f]|
we obtain ||Pf|| < [[1a - f|| + ||1ac - f]| = || f|l. Then since VP, = 0, PV =V, it
follows clearly that P = Py + V is a projection. O

We can now give the structure theorem for contractive projections:

Theorem 5.4. For every contractive projection P of L,(, 3, u; H) (1 < p < o0,
p # 2) there exist:

e a modularly isometric automorphism W of L,(H);

a family (2;)icr of pairwise almost disjoint X-measurable subsets of Q0 of positive
measure;

a family (H;)icr of Hilbert spaces;

for every i € I a (strong operator) measurable family (U; .)wen of isometric
embeddings of H; into H;

e q positive contractive projection P of L,(Q, %, 1) commuting with the band pro-
jections associated with the sets €);;

and if p = 1 a contraction V' from Ly(S,¥s,us; H) into R(P), where S =

such that (setting V=0 ifp>1):

pP= WU(Z PMg, ® IdHi)UﬁW_l TV

where Mgq, denotes the multiplication operator by the characteristic function lq,; U is
the modularly isometric embedding of @ Ly (2, Xq,, tjo,; Hi) into L,(H) naturally
associated with the family (Ui, )icr wea by mean of the formula:

UfH)w) =Uiw(f(w)) whenw €y

and similarly U : L,(H) — @ Ly(Q%, Zjq,, tya,; Hi) is the modularly contractive map

associated with the family (U7 ,,)ier wea-

Remark 5.5. In fact the families (U; o)wen may be chosen locally constant, i.e. there
is a partition of €); in ¥-measurable subsets of positive measure on which U, is
constant.
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Remark 5.6. In the case where H is separable, it is a standard (and easy) fact that
every modularly isometric automorphism W of L,(H) is associated with a measurable
family (W,,),eq of unitary operators on H; so we recover the Theorem 0.3 of the
Introduction.

Proof. By the proof of Thm. 0.1 in Section 4, there are a sub-calgebra F of ¥, a
family (€;);cr of pairwise almost disjoint elements of F, a positive weight w on © with
support \/;c; Q;, a family (H;);c; of Hilbert spaces and for every i € I an isometry 7;
from L, (2, Flo,, v |a,; Hi) into L, (82, Flo,, Vio,; H) such that R(P) = @, ; w-R(T3)
and moreover N(T;f) = N(f) for all f € L,(, Fja,,V|o,; Hi) (recall that v = wP - ).
Moreover P commutes with the action of L., (F), in particular with the multiplication
operators Mgq,.

Each T; extends uniquely to a modularly isometric map TN’Z from L, (24, X0, V|0,
H;) onto the closed Lo (X)-submodule generated by R(T;) in L,(Q2, X, v; H): set sim-
ply Ti(3 oy rfe) = 225 erTi(fr) when @1,... pn € Loo(i;Xjg,) and fi,..., fi €
Ly(Q4, Fia,, V‘Qi;Hi) and verify that N (>, wrTi(fr)) = N(O_) @rfr) (since T; pre-
serves the random scalar products).

Now define \S; : L, (i, Xq,, pja,; Hi) — Lp(Q, %, us H) by Sif = wﬁ(w_lf): the
range R(S;) = wR(T}) is exactly 1q, - Z, where Z is the closed Loo(2)-submodule
generated by R(P). We can glue up the maps S; and obtain a modularly isomet-
ric embedding S from @,.; L,(, X)q,, pjo,; Hi) into Ly(Q,%, u; H), with range
R(S)=Z.

By Lemma 5.3 there exists a positive projection P on L,(9,3, 1) such that
P(puy) = (]5<p).uf for every f € R(P) and ¢ € L,(Q,%, ). Note that P is F-
modular, in particular it commutes with every multiplication operator Mq,, i € I.

If A € F is a v-integrable subset of Q; and e € H; we have S;(law ® e) =
wT;(1a®e) € R(P),and N(S;(1a-w®e)) = N(14 - w®e) = 14-w, and consequently
for f = S;(law®e) we have f = w-uy. Thus for every ©» € Loo(, X, n) NLy(£2, 3, 1)

we have

PS;(Y1aw@e) = P(¢ - wuy) = P(p - wlg,) cup = P -wla,) w ' Si(1aw @ e)
= Si(P(¢-wlo,) - w™ - Law®e) = Si(P(yh - wlg,)la ®e),

hence by linearity and density we have for every ¢ € Ly,(Q4, X|q,, pjo,) and e € H;:

PSi(p®e) = Si(P(p) ®e),

that is, the restriction of P to 1, - Z is similar by S; to the projection P® idgy,;
consequently the restriction of P to Z is similar by S to the projection ), ; PMgq, ®
idyy, .

