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ABSTRACT

A sharp-move is known as an unknotting operation for knots. A self sharp-move
is a sharp-move on a spatial graph where all strings in the move belong to the
same spatial edge. We say that two spatial embeddings of a graph are sharp
edge-homotopic if they are transformed into each other by self sharp-moves and
ambient isotopies. We investigate how is the sharp edge-homotopy strong and
classify all spatial theta curves completely up to sharp edge-homotopy. Moreover
we mention a relationship between sharp edge-homotopy and delta edge (resp.
vertex)-homotopy on spatial graphs.
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1. Introduction

Let G be a finite graph which is considered as a topological space in the usual way.
An embedding f : G → S3 is called a spatial embedding of G or simply a spatial graph.
We call a subgraph of G a cycle if it is homeomorphic to S1 and denote the set of
all cycles of G by Γ(G). A graph G is said to be planar if there exists an embedding
of G into S2, and a spatial embedding of a planar graph G is said to be trivial if it is
ambient isotopic to an embedding of G into S2 ⊂ S3.
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Figure 1

Figure 2

A graph is said to be oriented if an orientation is given for each edge. A sharp-move
is a local move on a spatial oriented graph as illustrated in Fig. 1. It is known that the
sharp-move is an unknotting operation [10]. We say that a sharp-move is a self sharp-
move if all four strings in the move belong to the same spatial edge. We say that two
spatial embeddings of a graph G are sharp edge-homotopic if they are transformed
into each other by self sharp-moves and ambient isotopies. It is easy to see that this
definition does not depend on the edge orientations. If G is homeomorphic to the
disjoint union of 1-spheres, then it coincides with self sharp-equivalence on oriented
links [14,22,23,25].

First we investigate how strong is sharp edge-homotopy. In [27], equivalence re-
lations cobordism, isotopy, I-equivalence and edge-homotopy on spatial graphs were
introduced. A delta move is a local move on a spatial graph as illustrated in Fig. 2.
It is known that the delta move is also an unknotting operation [7,12]. We say that a
delta move is a self delta move if all three strings in the move belong to the same spa-
tial edge and a quasi adjacent-delta move if it is on exactly two adjacent spatial edges.
Two spatial embeddings of a graph are said to be delta edge (resp. vertex)-homotopic
if they are transformed into each other by self delta moves (resp. quasi adjacent-delta
moves) and ambient isotopies [15]. This is a generalization of delta link-homotopy (or
self delta-equivalence) on oriented links [13,24].

Revista Matemática Complutense
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Theorem 1.1. The following implications hold:

ambient
isotopy (        )

(           )cobordism

isotopy(        )

-equivalenceI    (              ) edge-
homotopy (         )

delta vertex-
homotopy(           )

delta edge-
homotopy(          )

sharp edge-
homotopy(           )

Moreover the converse of each implication does not hold and if there does not exist
any arrow between two equivalence relations then there does not exist any implication
between them.

We note that the dotted parts have already proved in [27] and the gray parts have
already proved by the author [15]. We prove Theorem 1.1 in the next section.

In section 3, we show that there exists a theta curve which is not trivial up to
sharp edge-homotopy, where a theta curve is a spatial embedding of the graph θ as
illustrated in Fig. 3.

Moreover, we classify all theta curves completely up to sharp edge-homotopy. For
a theta curve f , let α̃(f) be the modulo two reduction of

∑
γ∈Γ(θ) a2(f(γ)), where

ai(L) denotes the i-th coefficient of the Conway polynomial ∇L(z) of a link L. We
note that the modulo two reduction of a2(K) coincides with the Arf invariant [21] of
a knot K. From the beginning this was introduced as a delta edge-homotopy invariant
of theta curves [15]. We give the following classification in section 3.

Theorem 1.2. Two theta curves f and g are sharp edge-homotopic if and only if
α̃(f) = α̃(g).

A theta curve is said to be almost unknotted if f(γ) is a trivial knot for any cycle
γ ∈ Γ(θ). As a corollary of Theorem 1.2, we have the following:

e1

e2

e3

u v

θ

f(u) f(v)
f(e )2

f(e )3

f(e )1f

Figure 3

183 Revista Matemática Complutense
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Corollary 1.3. Any almost unknotted theta curve is trivial up to sharp edge-homo-
topy.

