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ABSTRACT

We give very short and transparent proofs of extrapolation theorems of Yano
type in the framework of Lorentz spaces. The decomposition technique devel-
oped in [4] enables us to obtain known and new results in a unified manner.
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1. Introduction and preliminaries

The well-known extrapolation theorem of Yano (see [11] and [12, Theorem XII.4.41])
states that if (Ω, µ) is a finite measure space and for all p near 1, p > 1, T is a
bounded linear map from Lp(Ω) to Lp(Ω) with norm not exceeding C(p − 1)−α for
some positive C and α, then T maps the Zygmund space L(log L)α(Ω) boundedly into
L1(Ω). In fact, the result holds if T is quasilinear rather than linear; and the theorem
can also be put into the framework of abstract extrapolation theory (see [7] and [9]).
The aim of the present paper is, using the decompositions developed in [4] for the
extrapolation characterisation of exponential Orlicz spaces, to give extremely simple
proofs of theorems of Yano type in the setting of Lorentz spaces. These theorems
include not only the classical Yano theorem and some recent variants of it, but also
new results.
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Throughout the paper Ω will be a subset of the n-dimensional Euclidean space
Rn with finite Lebesgue measure |Ω|; to simplify the formulae we shall suppose that
|Ω| = 1. Given a locally integrable (real-valued) function f on Ω, its distribution
function mf is defined by

mf (λ) = |{x ∈ Ω : |f(x)| > λ }|, λ ≥ 0,

and the non-increasing rearrangement f∗ of f is given by

f∗(t) = inf{λ : mf (λ) ≤ t }, t ≥ 0.

For 1 ≤ p ≤ ∞ the Lebesgue space Lp = Lp(Ω) is defined in the usual way and the
norm of a function f in this space will be denoted by ‖f‖p. If we need to specify the
underlying set, say A ⊂ Ω, then we write ‖f‖p,A for the Lp norm of f over this set.
Recall that f and f∗ are equimeasurable and that ‖f‖p = ‖f∗‖p,(0,1); for shortness
we shall write ‖f∗‖p for ‖f∗‖p,(0,1). For p, q ∈ [1,∞] the Lorentz space Lp,q = Lp,q(Ω)
is defined to be the space of all functions f such that the (quasi-)norm

‖f‖p,q :=
(∫ 1

0

{
t1/pf∗(t)

}q dt

t

)1/q

(appropriately modified if q = ∞ and/or p = ∞) is finite. For any α > 0, L(log L)α =
L(log L)α(Ω) is the Orlicz space generated by any Young function equivalent to t 7→
t(log t)α near infinity. It is well known that since the measure of Ω is finite, all such
Young functions give the same space (up to equivalence of norms) and that one can
introduce a quasinorm on L(log L)α by the formula

‖f‖L(log L)α =
∫ 1

0

f∗(t)
(
log

1
t

)α

dt.

For this we refer to [2].
For k ∈ N let Ik = (e−k, e−k+1). In [4] we used the behaviour of f∗ on the

intervals Ik to characterise exponential Orlicz spaces; see also [3] and [5] for use of this
localisation technique. It turns out that this is also useful in the present extrapolation
context. We need to find functions fk such that f =

∑∞
1 fk and f∗k has appropriate

behaviour. To this end, observe that if 0 ≤ a < b < ∞, then

|{x ∈ Ω : a ≤ |f(x)| ≤ b }| = |{ t ≥ 0 : a ≤ f∗(t) ≤ b }|.

Hence for each k ∈ N, the measure |Ik| of Ik is not greater than the measure of Ak :=
{x ∈ Ω : f∗(e−k+1) ≤ |f(x)| ≤ f∗(e−k) }. Since the function r 7→ |B(0, r) ∩ A1| is
continuous (here B(0, r) is the open ball in Rn with centre 0 and radius r), there exists
r1 > 0 such that the measure of Ω1 := B(0, r1) ∩ A1 equals |I1|. Put Ω̃2 = A2\Ω1.
Repeating the above continuity argument for the set B(0, r) ∩ Ω̃2, we find r2 > 0
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such that Ω2 := B(0, r2) ∩ Ω̃2 has measure equal to |I2|. In this way we generate a
sequence {Ωk} of disjoint subsets of Ω, with union differing from Ω by only a set of
zero measure, such that for each k ∈ N, |Ωk| = |Ik|. Now let fk := fχΩk