In the case where Z = L,(Q, %, u; H) we have necessarily dim H = dimH; for
every ¢ € I since S; is a modularly isometric map from L,(Q;;H;) onto 1qg,.Z =
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L,(9; H) (see Remark 4.5). Thus we may assume that H; = H and the conclusion
of Thm. 5.4 is obtained with W = S and U = Id.

In the general case we apply Lemma 4.4 to the L., (X) submodule Z+. We find a
family (Q);e. of pairwise almost disjoint members of ¥, a family (KC;);e s of Hilbert
spaces and a modularly isometric map S’ from (@jGJ » (82, E'QJ’_,M‘Q;"C ))e, onto

Z1. Note that now the sets Q; have no reason to belong to the smaller o-algebra

F. We have \/; Q) = VS(Z 1). For the commodity of the notation we may assume
V; Q) = Q, adding if necessary one extra set 5 = Q\ \/,; €} for which we set
Ko = {0}, the 0-dimensional Hilbert space. Similarly, up to the cost of adding one
extra set y = Q\ Qp and setting Hy = {0}, we may assume that \/,; = Q. We
may also refine the partition (£2}) by setting Q;; = Q; N Q) and removing the
which are almost void. This operation gives a doubly indexed family (Q;j)le Ijed;-
Foreveryi € I,j € J;, set L;j = H;®K; (direct Hilbertian sum). Then L, (2 ; H,)

and L, (87,5 ;) 1dentify naturally to a pair of mutually orthogonal LOO(E)—submgdules
of L (Q”,L i):if um and u;(; are the inclusion maps of H;, resp. K; into L;; then
Uy = ideuy; and U} = id @ uj are the corresponding embeddings of L (€2};; ;)
and L, (2;;K;) into L (3 Lij). Since u¥ and u)* are the orthogonal projections
L;j — H;, resp. Lijj — K, we see that Uoﬂ and U’Oﬂ are the orthogonal projections

(in the sense given in Section 1.2) onto L (QZJ,H ) resp. Ly, (95 K;).

Now define Wl% tLp(QY; Lij) — Lp(Q 5 H) by f S; (Uoﬁf) + S5( :?ﬂf) we

Zj I 2] ?
have

NWS )2 = N(Si(UF )+ N(S{UZ)? = NUL)? + NUF )2 = N(f)?

since S; and S are modularly isometric and have values in orthogonal subspaces
Z, resp. Z*+. Hence WJ; is modularly isometric and R(WS) = Lo Z + 1q;, Z+ =

Ly (€5 H).

We know by the proof of Thm. 5.1 that P = PQ + V', where @ is the orthogonal
projection onto Z. Since V satisfies the requirements of the theorem, we look only
for a representation of Py = PQ. From the first part of the proof we know that
PoS; = Si(P ®idy;,); on the other hand PySj = 0 since R(S}) C Z* = ker Q. Hence,
for every f € L,(€;; Lij),

PWAf = RoSiUS f + PoSiUSE f = Si(P @ idy, UL f = WUL(P @ iday, ) UL f

i.e. Py is similar by WY to US(PMg, @ idy, YUE.

Since Ly, (453 Lsj) is modularly 1sometrlc to L, (9453 H) (by Wi[}), we have dim L;; =
dim H by Rem. 4.5, so we may identify L;; with H by an isomorphism 6;;. This iso-
morphism induces in turn a modular isometry ©;; = Id ® 0;; from L,(€;; Li;) onto

Ly (€55

i H). Set Wi = WhO,; ! then Wj; is a modular automorphism of L p(Qi55 H).

Let also u;; = 05 ouu be the embeddlng of H; into H resulting from this identification
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and U;; = idp,(q,;) ®ui; = Oi;Uf be the associated embedding of L,(€;;;H;) into
L,(9;;;H). Since @i_jl = @gj we see that Py is similar by W;; to Uij(ﬁMQij ®idHi)Ufj.
Finally we glue up the automorphisms W;; to an automorphism W of L, (€; u; H)

by setting
WE=> 3" WiMgy f

iel jeJ;

and similarly we glue up the embeddings U;; to an embedding U of @, ; L, (£2i; H;)
into L,(€%; H). The maps W and U are still modularly isometric and Py is similar by

W to U(Y;e; PMa, ® idy, )U*. O

6. Annex: a proof of Corollary 3.6 specific to the complex case

The following proof is an adaptation of that of Thm. 4.1 in [2]. We assume that
2 < p < oo (the case 1 < p < 2 follows by duality).

If f € R(P) we introduce besides the projection E¢ (defined in §1) the operators
F¢ and G defined by

Frg=1vs)e9; Grg = lvspg — Erg.

Then Ey, Gy and Fy are commuting modularly contractive projections in L,(H) with
Ef+ Fy+ Gf =1.