It is known that there exist infinitely many oriented links up to delta edge-
homotopy which are mutually sharp edge-homotopic [14]. On the other hand, the
author showed that there exist infinitely many almost unknotted theta curves up to
delta edge-homotopy [17]. Thus we have the following by Corollary 1.3.

Corollary 1.4. There exist infinitely many theta curves up to delta edge-homotopy
which are mutually sharp edge-homotopic.

This implies that in general there exist infinitely many spatial embeddings of a
graph G up to delta edge-homotopy which are mutually sharp edge-homotopic even
in the case that G does not contain any disjoint cycles. In section 4, we give such an
example in case G is the complete graph on four vertices K4 as follows.

Theorem 1.5. There exist spatial embeddings fm of K4 for m ∈ N ∪ {0} such that

(i) fi and fj are not delta edge-homotopic for i 6= j.

(ii) For any subgraph H of K4 which is homeomorphic to θ, fi|H and fj |H are delta
edge-homotopic for i 6= j.

(iii) fi and fj are sharp edge-homotopic for i 6= j.

Besides we show that there exist infinitely many spatial embeddings of the com-
plete graph on five vertices K5 up to delta vertex-homotopy which are mutually sharp
edge-homotopic.

Theorem 1.6. There exist spatial embeddings fm of K5 for m ∈ N ∪ {0} such that

(i) fi and fj are not delta vertex-homotopic for i 6= j.

(ii) For any subgraph H of K5 which is homeomorphic to K4, fi|H and fj |H are
delta vertex-homotopic for i 6= j.

(iii) fi and fj are sharp edge-homotopic for i 6= j.

In particular, by Theorem 1.1 we have the following:

Corollary 1.7. There exist infinitely many spatial embeddings of K5 up to isotopy
which are mutually sharp edge-homotopic.

Remark 1.8. Classification of spatial graphs up to sharp-moves (resp. pass-moves)
and ambient isotopies was studied by Y. Ohyama [19], but all strings in the move
does not have to belong to the same spatial edge. The author and R. Shinjo have
already classified all boundary spatial embeddings of a graph completely up to self
sharp-moves (resp. self pass-moves) and ambient isotopies [18].
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Figure 4

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We give the definitions of cobordism, isotopy
and I-equivalence on spatial graphs roughly. We refer the reader to [27] for precise
definitions. Two spatial embeddings f and g of a graph G are said to be I-equivalent
if there exists an embedding Φ : G × [0, 1] → S3 × [0, 1] between f and g. On that
occasion, if Φ is locally flat then f and g are said to be cobordant. On the other hand
if Φ is level preserving then f and g are said to be isotopic. We remark here that f
and g are ambient isotopic if Φ is locally flat and level preserving.

We give the definition of edge-homotopy on spatial graphs precisely. We say
that a crossing change is a self crossing change if all two strings in the move belong
to the same spatial edge. Two spatial embeddings of a graph are said to be edge-
homotopic [27] if they are transformed into each other by self crossing changes and
ambient isotopies. (In [27], edge-homotopy is called simply a homotopy.) This is a
generalization of link-homotopy on oriented links [8].

Lemma 2.1. Let f and g be spatial embeddings of a graph.

(i) If f and g are ambient isotopic then they are sharp edge-homotopic.

(ii) If f and g are delta edge-homotopic then they are sharp edge-homotopic.

(iii) If f and g are sharp edge-homotopic then they are edge-homotopic.

Proof. (i) and (iii) are clear. It is known that a delta move is realized by sharp-
moves on the strings in the delta move and ambient isotopies [14]. Thus we have (ii)
immediately.

Lemma 2.2. If two spatial embeddings of a graph are cobordant then they are sharp
edge-homotopic.