(k ∈ N),
where χΩk

denotes the characteristic function of Ωk. On Ωk, |f(x)| ≤ f∗(e−k) and
so if λ > f∗(e−k), then mfk

(λ) = 0; thus f∗k (t) ≤ f∗(e−k) for all t > 0. On the other
hand, if λ < f∗(e−k+1) and 0 < t < |Ik|, then

|{x ∈ Ωk : |f(x)| > λ }| = |Ωk| = |Ik| > t;

hence f∗k (t) ≥ f∗(e−k+1) if 0 < t < |Ik|. Moreover, if t ≥ |Ik|, then plainly f∗k (t) = 0.
The corresponding decomposition f =

∑∞
k=1 fk of f thus has the property that for

all k ∈ N and all t ∈ (0, |Ik|), f∗k (t) ∈ [f∗(e−k+1), f∗(e−k)]. This will be crucial in
what follows.

We write A . B if A ≤ cB for some positive constant c independent of appropriate
quantities involved in the expressions A and B, and A ∼ B if A . B and B . A.

2. The classical setting

Throughout we shall assume that T is a sublinear operator, which means that its
domain is the set of all scalar-valued measurable functions on Ω occurring in the
assumptions of the respective theorems, and that for all such functions f, g, |T (f+g)| ≤
|Tf | + |Tg|. To explain the basic idea we start with the classical Yano theorem.
Unlike the procedure in e.g. [12, Chapter 12] we directly discretise the rearrangement-
invariant quasinorm in the operator domain.

Theorem 2.1. Suppose that for all p near 1 with p > 1, T : Lp → Lp is bounded,
with ‖T | Lp → Lp‖ ≤ C(p − 1)−α for some α > 0 and C independent of p. Then
T : L(log L)α → L1 is bounded.

Proof. Use of our decomposition makes the proof is very simple. Let f ∈ L log L,
write f =

∑
fk as above, and observe that if t ∈ Ik then log(1/t) ∼ k, where the

constants implicit in the equivalence estimates can be chosen independent of k ∈ N.
Hence the norm of f in L log L is

∫ 1

0

f∗(t)
(
log

1
t

)α

dt ∼
∞∑

k=1

kαe−kf∗(e−k).

Put pk = 1+ 1
k (k ∈ N). Then using the subadditivity (see [2, Theorem 2.3.4]) of the

operation g 7→ g∗∗, where g∗∗(t) = t−1
∫ t

0
g∗(s)ds, together with the properties of T
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2005, 18; Núm. 1, 111–118



D. E. Edmunds/M. Krbec Variations on Yano’s extrapolation theorem

and Hölder’s inequality, we have∫ 1

0

(Tf)∗(t) dt ≤
∑

k

∫ 1

0

(Tfk)∗(t) dt ≤
∑

k

(∫ 1

0

(
(Tfk)∗(t)

)pk
)1/pk

≤ C
∑

k

(pk − 1)−α‖fk‖pk
.

∑
k

kα‖f∗k‖pk

≤
∑

k

kαe−k/pkf∗(e−k).

Since k/pk = k − k/(k + 1), we conclude that∫ 1

0

(Tf)∗(t) dt .
∑

k

kαe−kf∗(e−k) .
∫ 1

0

f∗(t)
(
log

1
t

)α

dt,

and the proof is complete.

Remark 2.2. The proof makes it plain that the target space Lp in the assumption on
T can be replaced by L1. This result is known: see [7] for a proof using the machinery
of abstract extrapolation theory. For convenience we formulate this separately.

Theorem 2.3. Suppose that for all p near 1 with p > 1, T : Lp → L1 is bounded,
with ‖T | Lp → L1‖ ≤ C(p − 1)−α for some α > 0 and C independent of p. Then
T : L(log L)α → L1 is bounded.

Remark 2.4. These theorems (as well as those in the next sections) have obvious dual
counterparts. We shall not state these explicitly.

3. Variations in the assumed target spaces

We shall need the following simple lemma on the embedding of Lp,q in L1.