Let f,g € R(P), then the elements A(f, g) and B(f, g) defined in §3 (egs. (5) and
(5bis) belong to the range of P*; so do the sum and difference: My (g) := A(f,g) +
B(f,9) and I'y(g) := ;55 [A(f,9) — B(f, )] belong to R(P*). Set

Qrg = (uy,g) uy.
We have then
My(g) = N(f)P*[29 + (p — 2)Eyg]
T¢(g) = pN(f)P%Qyrg

Then My, resp. I'y are bounded linear, resp. antilinear operators from L,(H) into
Ly.(H), and Qf is a contractive antilinear endomorphism of L,(H) such that Q7 =
Ey; moreover:

MyP =P*MsP, T P=PT;P. (21)

Consider the positive symmetric bounded bilinear form defined on L,(H) by

(9:h) 5 = (M(g), h) = /N(f)p_2<<(21+ (p=2)Ef)g | h)) dp
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Note that I'y = M¢Qf = Q, My and Q} = Q,f; then Qy is hermitian for ()
since

(Qrg.h)f = (MsQrg,h) = (Qsg, M¢h)
= (Qu,rM¢h,g) = (MsQyh,g) = (Qsh, 9)s

On the other hand P is hermitian for (-,-)s since (using (21))
(Pg,h)s = (MgPg,h) = (P*"MyPg,h) = (MyPg, Ph) = (Pg, Ph)¢
= (Ph, Pg)s = (Ph,g)s = (9, Ph);

Let Ny be the kernel of the form (-,-)s: we have g € Ny iff (g,9)f = 0iff (9,h)f =0
for all h € L,(H) (by Cauchy-Schwartz inequality). Then PNy C Ny since

(Pg,Pg)s =(9,Pg)f =0 ifge Ny

On the other hand the operator 2-1yg(y) + (p—2)Ey maps Ly,(H) onto 1yg(s) Ly (H);
hence g € Ny iff (N(f)P~2g,h) = 0 for every h € lyg(p)Lp(H) iff N(f)P~2g = 0 iff

1VS(f)g =0.
We have thus R(Fy) = Ny and consequently

PFy; = FyPFy

Since L,(H) is a strictly convex Banach space as well as its dual, we have by the
auxiliary Lemma 6.1 below:
PFy = FP

Let us show that @ ;P is hermitian for (-,-)y, using eq. (21) again:
(QrPg,h)y = (MyQsPg,h) = (I'yPg,h)
= (P"T'yPg,h) = (T'sPg, Ph)
= (QsPg,Ph)y = (QsPh, Pg)s
= (QsPh,g)y

Since Qf and P are separately hermitian for (-,-)s we have
(QsPg,h)s = (PQsh,g)s,

hence (PQ;—QsP)h € Ny, ie. (I —F;)PQs = (I —Fy)Q¢P. Composing on the left
by G and on the right by @, or conversely, we obtain

GyPE; =0= E;PGy.
Since, on the other hand,

FyPE; = PFyE; =0 = E;FyP = E;PFy,
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we obtain
PE; =EyPE; = E;P. O

We state now and give a proof of the announced auxiliary Lemma.

Lemma 6.1. Let X be a strictly convexr Banach space with strictly convex dual, and
P, Q two contractive projections on X. The following conditions are equivalent:

(i) PQ is a projection.
(ii) PQ = QPQ.
(iii) PQ = PQP.
If moreover the complementary projection Q* is contractive too then PQ = QP.

Proof. If (ii) is verified then (PQ)? = PQPQ = P- PQ = PQ); while if (iii) is verified
then (PQ)? = PQPQ = PQ-Q = PQ. Hence both (ii) and (iii) imply (i) (without any
contractiveness assumption). Conversely if (i) is verified then for every z € R(PQ) we
have x = Qx = PQx (by [2, Prop. 1.1 (iii)]; only the strict convexity of X is needed)
so z € R(P)NR(Q). Since the converse is trivial, we see that R(PQ) = R(P)NR(Q);
in particular QPQ = PQ and (ii) is verified. Dualizing we have that P*, Q* and
Q* P* are contractive projections in X*; hence Q*P* = P*Q*P*, so PQ = PQP and
(iii) is verified. Now (iii) implies PQ+ = PQL P, and if Q* is contractive this implies
PQt = QL+ PQ* by the preceding. Then

Q=PQ+PQ"=QPQ+Q PQ*

which in turn implies QP = PQ = QPQ. U

Remark. The final assertion PQ) = QP of Lemma 6.1 is stated in [2] (for X = C,,) as
Cor. 1.7 without the assumption that the complementary projection Q= is contractive.
This statement is not correct: if p # 2 it is easy to construct rank 1 contractive
projections P, @ in X = ¢, or C), such that PQ = 0 # QQP: choose non zero elements
a,b € X such that their norming functionals Ja, Jb verify (Ja,b) = 0 and (Jb,a) # 0
andset P=a® Ja, Q@ =bR® Jb.
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