To prove Lemma 2.2, we prepare two kinds of specific local moves on a spatial
graph. A pass-move on a spatial oriented graph is a local move as illustrated in
Fig. 4 [5]. We say that a pass-move is a self pass-move if all four strings in the move
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Figure 5

belong to the same spatial edge. It is known that a pass-move is realized by sharp-
moves on the strings in the pass-move and ambient isotopies [12]. Thus we have the
following:

Lemma 2.3. A self pass-move is realized by sharp edge-homotopy.

A Γ-move [5] is a local move on a spatial oriented graph as illustrated in Fig. 5.
We call a Γ-move a self Γ-move if all three strings in the move belong to the same
spatial edge. It is known that a Γ-move is realized by a pass-move on the strings in
the Γ-move and ambient isotopies [5]. Thus by Lemma 2.3 we have the following:

Lemma 2.4. A self Γ-move is realized by sharp edge-homotopy.

The following is a normalization of cobordism between two cobordant spatial em-
beddings of a graph.

Lemma 2.5 ([27]). Let f and g be cobordant spatial embeddings of a graph G. Then
there exists an embedding Φ : G × [0, 1] → S3 × [0, 1] between f and g satisfying the
following conditions:

(i) π◦Φ|v×[0,1] : v× [0, 1] → [0, 1] is a homeomorphism for any vertex v of G, where
π : S3 × [0, 1] → [0, 1] is the natural projection.

(ii) The image of Φ has only finitely many critical points in int(e × [0, 1]) for any
edge e of G, consisting of minimal points, saddle points and maximal points.

(iii) All of the minimal points lie in S3 × { 1
6} and all of the maximal points lie in

S3 × { 5
6}.

(iv) All of the saddle points lie in S3×{1
3} and S3×{ 2

3} such that the cross-section
Φ(G× [0, 1]) ∩ S3 × { 1

2} is homeomorphic to G.

Proof of Lemma 2.2. Let f and g be cobordant spatial embeddings of a graph G and
Φ is a normalization of cobordism between f and g as in Lemma 2.5. We can regard
the cross-section Φ(G × [0, 1]) ∩ S3 × { 1

2} as the image of a spatial embedding of G
which is denoted by h1/2.
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Claim 1. f and h1/2 are sharp edge-homotopic.
We remark here that the number of minimal points in S3×{ 1

6} equals the number
of saddle points in S3×{ 1

3} as it was pointed out in [27]. We can deform Φ(G× [0, 1])
by an ambient isotopy of S3 × [0, 1] so that the minimal points in S3 × { 1

6} and
the saddle points in S3 × { 1

3} change into minimal bands D1, D2, . . . , Dl and saddle
bands b1, b2, . . . , bl, respectively and each saddle band intersects the spatial graph
by an arc. Then we have that h1/2 is a band fusion of an l-component trivial link
L = J1 ∪ J2 ∪ · · · ∪ Jl and f . Then by using self Γ-moves and ambient isotopies if
necessary, we can shrink each band with the component Ji one by one, see Fig. 6. By
shrinking all bands in such a way, we obtain the spatial embedding f . Therefore by
Lemma 2.4 we have that f and h1/2 are sharp edge-homotopic.

Claim 2. g and h1/2 are sharp edge-homotopic.
We can see Claim 2 in the same way as Claim 1. This completes the proof.

Remark 2.6. The proof of Lemma 2.2 shows that if two spatial embeddings of a
graph are cobordant then they are transformed into each other by self pass-moves
and ambient isotopies.

Proof of Theorem 1.1. By Lemmas 2.1 and 2.2, we have the desired implications. Let
f and g be theta curves as illustrated in Fig. 7. It is known that any theta curve
is trivial up to isotopy [27]. But f is not trivial up to sharp edge-homotopy, see
Example 3.6. We note that g is an almost unknotted theta curve which is called
Kinoshita’s theta curve. It is known that g is not trivial up to delta edge-homotopy
and cobordism [17]. But we have that g is trivial up to sharp-edge homotopy by
Corollary 1.3. Let L be an oriented link as illustrated in Fig. 7. By a calculation
we have that ∇L(z) = −4z3 − 5z5 − z7. Since the first non-vanishing coefficient
of the Conway polynomial of a link is an I-equivalence invariant [1], we have that
L is not trivial up to I-equivalence and isotopy. Since the third coefficient of the
Conway polynomial of a 2-component algebraically split link is a delta link-homotopy
invariant [13], we have that L is not trivial up to delta vertex-homotopy. But L is
trivial up to sharp edge-homotopy, see Fig. 8. Therefore we have that the converse
of each implication does not hold and if there does not exist any arrow between two
equivalence relations then there does not exist any implication between them. This
completes the proof.