Lemma 3.1. If p, q ∈ (1,∞), then for all f ∈ Lp,q,

‖f‖1 ≤
( p

q′(p− 1)

)1/q′

‖f‖p,q,

where 1/q′ = 1− 1/q.

Proof. If f ∈ L1, then

‖f‖1 =
∫ 1

0

t1/pf∗(t) · t1−1/p dt

≤
(∫ 1

0

(
t1/pf∗(t)

)q dt

t

)1/q(∫ 1

0

t(1−1/p)q′ dt

t

)1/q′

,

which leads to the desired result.
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2005, 18; Núm. 1, 111–118

114



D. E. Edmunds/M. Krbec Variations on Yano’s extrapolation theorem

This immediately gives

Lemma 3.2. Suppose that for some q ∈ (1,∞) and all p near 1 with p > 1,
T : Lp → Lp,q is bounded, with ‖T | Lp → Lp,q‖ ≤ C(p − 1)−α for some α > 0
and C independent of p. Then T : L(log L)α+1/q′ → L1 is bounded.

Proof. Let f ∈ L(log L)α+1/q′
. Then

‖Tf‖1 . (p− 1)−1/q′
‖Tf‖p,q . (p− 1)−α−1/q′

‖f‖p

and the conclusion follows from Theorem 2.3.

To deal with the end point cases q = 1 and q = ∞ we proceed as follows.

Lemma 3.3. Suppose that for all p near 1 with p > 1, T : Lp → Lp,∞ is bounded,
with ‖T | Lp → Lp,∞‖ ≤ C(p− 1)−α for some α > 0 and C independent of p. Then
T : L(log L)α+1 → L1 is bounded.

Proof. As before, put pk = 1 + 1
k (k ∈ N). Then for all f ∈ L(log L)α+1,

‖Tf‖1 =
∫ 1

0

(Tf)∗(t) dt ≤
∑

k

∫ 1

0

(Tfk)∗(t) dt

=
∑

k

∫ 1

0

t1/pk(Tfk)∗(t) · t−1/pk dt .
∑

k

(pk − 1)−1‖Tfk‖pk,∞

.
∑

k

(pk − 1)−α−1‖fk‖pk
.

∑
k

kα+1e−k/pkf∗(e−k)

.
∫ 1

0

f∗(t)
(
log

1
t

)α+1

dt.

Lemma 3.4. Suppose that for all p near 1, p > 1, T : Lp → Lp,1 is bounded, with
‖T | Lp → Lp,1‖ ≤ C(p − 1)−α for some α > 0 and C independent of p. Then
T : L(log L)α → L1 is bounded.

Proof. Since ‖Tf‖p ≤ ‖Tf‖p,1 (see [2, Proposition 4.4.2]), the claim follows immedi-
ately from Theorem 2.1.

Corollary 3.5. Let 1 ≤ q ≤ ∞ and suppose that for all p near 1 with p > 1,
T : Lp → Lp,q is bounded, with ‖T | Lp → Lp,q‖ ≤ C(p − 1)−α for some α > 0 and
C independent of p. Then T : L(log L)α+1/q′ → L1 is bounded, where 1/q′ = 1− 1/q
( 1′ = ∞ and ∞′ = 1).
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4. Variations in the assumed domain space

Here we shall look at what happens if T operates on Lp,∞ instead of Lp.

Lemma 4.1. Suppose that for all p near 1 with p > 1, T : Lp,∞ → L1 is bounded,
with ‖T | Lp,∞ → L1‖ ≤ C(p− 1)−α for some α > 0 and C independent of p. Then
T : L(log L)α → L1 is bounded.

Proof. Proceeding as before, if f ∈ L(log L)α we have∫
Ω

|Tf(x)| dx ≤
∑

k

‖Tfk‖1 .
∑

k

(pk − 1)−α‖fk‖pk,∞

=
∑

k

kα sup
0<t<|Ik|

{
t1/pkf∗k (t)

}
≤

∑
k

kαek−k/pke−kf∗(e−k),

and this last series is equivalent to the quasinorm on L(log L)α.

Lemma 4.1 gives a corresponding result for all target spaces embedded in L1 and
in particular for Lp,1. Nevertheless, just as in the last section we can do better and
summarise the position in the following Theorem. Since the proofs are similar to
those already given we omit them.