3. Sharp edge-homotopy classification of theta curves

In this section we prove Theorem 1.2. We first show the sharp edge-homotopy invari-
ance of the α̃-invariant of theta curves.

Proposition 3.1. If two theta curves f and g are sharp edge-homotopic then
α̃(f) = α̃(g).
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Γ-moves

Γ-moves

Γ-moves

Figure 6
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f g L

Figure 7

Figure 8

To prove Proposition 3.1, we recall the a3-invariant of theta curves [17]. For a
theta curve f , the associated 3-component link Lf is defined, which is the boundary
of a compact, connected and orientable surface Sf with zero Seifert linking form
having f as a spine [6], see Fig. 9. We order and orient Lf = K1

f ∪ K2
f ∪ K3

f so
that Ki

f is freely homotopic to f(ei+1)− f(ei+2), where suffixes are taken modulo 3.
We denote the sublink Ki+1

f ∪ Ki+2
f by li(f) (i = 1, 2, 3). Since it is known that

a3(l1(f)) = a3(l2(f)) = a3(l3(f)) for any theta curve f [4, 26], we can define that
a3(f) = a3(S), where S is arbitrary 2-component sublink of Lf . We remark here that
the a3-invariant is a complete delta edge-homotopy invariant of theta curves.

Theorem 3.2 ([17]). Two theta curves f and g are delta edge-homotopic if and only
if a3(f) = a3(g).

We also recall the calculation of the Arf invariant of totally proper links. The
following is a direct consequence of the results in [2, 9, 29].

Proposition 3.3. Let L = J1 ∪ J2 ∪ · · · ∪ Jn be an n-component totally proper link,
namely lk(Ji ∪ Jj) ≡ 0 (mod 2) for any i 6= j, where lk denotes the linking number.
Then we have the following:

(i) an+1(L) ≡
∑n

m=1

∑
1≤i1<i2<···<im≤n Arf(Ji1 ∪ Ji2 ∪ · · · ∪ Jim

) (mod 2),

(ii) Arf(L) ≡
∑n

m=1

∑
1≤i1<i2<···<im≤n am+1(Ji1 ∪ Ji2 ∪ · · · ∪ Jim) (mod 2).
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K f
1

K f
2

K f
3

L f

f(u) f(v)
f(e )2

f(e )3

f(e )1

Figure 9

Lemma 3.4. α̃(f) ≡ a3(f) (mod 2) for any theta curve f .

Proof. By Proposition 3.3 we have that

0 = a4(Lf ) ≡ Arf(Lf ) +
3∑

i=1

Arf(li(f)) +
3∑

i=1

Arf(Ki
f )

≡ Arf(Lf ) +
3∑

i=1

a3(li(f)) +
3∑

i=1

a2(Ki
f )

≡ Arf(Lf ) + a3(f) + α̃(f) (mod 2).

Since we can see that Arf(Lf ) = 0, we have the result.

Let Arf(L) be the reduced Arf invariant [22] of a 2-component proper link L =
J1 ∪ J2, namely Arf(L) is the modulo two reduction of Arf(L)−Arf(J1)−Arf(J2).

Lemma 3.5. (i) ([23]) Arf(L) is a sharp edge-homotopy invariant of a 2-com-
ponent proper link L.

(ii) a3(L) ≡ Arf(L) (mod 2).

Proof. We show (ii). By Proposition 3.3 (ii) we have that

Arf(L) ≡ Arf(L)−Arf(J1)−Arf(J2)
≡ a3(L) + a2(J1) + a2(J2)− a2(J1)− a2(J2)
= a3(L) (mod 2).

Proof of Proposition 3.1. Let f and g be theta curves such that g is obtained from f
by a single self sharp move on f(e1). Then we have that l3(g) is obtained from l3(f)
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2005, 18; Núm. 1, 181–207

190



Ryo Nikkuni Sharp edge-homotopy on spatial graphs

by a single self sharp-move on K2
f , namely l3(g) and l3(f) are self sharp-equivalent.

Then by Lemmas 3.4 and 3.5 (i) and (ii), we have that

α̃(f) ≡ a3(f) = a3(l3(f)) ≡ Arf(l3(f))

= Arf(l3(g)) ≡ a3(l3(g)) = a3(g) ≡ α̃(g) (mod 2).

This completes the proof.

Example 3.6. Let f be the theta curve as illustrated in Fig. 7. Then by a calculation
we have that α̃(f) = 1. Thus f is not trivial up to sharp edge-homotopy.

In the rest of this section we show that the converse of Proposition 3.1 is also true.
For quasi adjacent-delta moves, we have the following:

Lemma 3.7. Let G be a graph and v a vertex of G such that exactly three edges
e1, e2 and e3 of G are incident to v. Let f be a spatial embedding of G. Then, any
quasi adjacent-delta move on two of the three spatial edges f(e1), f(e2) and f(e3) are
realized by quasi adjacent-delta moves on f(e1) and f(e2) and sharp edge-homotopies.

Proof. It is sufficient to show that a quasi adjacent-delta move on f(e2) and f(e3)
can be realized by quasi adjacent-delta moves on f(e1) and f(e2) and sharp edge-
homotopies.

Step 1. If two of the three strings in a quasi adjacent-delta move belong to f(e2),
by an application of the move in Fig. 10 with respect to f(e3), we have that it is
realized by a self delta move on f(e2), namely self sharp-moves on f(e2), and a quasi
adjacent-delta move on f(e1) and f(e2) and ambient isotopies. So we have the result.

Step 2. If two of the three strings in a quasi adjacent-delta move belong to f(e3),
by an application of the move in Fig. 10 with respect to f(e3), we have that it is
realized by a quasi adjacent-delta move on f(e2) and f(e3), a delta move on exactly
three spatial edges f(e1), f(e2) and f(e3) and ambient isotopies. The former move
can be realized by a quasi adjacent-delta move on f(e1) and f(e2) and sharp edge-
homotopies in the same way as Step 1. For the latter move, by an application of
the move in Fig. 10 with respect to f(e3), we have that it is realized by two quasi
adjacent-delta moves on f(e1) and f(e2) and ambient isotopies. This completes the
proof.

Proof of Theorem 1.2. We have the ‘only if’ part by Proposition 3.1. We show the
‘if’ part. Let f and g be two theta curves such that α̃(f) = α̃(g). It is known that
any two theta curves are delta vertex-homotopic [15]. Thus we have that f and g
are delta vertex-homotopic. Then by Lemma 3.7 we have that f can be obtained
from g by quasi adjacent-delta moves on g(e1) and g(e2) and sharp edge-homotopies.
We note that a delta move can be regarded as a band fusion of Borromean rings, see
Fig. 11. So we have that f is sharp edge-homotopic to f0 which is a band fusion of
Borromean rings and g, where the roots of three fusion bands with each Borromean
rings belong to g(e1) and g(e2). We note that α̃(f) = α̃(f0) by Lemma 3.1.
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Figure 10

Figure 11
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(1) (2) (3)

(4) (5) (6)