Theorem 4.2. Suppose that for some q ∈ [1,∞] and all p near 1 with p > 1,
T : Lp,∞ → Lp,q is bounded, with ‖T | Lp,∞ → Lp,q‖ ≤ C(p − 1)−α for some α > 0
and C independent of p. Then T : L(log L)α+1/q′ → L1 is bounded.

Remark 4.3. Our techniques do not seem to give a short proof of the result of Soria [10]
(see also [7, 5.7]) that if T : Lp,1 → Lp,∞ is bounded with norm blowing up like
(p− 1)−α for some α > 0, then T : L(log L)α(log log L) → L1,∞ is bounded. We shall
return to this point in a forthcoming paper.

5. More logarithms

It is well known (see, for example, [9, 2.4]) that some of the theorems we have been
discussing continue to hold if the initial and target spaces are further logarithmically
tuned. For example, if for all p near 1, p > 1, T : Lp → Lp is bounded, with norm
‖T | Lp → Lp‖ ≤ C(p− 1)−α for some α > 0, then for all β > 0, T : L(log L)α+β →
L1(log L)β is bounded. Our theorems in Sections 2, 3 and 4 all have conclusions to
the effect that T maps a space of the form L(log L)γ boundedly into L1, and it turns
out that they can be refined in this way by the addition of logarithms.

Theorem 5.1. Suppose that the hypotheses of any one of the preceding theorems hold,
and that consequently there exists γ ≥ 0 such that T : L(log L)γ → L1 is bounded.
Then for all β > 0, T : L(log L)γ+β → L(log L)β is bounded.
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Proof. In all cases we use the same decomposition idea. For shortness we simply give
the proof for the case in which T maps Lp boundedly into Lp,∞ for all p near 1, p > 1,
with blow-up of the norms of T of order (p − 1)−α, for some α > 0. We therefore
know that L(log L)α+1 → L1 is bounded. As before we write pk = 1 + 1/k (k ∈ N)
and use the decomposition f =

∑
fk of f ∈ L1(log L)β . Then∫ 1

0

(Tf)∗(t)(log(1/t))β dt ≤
∑

k

∫ 1

0

t1/pk(Tfk)∗(t)t−1/pk(log(1/t))β dt

≤
∑

k

‖Tfk‖pk,∞

∫ 1

0

t−1/pk(log(1/t))β dt

.
∑

k

(pk − 1)−α‖fk‖pk

∫ 1

0

t−1/pk(log(1/t))β dt

≤
∑

k

kα+βe−k/pkf∗(e−k)
(∫ 1

0

t−1/pk(log(1/t))β dt
)
k−βek(1−1/pk).

Change of variables gives∫ 1

0

t−1/pk(log(1/t))β dt ≤ ckβ+1Γ(β + 1),

where Γ is the Gamma function. Hence∫ 1

0

(Tf)∗(t)(log(1/t))β dt .
∑

k

kβ+α+1e−k/pkf∗(e−k)Γ(β + 1),

and this last expression is equivalent to the quasinorm on L(log L)β+α+1 since
e−k/pk ∼ e−k and Γ(β) is a finite positive constant.

Remark 5.2. It is clear from the above proof that in some cases the range for β
can be bigger than stated. In particular, the assumptions for which the proof is
given permit β > −1 provided that L(log L)β is defined as the space of f such that∫ 1

0
f∗(t)(log(e/t))β dt for β < 0.

Remark 5.3. The decomposition technique can be also used to prove extrapolation
results for couples of spaces (X, Y ), where X and Y result from logarithmic or Lorentz
(perhaps both) tuning. For instance, an amalgam of proofs of theorems in sections 3
and 4 with the proof of Theorem 5.1 (with some technical changes) easily yields
T : L(log L)α+β → Lr(log L)β provided T : Lp,1 → Lr,p for some fixed r ∈ [1,∞),
p > 1 and close to 1, and with the blow-up (p − 1)α. This is a generalization of
the archetypal extrapolation theorem from [6], which was generalized in the recent
paper [8]. Problems of this type will be dealt with in detail elsewhere.
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