Figure 12

All pairs of adjacent two Borromean rings attached to g(e1) and g(e2) with respect
to f0(e1) are divided into the six patterns as illustrated in Fig. 12, where the gray
spatial edge is f0(e1) and the black spatial edge is f0(e2). By sliding the roots of a
fusion band with the Borromean rings if necessary, we can reduce (4), (5), and (6) to
(1). Then we can see that each pair of adjacent two Borromean rings attached to g(e1)
and g(e2) as illustrated in Fig. 12 (1), (2), and (3) can be omitted by self Γ-moves and
ambient isotopies, namely up to sharp edge-homotopy by Lemma 2.4 as illustrated
in Figs. 13, 14, and 15, respectively. Therefore we have that f0 is sharp edge-
homotopic to f1 which is a band fusion of Borromean rings and g, where the number of
the Borromean rings is at most one. Assume that there exists exactly one Borromean
rings. We remark here that if a knot K can be obtained from J by a single delta move
then |a2(K)−a2(J)| = 1 [20]. Then we have that |a2(f1(e1∪e2))−a2(g(e1∪e2))| = 1,
a2(f1(e2 ∪ e3)) = a2(g(e2 ∪ e3)) and a2(f1(e2 ∪ e3)) = a2(g(e2 ∪ e3)). This implies
that α̃(f) = α̃(f0) = α̃(f1) 6= α̃(g). This is a contradiction. Thus we have that f1 is
sharp edge-homotopic to g. Therefore f and g are sharp edge-homotopic.

4. Sharp edge-homotopy vs. delta edge (resp. vertex)-homotopy

In this section we give some examples of infinitely many spatial embeddings of K4

(resp. K5) up to delta edge (resp. vertex)-homotopy which are mutually sharp edge-
homotopic. To detect the non-trivial delta edge (resp. vertex)-homotopy classes, we
recall the n-invariant [15] of spatial embeddings of K4 and K5. A cycle of a graph G
is called a k-cycle if it contains exactly k edges. Let ω4 : Γ(K4) → Z be a map defined
by ω4(γ) = 1 if γ is a 4-cycle and −1 if γ is a 3-cycle. Let ω5 : Γ(K5) → Z be a map
defined by ω5(γ) = 1 if γ is a 5-cycle, −1 if γ is a 4-cycle and 0 if γ is a 3-cycle. For
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Γ -moves

Γ -move

Γ -move

Figure 13
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Γ -moves

Γ -move

Γ -move

Figure 14
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Γ -moves

Γ -move

Γ -move

Figure 15

Revista Matemática Complutense
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J+ J- J0

Figure 16

a spatial embedding f of Ki for i = 4, 5, we put

nωi(f) =
1
18

∑
γ∈Γ(Ki)

ωi(γ)V (3)
f(γ)(1),

where V
(i)
L (1) denotes the i-th derivative at 1 of the Jones polynomial VL(t) of a

link L. (In this paper we calculate the Jones polynomial of a link by the skein relation
tVJ+(t)− t−1VJ−(t) = (t−

1
2 − t

1
2 )VJ0(t).) Then the following was shown in [15] by the

author:

Theorem 4.1. (i) nω4(f) is an integer-valued delta edge-homotopy invariant of a
spatial embedding f of K4.

(ii) nω5(f) is an integer-valued delta vertex-homotopy invariant of a spatial embed-
ding f of K5.

We prepare the formula of the variation of V (3)(1) of knots which differed by
a single crossing change. The following formula is convenient to calculate the n-
invariant.

Proposition 4.2.

V
(3)
J+

(1)− V
(3)
J−

(1) = 36a2(J+) + 18{lk(J0)}2 − 36{a2(K1) + a2(K2)},

where J+, J− and J0 = K1 ∪K2 are two knots and a 2-component link as illustrated
in Fig. 16.

To prove Proposition 4.2, we use the following results.

Lemma 4.3. Let L = J1 ∪ J2 ∪ · · · ∪ Jn be an n-component link.

(i) ([3]) VL(1) = (−2)n−1.

(ii) ([3, 11])

V
(1)
L (1) =

{
0 if n = 1,
3(−2)n−2

∑
1≤i<j≤n lk(Ji ∪ Jj) if n ≥ 2.
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(iii) ([11])

V
(2)
L (1) =

{
−6a2(L) if n = 1,
12{a2(J1) + a2(J2)} − 6{lk(L)}2 − 3 lk(L)− 1

2 if n = 2.

Proof of Proposition 4.2. By differentiating both sides of the skein relation at 1 about
three times and Lemma 4.3, it is easy to check that

V
(3)
J+

(1)− V
(3)
J−

(1) = −3V
(2)
J+

(1)− 3V
(2)
J−

(1) + 3V
(1)
J0

(1)− 3V
(2)
J0

(1)− 3
2
. (1)

By Lemma 4.3 we have that

V
(2)
J+

(1) = −6a2(J+),

V
(2)
J−

(1) = −6a2(J−),

V
(1)
J0

(1) = 3 lk(J0),

V
(2)
J0

(1) = 12{a2(K1) + a2(K2)} − 6{lk(J0)}2 − 3 lk(J0)−
1
2
.

Besides it is well known that ([5])

a2(J+)− a2(J−) = lk(J0). (2)

Thus by substituting them to (1) we have the result.

Proof of Theorem 1.5. Let fm(m ∈ N∪ {0}) be a spatial embedding of the complete
graph on four vertices K4 as illustrated in Fig. 17.

m full twists

f  (e )3
e 4 e 5

e 1

e 2
e 3

e 6

fm

K4

m

f  (e )2m

f  (e )4m

f  (e )5m

f  (e )6m

f  (e )1m

Figure 17

We first show (iii). We can see that fm is sharp edge-homotopic to a trivial spatial
embedding for any m ∈ N ∪ {0} as illustrated in Fig. 18.
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Figure 18

J1 J2

Figure 19
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Km Km-1

L 0

K0

L0

Figure 20

Next we show (i). It is not hard to see that fm contains exactly two non-trivial
knots J1 = Km and J2 as illustrated in Fig. 19. We note that J2 is ambient isotopic
to K0 and

∇J2(z) = 1 + 2z2,

VJ2(t) = −t−6 + t−5 − t−4 + 2t−3 − t−2 + t−1.
(3)

For a skein triple (Ki,Ki−1, L0) (i = 1, 2, . . . ,m) as illustrated in Fig. 20, we have
that a2(Km) = a2(Km−1) = · · · = a2(K0) = 2 because lk(L0) = 0. We note that the
components M1

0 and M2
0 of L0 are trivial knots. Then by Proposition 4.2 we have

that
1
18

V
(3)
Ki

(1)− 1
18

V
(3)
Ki−1

(1) = 2a2(Ki) = 4

for i = 1, 2, . . . ,m. Thus we have that

1
18

V
(3)
Km

(1) =
1
18

V
(3)
Km−1

(1) + 4 = · · · = 1
18

V
(3)
K0

(1) + 4m.

Therefore we have that

nω4(fm) =
1
18

V
(3)
J1

(1)− 1
18

V
(3)
J2

(1) =
1
18

V
(3)
Km

(1)− 1
18

V
(3)
K0

(1) = 4m.

This implies that fi and fj are not delta edge-homotopic for i 6= j.
Finally we show (ii). Fig. 21 illustrates all constituent theta curves of fm. We

can see that fm|K4−e1 and fm|K4−e6 are trivial theta curves for any m ∈ N∪{0} and
fi|K4−e2 and fj |K4−e2 are ambient isotopic for i 6= j.
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f  (K     e )4 1m f  (K     e )4 2m f  (K     e )4 3m

f  (K     e )4 4m f  (K     e )4 5m f  (K     e )4 6m

Figure 21

We take a 2-component sublink L3
m, L4

m, and L5
m of the associated 3-component

link of fm|K4−e3 , fm|K4−e4 and fm|K4−e5 , respectively as illustrated in Fig. 22. Since
L3

i and L3
j are ambient isotopic for i 6= j, we have that a3(fi|K4−e3) = a3(fj |K4−e3)

for i 6= j. It is easy to see that L4
m is delta edge-homotopic to a trivial theta curve.

Thus we have that a3(fm|K4−e4) = 0 for any m ∈ N ∪ {0}. For L5
m, we can see that

the knot which can be obtained from L5
m by a smoothing on any crossing point of full

twists is trivial. Then it is not hard to see that a3(L5
m) = −4. Thus we have that

a3(fm|K4−e5) = −4 for any m ∈ N∪{0}. Hence by Theorem 3.2 we have that fi|K4−ek

and fj |K4−ek
are delta edge-homotopic for i 6= j and k = 3, 4, 5. This completes the

proof.

Proof of Theorem 1.6. Let fm (m ∈ N∪{0}) be a spatial embedding of the complete
graph on five vertices K5 as illustrated in Fig. 23.

We first show (iii). We can see that fm is sharp edge-homotopic to f0 for any
m ∈ N in a similar way as in Fig. 18.

Next we show (i). It is not hard to see that fm (m 6= 0) contains exactly six
non-trivial knots J1, J2, . . . , J6 as illustrated in Fig. 24. We note that each of J1, J3,
and J5 is ambient isotopic to the m times connected sum of the knot J2 in Fig. 19.
Since V (3)(1) is additive under the connected sum, by (3) we have that

1
18

V
(3)
J1

(1) =
1
18

V
(3)
J3

(1) =
1
18

V
(3)
J5

(1) = 8m. (4)
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f  (K     e )4 3m

f  (K     e )4 4m

f  (K     e )4 5m

m- full twists

m full twists
-m  full twists

m full twists
-m+3       full twists

Figure 22
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e 10

e 8

e 1

e 5

e 4

fm

K5

e 7
e 3

e 2

e 9 e 6

f  (e )7m

f  (e )2m f  (e )3m

f  (e )8m

f  (e )1m f  (e )4m

f  (e )5m f  (e   )10m

f  (e )6m f  (e )9m

=

m times

f  (e )4m

f  (e )6m

f  (e )4m

f  (e )6m

m

m

Figure 23

Besides we can see that J2, J4, and J6 are mutually ambient isotopic. Let us
consider a skein tree of J2 = Km as illustrated in Fig. 25. Then by Proposition 4.2
and (2), we have that

1
18

V
(3)
Km

(1)− 1
18

V
(3)
M2

(1) = 2a2(Km),

1
18

V
(3)
M2

(1)− 1
18

V
(3)
M3

(1) = 2a2(M2) + 2,

1
18

V
(3)
M3

(1)− 1
18

V
(3)
M4

(1) = −2a2(M4),

1
18

V
(3)
M4

(1)− 1
18

V
(3)
M5

(1) = −2a2(M5)− 4,

a2(Km) = a2(M2) = a2(M3) = a2(M4) = a2(M5)− 2.

Thus we have that

1
18

V
(3)
Km

(1) =
1
18

V
(3)
Km−1

(1)− 6 = · · · = 1
18

V
(3)
K0

(1)− 6m = −6m. (5)
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J1 J2 J3

J4 J5 J6

Figure 24

Therefore by (4) and (5) we have that

nω5(fm) = −
{ 1

18
V

(3)
J1

(1) +
1
18

V
(3)
J2

(1)
}

+
{ 1

18
V

(3)
J3

(1) +
1
18

V
(3)
J4

(1) +
1
18

V
(3)
J5

(1) +
1
18

V
(3)
J6

(1)
}

= − (8m− 6m) + (8m− 6m + 8m− 6m)
= 2m.

This implies that fi and fj are not vertex-homotopic for i 6= j.
Finally we show (ii). Since fi and fj are sharp edge-homotopic for i 6= j, by

Theorem 1.1 we have that fi and fj are edge-homotopic for i 6= j. We note that
fi|H and fj |H are also edge-homotopic for any subgraph H of K5. It is known
that if two spatial embeddings of K4 are edge-homotopic then they are delta vertex-
homotopic [16]. This completes the proof.

Remark 4.4. This spatial embedding fm of K5 contains a theta curve Tm as illustrated
in Fig. 26. We note that Tm is the m times vertex connected sum of the theta curve T1.
Then by a direct calculation we have that a3(T1) = −4. Since the a3-invariant of theta
curves is a cobordism invariant and additive under the vertex connected sum of theta
curves [17], we have that a3(Tm) = −4m and fi and fj are not cobordant for i 6= j.
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m-1

m-1

m-1

m-1

m-1

m-1

m-1

m-1

m-1

Km-1

Km

M2

M3

M4

figure eight

lk =0

trivial

trivial trivial

lk =0

lk =0

trivial trivial

trivial trivial

lk =2

Figure 25
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2005, 18; Núm. 1, 181–207



Ryo Nikkuni Sharp edge-homotopy on spatial graphs

m

Tm

Figure 26
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